T^{n}-action on the Grassmannians $G_{n, 2}$ via hyperplane arrangements

Svjetlana Terzić

University of Montenegro
based on joint results with Victor M. Buchstaber
Workshop on