T^n -action on the Grassmannians $G_{n,2}$ via hyperplane arrangements

Svjetlana Terzić

University of Montenegro based on joint results with Victor M. Buchstaber

Workshop on Torus Actions in Topology Fields Institute for Research in Mathematics May 11, 2020.

Complex Grassmann manifolds $G_{n,k} = G_{n,k}(\mathbb{C})$

 $G_{n,k}$ – k-dimensional complex subspaces in \mathbb{C}^n ,

- The coordinate-wise \mathbb{T}^n action on \mathbb{C}^n induces \mathbb{T}^n action on $G_{n,k}$.
- This action is not effective $T^{n-1} = \mathbb{T}^n/\Delta$ acts effectively.
- d = k(n-k) (n-1) complexity of T^{n-1} -action;
- $d \ge 2$ for $n \ge k + 3$, $k \ge 2$.
- \mathbb{T}^n -action extends to $(\mathbb{C}^*)^n$ -action on $G_{n,k}$

<u>Problem:</u> Describe the combinatorial structure and algebraic topology of the orbit space $G_{n,k}/\mathbb{T}^n \cong G_{n,n-k}/\mathbb{T}^n$.

- V. M. Buchstaber and S. Terzić, Topology and geometry of the canonical action of T⁴ on the complex Grassmannian G_{4,2} and the complex projective space CP⁵, Moscow Math. Jour. Vol. 16, Issue 2, (2016), 237–273.
- V. M. Buchstaber and S. Terzić, *Toric Topology of the Complex Grassmann Manifolds*, Moscow Math. **19**, no. 3, (2019) 397-463.
- V. M. Buchstaber and S. Terzić, The foundations of (2n, k)-manifolds, Sb. Math. 210, No. 4, 508-549 (2019).
- I. M. Gelfand and V. V. Serganova, Combinatoric geometry and torus strata on compact homogeneous spaces, Russ. Math. Survey 42, no.2(254), (1987), 108–134. (in Russian)
- I. M. Gelfand, R. M. Goresky, R. D. MacPherson and
 V. V. Serganova, Combinatorial Geometries, Convex Polyhedra, and Schubert Cells, Adv. in Math. 63, (1987), 301–316.
- M. M. Kapranov, *Chow quotients of Grassmannians I*, Adv. in Soviet Math., 16, part 2, Amer. Math. Soc. (1993), 29–110.

We describe here the orbit space $G_{n,2}/T^n$ in terms of :

- 1. "soft" chamber decomposition $L(A_{n,2})$ for $\Delta_{n,2}$,
 - $A = \Pi \cup \{x_i = 0, \ 1 \le i \le n\} \cup \{x_i = 1, \ 1 \le i \le n\}$ hyperplane arrangement in \mathbb{R}^n ;
 - $\Pi = \{x_{i_1} + \ldots + x_{i_l} = 1, \ 1 \le i_1 < \ldots < i_l \le n, \ 2 \le l \le \lfloor \frac{n}{2} \rfloor \};$
 - L(A) face lattice for A;
 - $L(A_{n,2}) = L(A) \cap \overset{\circ}{\Delta}_{n,2};$
- 2. spaces of parameters F_C for $C \in L(A_{n,2})$ parametrize $(\mathbb{C}^*)^n$ orbits in $\mu_{n,2}^{-1}(C) \subset G_{n,2}$;
- 3. universal space of parameters \mathcal{F} .

Moment map

The Plücker embedding $G_{n,k} \to \mathbb{C}P^{N-1}$, $N = \binom{n}{k}$, is given by

$$L \to P(L) = \big(P_I(A_L), \ I \subset \{1, \dots n\}, \ |I| = k\big),$$

 $P_I(A_L)$ - Plücker coordinates of L in a fixed basis.

The moment map $\mu_{n,k}: G_{n,k} \to \mathbb{R}^n$ is defined by

$$\mu_{n,k}(L) = \frac{1}{|P(L)|^2} \sum |P_I(A_L)|^2 \Lambda_I, \quad |P(L)|^2 = \sum |P_I(A_L)|^2,$$

where $\Lambda_I \in \mathbb{R}^n$ has 1 at k places and it has 0 at the other (n-k) places, the sum goes over the subsets $I \subset \{1, \ldots, n\}, |I| = k$.

- $\text{Im}\mu_{n,k} = \text{convexhull}(\Lambda_I) = \Delta_{n,k} \text{hypersimplex}.$
- $\Delta_{n,k}$ is in the hyperplane $x_1 + \cdots + x_n = k$ in \mathbb{R}^n , dim $\Delta_{n,k} = n 1$.
- $\mu_{n,k}$ is \mathbb{T}^n -invariant, it unduces the map $\hat{\mu}_{n,k}: G_{n,k}/\mathbb{T}^n \to \Delta_{n,k}$.

T^n -action, moment map and Aut $G_{n,k}$

Lemma

Let $H < AutG_{n,k}$ consists of the elements which commutes with the canonical T^n -action on $G_{n,k}$. Then

- $H = T^{n-1} \rtimes S_n$ for $n \neq 2k$;
- $H = \mathbb{Z}_2 \times (T^{n-1} \rtimes S_n)$ for n = 2k.

Let $f \in \operatorname{Aut} G_{n,k}$ and assume there exists (combinatorial) isomorphism $\bar{f}: \Delta_{n,k} \to \Delta_{n,k}$ such that the diagram commutes:

$$G_{n,k} \xrightarrow{f} G_{n,k}$$

$$\downarrow^{\mu_{n,k}} \qquad \downarrow^{\mu_{n,k}}$$

$$\Delta_{n,k} \xrightarrow{\overline{f}} \Delta_{n,k}.$$

$$(1)$$

Proposition

Let $H < Aut G_{n,k}$ consists of those elements which satisfy (1). Then

- $H = T^{n-1} \rtimes S_n$ for $n \neq 2k$; $H = \mathbb{Z}_2 \times (T^{n-1} \rtimes S_n)$ for n = 2k.
- $\bar{t} = id_{\Delta_{n,k}}$ for $t \in T^{n-1}$;
- $\bar{\mathfrak{s}}(x_1,\ldots,x_n)=(x_{\mathfrak{s}(1)},\ldots,x_{\mathfrak{s}(n)})$ for $\mathfrak{s}\in\mathcal{S}_n;$
- $\bar{c}_{n,k}(x_1,\ldots,x_n)=(1-x_1,\ldots,1-x_n)$ for $c_{n,k}\in\mathbb{Z}_2,\,n=2k$ duality automorphism.

Corollary

- $\hat{\mu}_{n,k}^{-1}(x)$ is homeomorphic to $\hat{\mu}_{n,k}^{-1}(\mathfrak{s}(x))$ for $x \in \Delta_{n,k}$ and $\mathfrak{s} \in S_n$
- $\hat{\mu}_{n,k}^{-1}(x)$ is homeomorphic to $\hat{\mu}_{n,k}^{-1}(\mathbf{1}-x)$ for $x\in\Delta_{n,k}$, when n=2k.

Strata on $G_{n,k}$

Let
$$M_I = \{L \in G_{n,k} \mid P^I(L) \neq 0\}, I \subset \{1, ..., n\}, |I| = k.$$

- M_I is an open and dense set in $G_{n,k}$ and $G_{n,k} = \bigcup M_I$.
- M_l contains exactly one T^n fixed point x_l .
- Set $Y_I = G_{n,k} \setminus M_I$.

Let $\sigma \subset \{I, \ I \subset \{1, \dots, n\}, \ |I| = k\}$ and define the stratum W_{σ} by

 $W_{\sigma} = (\cap_{I \in \sigma} M_I) \cap (\cap_{I \notin \sigma} Y_I)$ if this intersection is nonempty.

The main stratum is $W = \bigcap_{I \in \{\binom{n}{k}\}} M_I$ - an open and dense set in $G_{n,k}$.

- $W_{\sigma} \cap W_{\sigma'} = \emptyset$ for $\sigma \neq \sigma'$,
- W_{σ} is $(\mathbb{C}^*)^n$ invariant, $G_{n,k} = \cup_{\sigma} W_{\sigma}$
- W_{σ} are no open, no closed and their geometry is not nice.

Strata on $G_{n,k}$

Lemma

$$\mu_{n,k}(W_{\sigma}) = \stackrel{\circ}{P}_{\sigma}, \ P_{\sigma} = convhull(\Lambda_{I}, I \in \sigma)$$

Such P_{σ} is called an admissible polytope

- $\{W_{\sigma}\}$ coincide with the strata of Gel'fand-Serganova: $W_{\sigma} = \{L \in G_{n,k} : \mu_{n,k}(\overline{(\mathbb{C}^*)^n \cdot L}) = P_{\sigma}\},$
- Any face of an admissible polytope is an admissible polytope.
- $\mu_{n,k}(W) = \overset{\circ}{\Delta}_{n,k}, \quad \mu_{n,k}(\text{fixed point}) = \text{vertex}.$
- $\Delta_{n,k}$ and its faces are admissible polytopes.

Theorem

All points from W_{σ} have the same stabilizer T_{σ} ($(\mathbb{C}^*)_{\sigma}$).

Torus $T^{\sigma} = T^n/T_{\sigma}$ acts freely on W_{σ} .

Moment map decomposes as $\mu_{n,k}: W_{\sigma} \to W_{\sigma}/T^{\sigma} \overset{\hat{\mu}_{n,k}}{\to} \overset{\circ}{P}_{\sigma}$.

Theorem

 $\hat{\mu}_{n,k}:W_{\sigma}/T^{\sigma}\to \overset{\circ}{P}_{\sigma}$ is a locally trivial fiber bundle with a fiber an open algebraic manifold F_{σ} . Thus,

$$W_{\sigma}/T^{\sigma}\cong \overset{\circ}{P}_{\sigma}\times F_{\sigma}.$$

 F_{σ} – the space of parameter for W_{σ} ;

$$F_{\sigma} \cong W_{\sigma}/(\mathbb{C}^*)^{\sigma}$$
.

To summarize: $G_{n,k}/T^n = \bigcup_{\sigma} W_{\sigma}/T^{\sigma} \cong \bigcup_{\sigma} (\overset{\circ}{P}_{\sigma} \times F_{\sigma})$

$$G_{n,k}/T^n = \overline{W/T^{n-1}} \cong \overline{\overset{\circ}{\Delta}_{n,k} \times F}.$$

Goal: Describe P_{σ} , F_{σ} and the corresponding compactification \mathcal{F} for F

Grassmannians $G_{n,2}$

Admissible polytopes

$$\Delta_{n,2} \subset \mathbb{R}^{n-1} = \{\mathbf{x} \in \mathbb{R}^n : x_1 + \ldots + x_n = 2\}; \text{ dim } P_{\sigma} \leq n-1, \text{ for any } \sigma.$$

Proposition

If dim $P_{\sigma} \leq n-3$ then $P_{\sigma} \subset \partial \Delta_{n,2}$.

- $\partial \Delta_{n,2} = (\cup_n \Delta^{n-2}) \cup (\cup_n \Delta_{n-1,2})$
- $\bullet \ \mu_{n,k}^{-1}(\partial \Delta_{n,2}) = (\cup_n \mathbb{C} P^{n-2}) \cup (\cup_n G_{n-1,2})$

If dim $P_{\sigma} = n - 2$ and $P_{\sigma} \subset \partial \Delta_{n,2}$:

- $P_{\sigma} = \Delta^{n-2}$ or
- $P_{\sigma} \subseteq \Delta_{n-1,2}$ is an admissible polytope for $G_{n-1,2}$.

Admissible (n-2)- polytopes

Let dim $P_{\sigma}=n-2$ and $P_{\sigma}\cap \overset{\circ}{\Delta}_{n,2}\neq \emptyset$ - interior admissible polytope

Proposition

The interior admissible polytopes of dimension n-2 coincide with the polytopes obtained by the intersection with $\Delta_{n,2}$ of the planes

$$\Pi: x_{i_1} + \ldots + x_{i_l} = 1, \quad 1 \leq i_1 < \ldots < i_l \leq n, \quad 2 \leq l \leq \lfloor \frac{n}{2} \rfloor.$$

- S_n acts on Π by permutation of coordinates;
- $\Pi_{\{i,j\}}$ the planes from Π which contain the vertex Λ_{ij} ;
- $\Pi_{\{i,j\}}: X_{\{i \text{ or } j\}} + X_{l_2} + \ldots + X_{l_s} = 1, 2 \le s \le \lfloor \frac{n}{2} \rfloor;$
- $|\Pi_{\{i,j\}}| = 2^{n-2} 2$, $S_n \cdot \Pi_{ij} = \Pi$ with stabilizer $S_2 \times S_{n-2}$;

Proposition

The number of irreducible representations for $S_2 \times S_{n-2}$ -action on $\Pi_{\{i,j\}}$ is $[\frac{n-2}{2}]$. Their dimensions are:

for
$$n$$
 odd : $\binom{n-2}{l}$, $1 \le l \le \left[\frac{n-2}{2}\right]$,

for
$$n$$
 even : $\binom{n-2}{l}$, $1 \le l < \left[\frac{n-2}{2}\right]$ and $\frac{2}{n-2}\binom{n-2}{\frac{n-2}{2}}$.

Corollary

An interior (n-2)-dimensional polytope has $n_p = p(n-p)$ vertices for $2 \le p \le \left[\frac{n}{2}\right]$.

Corollary

The number q_p of (n-2)- polytopes which have n_p vertices is

$$q_p = \binom{n}{p}$$
 for n odd,

$$q_p = \binom{n}{p}$$
 for n even and $1 \le p \le \frac{n-2}{2}$,

$$q_{\frac{n}{2}} = \frac{1}{2} \binom{n}{\frac{n}{2}}$$
 for n even.

Examples.

- $G_{4,2}$ dim P_{σ} = 2, one S_4 -generator, it has 4 vertices, altogether 3 polytopes, $x_1 + x_i = 1$, i = 2, 3, 4.
- $G_{5,2}$ dim $P_{\sigma}=3$, one S_5 -generator, it has 6 vertices, altogether 10 polytopes, $x_i+x_i=1, 1\leq i < j \leq 5$
- $G_{6,2}$ dim $P_{\sigma}=4$, two S_{6} -generators, they have 8 and 9 vertices, altogether 15 and 10 polytopes respectively (correspond to $S_{2}\times S_{4}$ action on \mathbb{C}^{7} which has 2 irreducible summands of dimension 4 and 3), $x_{i}+x_{j}=1$, $x_{1}+x_{i}+x_{j}=1$, $1\leq i < j \leq 6$.

Admissible polytopes of dimension n-1

Theorem

They are given by $\Delta_{n,2}$ and the closure of the intersections with $\stackrel{\circ}{\Delta}_{n,2}$ of all collections of the half-spaces of the form

$$x_{i_1} + x_{i_2} + \ldots + x_{i_k} \le 1, \ i_1, \ldots i_k \in \{1, \ldots, n\}, \ 2 \le k \le n - 2,$$

such that if x_{i_p} and x_{i_q} contribute to the collection then $i_p \neq i_q$, where $1 \leq p, q \leq n-2$.

Examples

• $G_{4,2} - \Delta_{4,2}$ and the half spaces $x_i + x_j \le 1$, $1 \le i < l \le 4$; -(6,5).

- $G_{5,2} \Delta_{5,2}$ and the half spaces

 - 2 $x_i + x_j + x_k \le 1 (10,7)$.
 - **3** $x_i + x_j \le 1$ and $x_p + x_q \le 1$, $\{i, j\} \cap \{p, q\} = \emptyset$ (15, 8).
- $G_{6,2} \Delta_{6,2}$ and ithe half spaces
 - $x_i + x_i \le 1 (15, 14);$
 - 2 $x_i + x_i + x_k \le 1$ (20, 12);
 - 3 $x_i + x_i + x_k + x_l \le 1 (15, 9)$
 - $\begin{cases} x_i + x_j + x_k + x_l \le 1 (15, 9) \\ x_i + x_j \le 1 \text{ and } x_i + x_j \le 1 \end{cases}$

 - **5** $x_i + x_j \le 1$ and $x_p + x_q + x_s \le 1$, $\{i, j\} \cap \{p, q, s\} = \emptyset$ (60, 11).

Space of parameteres F_{σ} for the strata W_{σ}

The main stratum W is in the chart M_{12} given by:

$$c'_{ij}z_iw_j = c_{ij}z_jw_i, \ \ 3 \le i < j \le n,$$
 (2)

$$(c_{ij}^{'}:c_{ij})\in\mathbb{C}P_{A}^{1}=\mathbb{C}P^{1}\setminus\{A=\{(1:0),(0:1),(1:1)\}\}.$$

The parameters $(c_{ij} : c'_{ii})$ satisfy the relations:

$$c'_{ki}c_{kj}c'_{ij} = c_{ki}c'_{kj}c_{ij}, \quad 3 \le k < i < j \le n.$$
 (3)

$$F = W/(\mathbb{C}^*)^n = \{(c_{ij} : c_{ij}^{'}) \in (\mathbb{C}P_A^1)^N \subset (\mathbb{C}P^1)^N : c_{ki}^{'}c_{kj}c_{ij}^{'} = c_{ki}c_{kj}^{'}c_{ij}\},$$
 where $N = \binom{n-2}{2}$.

Any straum $W_{\sigma} \subset M_{12}$ is defined by:

$$P^{1j_2} = 0, \ P^{2i_1} = 0, \ P^{ij} = 0 \ 3 \le i_1, j_1, i, j \le n, i \ne j.$$

In the local coordinates: $z_{i_1} = w_{j_2} = 0$ and $z_i w_j = z_j w_i$.

$$F_{\sigma} = \{(c_{ij}:c_{ij}^{'}) \in (\mathbb{C}P_{B}^{1})^{I}: c_{ki}^{'}c_{kj}c_{ij}^{'} = c_{ki}c_{kj}^{'}c_{ij}\}$$

where $\mathbb{C}P_B^1=\mathbb{C}P^1\setminus\{B=\{(1:0),(0:1)\}\}$ and $0\leq I\leq N.$

Proposition

If P_{σ} is an interior polytope and dim $P_{\sigma} = n - 2$ then F_{σ} is a point.

A universal space of parameters \mathcal{F}

We introduced \mathcal{F} in (B-T, MMJ, 2019) to be a compactification of F which realizes:

$$\overset{\circ}{\Delta}_{n,2} \times F = G_{n,2}/T^n.$$

 \mathcal{F} is axiomatized in (B-T, Mat. Sb, 2019) for (2n, k)-manifolds.

- For $G_{5,2}$ we exlicitely described \mathcal{F} in (B-T, MMJ, 2019)
- For general $G_{n,2}$ it is proved (Klemyatin, 2019) that \mathcal{F} is provided by the Chow quotient $G_{n,2}/(\mathbb{C}^*)^n$ by Kapranov.
- Thus, \mathcal{F} is the Grotendick-Knudsen compactification of n-pointed curves of genus 0.

We decribe here \mathcal{F} using representation of F in local charts for $G_{n,2}$ defined by the Plücker coordiantes.

Idea:

- $W_{\sigma} \subset M_{12}$: $z_{i_1} = w_{i_2} = 0$ and $z_i w_i = z_i w_i$.
- Assign the new space of parameters $\tilde{F}_{\sigma,12}$ to W_{σ} using (2).
- ullet The assignment $W_{\sigma} o ilde{\mathcal{F}}_{\sigma,ij}$ must not depend on a chart $W_{\sigma} \subset M_{ij}$.
- This determines compactification \mathcal{F} of F in which this assignments should be done.

$$ar{F} = \{(c_{ij}: c_{ij}^{'}) \in (\mathbb{C}P^{1})^{N}, \ c_{ik}c_{il}^{'}c_{kl} = c_{ik}^{'}c_{il}c_{kl}^{'}\}, \ \ N = {n-2 \choose 2}.$$

Theorem

Let ${\cal F}$ is obtained by blowing up $\bar{\sf F}$ along the submanifolds $\bar{\sf F}_{ikl}\subset \bar{\sf F}$ defined by

$$\bar{F}_{ikl} : (c_{ik} : c'_{ik}) = (c_{il} : c'_{il}) = (c_{kl} : c'_{kl}) = (1 : 1), \ 3 \le i < k < l \le n.$$

Then any homeomorphism of F induced by the coordinate change extends to the homeomorphism of \mathcal{F} .

Theorem

The space \mathcal{F} is the universal space of parameters for $G_{n,2}$

Example

 $G_{5,2}$ — ${\mathcal F}$ is the blow up of $ar F\subset ({\mathbb C} P^1)^3$ $ar F=\{((c_{34}:c_{34}'),(c_{35}:c_{35}'),(c_{45}:c_{45}'))|c_{34}'c_{35}c_{45}'=c_{34}c_{35}'c_{45}\}$ at the point $ar F_{123}=((1:1),(1:1),(1:1))$ (${\mathcal F}$ is unique).

Example

 $G_{6,2} \longrightarrow \mathcal{F}$ is a blow up of $\bar{F} \subset (\mathbb{C}P^1)^6$ up along:

$$\begin{split} \bar{F}_{345} &= \{ ((1:1),(1:1),(c_{36}:c_{36}'),(1:1),(c_{46}:c_{46}'),(c_{56}:c_{56}')),\\ c_{36}c_{46}' &= c_{36}'c_{46},\ c_{36}c_{56}' = c_{36}'c_{56},\ c_{46}c_{56}' = c_{46}'c_{56} \} \\ \bar{F}_{346} &= \{ ((1:1),(c_{35}:c_{35}'),(1:1),(c_{45}:c_{45}'),(1:1),(c_{56}:c_{56}')),\\ c_{35}c_{45}' &= c_{35}'c_{45},\ c_{35}c_{56}' = c_{35}'c_{56},\ c_{45}c_{56}' = c_{45}'c_{56} \} \\ \bar{F}_{356} &= ((c_{34}:c_{34}'),(1:1),(1:1),(c_{45}:c_{45}'),(c_{46}:c_{46}'),(1:1)),\\ c_{34}c_{45}' &= c_{34}'c_{45},\ c_{34}c_{46}' = c_{34}'c_{46},\ c_{45}c_{46}' = c_{45}'c_{46} \} \\ \bar{F}_{456} &= \{ (c_{34}:c_{34}'),(c_{35}:c_{35}'),(c_{36}:c_{36}'),(1:1),(1:1),(1:1)) \},\\ c_{34}c_{35}' &= c_{34}'c_{35},\ c_{34}c_{36}' = c_{34}'c_{36},\ c_{35}'c_{36} = c_{35}'c_{36}' \}. \end{split}$$

At intersection point $S = (1 : 1)^6$ blowup is not claimed to be unique.

Virtual spaces of parameters

$$W_{\sigma}
ightarrow ilde{\mathcal{F}}_{\sigma} \subset \mathcal{F} - ext{virtual space of parameters}$$

For $x \in \stackrel{\circ}{\Delta}_{n,2}$ denote by

$$\tilde{\mathbf{x}} = \bigcup_{\mathbf{x} \in \overset{\circ}{P}_{\sigma}} \tilde{\mathbf{F}}_{\sigma}.$$

Theorem - Universality

- $\tilde{x} = \mathcal{F}$ for any $x \in \stackrel{\circ}{\Delta}_{n,2}$.
- $\bullet \ \ \tilde{\mathcal{F}}_{\sigma} \cap \tilde{\mathcal{F}}_{\sigma^{'}} = \emptyset \ \text{for any} \ \tilde{\mathcal{F}}_{\sigma}, \tilde{\mathcal{F}}_{\sigma^{'}} \subset \tilde{x}, \, x \in \overset{\circ}{\Delta}_{n,2}.$

The chamber decomposition for $\Delta_{n,2}$

Consider the hyperplane arrangement

$$A: \Pi \cup \{x_i = 0, 1 \le i \le n\} \cup \{x_i = 1, 1 \le i \le n\}.$$

$$\Pi: X_{i_1} + \ldots + X_{i_l} = 1, \quad 1 \leq i_1 < \ldots < i_l \leq n, \quad 2 \leq l \leq \lfloor \frac{n}{2} \rfloor.$$

- L(A) face lattice for the arrangement A
- $L(A_{n,2}) = L(A) \cap \overset{\circ}{\Delta}_{n,2}$
- $C \in L(A_{n,2})$ "soft" chamber for $\Delta_{n,2}$.

Proposition

The chamber decomposition $L(A_{n,2})$ coincides with the decomposition of $\overset{\circ}{\Delta}_{n,2}$ given by the intersections of all admissible polytopes .

Chambers and spaces of parameters

- For any $C \in L(A_{n,2})$ it holds $\hat{\mu}^{-1}(x) \cong \hat{\mu}^{-1}(y) \cong F_C$ follows from Gel'fand-MacPherson results (Lect. Notes In Math. 1987)
- If dim C = n 1 then F_C is a smooth manifold (follows from B-T, MMJ, 2019)

Lemma

For any $C \in L(\mathcal{A}_{n,2})$ there exists canonical homeomorphism

$$h_C: \hat{\mu}^{-1}(C) \to C \times F_C.$$

 F_C is a compactification F given by the spaces F_σ such that $C \subset \stackrel{\circ}{P}_\sigma$.

- For $G_{4,2}$ it holds $F_C \cong \mathbb{C}P^1$ for any C,
- In general F_C are not all homeomorphic; easy to verify for $G_{5,2}$.

Chambers and virtual spaces of parameters

Corollary

For any $C \in L(A_{n,2})$ it holds $\tilde{F}_{\sigma} \cap \tilde{F}_{\bar{\sigma}} = \emptyset$ such that $C \subset P_{\sigma}.P_{\bar{\sigma}}$.

 ${\cal F}$ - a universal space of parameters: there exist the projections $p_{\sigma,12}: \tilde{\cal F}_{\sigma,12} o {\cal F}_{\sigma}.$

Corollary

The union $\mathcal{F} = \bigcup_{C \subset P_{\sigma}} \tilde{F}_{\sigma}$ is a disjoint union for any $C \in L(A_{n,2})$.

Therefore, it is defined the projection $p_{C,12}: \mathcal{F} \to F_C$ by

$$p_{C,12}(y) = p_{\sigma,12}(y)$$
, where $y \in \tilde{F}_{\sigma,12}$.

The orbit space $G_{n,2}/T^n$

$$\mathcal{W}(G_{n,2}) = igcup_{C \in \mathcal{L}(\mathcal{A}_{n,2})} (C imes F_C)$$
 — weighted face lattice for $G_{n,2}$ $\mathring{\Delta}_{n,2} = igcup_{C \in \mathcal{L}(\mathcal{A}_{n,2})} C$ — disjoint, $C imes F_C \cong \hat{\mu}^{-1}(C)$ $\hat{\mu}^{-1}(\mathring{\Delta}_{n,2}) = igcup_{C \in \mathcal{L}(\mathcal{A}_{n,2})} \hat{\mu}^{-1}(C) \cong igcup_{C \in \mathcal{L}(\mathcal{A}_{n,2})} C imes F_C.$

- $S_n \sim L(A_{n,2})$ by permuting the coordinates; permutes chambers;
- If $\mathfrak{s}(C) = \hat{C}$ then $\hat{\mu}^{-1}(C) \cong \hat{\mu}^{-1}(\hat{C})$ that is $C \times F_C \cong \hat{C} \times F_{\hat{C}}$;
- It follows $S_n \curvearrowright \mathcal{W}(G_{n,2})$; (reduces the number of its elements) Altogether,

$$G_{n,2}/T^n \cong \hat{\mu}^{-1}(\mathring{\Delta}_{n,2}) \cup (n\#G_{n-1,2}/T^{n-1}) \cup (n\#\mathbb{C}P^{n-1}).$$

Propostion

The universal space of parameters $\mathcal{F}_{n-1,k}$ for $G_{n-1,2}(k) \subset G_{n,2}$, $1 \le k \le n$ can be obtained as

$$\mathcal{F}_{n-1,k} = \mathcal{F}_{|\{(c_{ij}:c_{ij}'), i,j \neq k\}}.$$

Consider the space

$$\mathfrak{P} = \Delta_{n,2} \times \mathcal{F}$$
.

and the map

$$G:\mathfrak{P} o G_{n,2}/T^n,\ \ G(x,y)=h_C^{-1}(x,p_{C,12}(y))\ \ \text{if and only if}\ \ x\in C.$$

Theorem

G is a continuous surjection and $G_{n,2}/T^n$ is homeomorphic to the quotient of the space \mathfrak{P} by the map *G*.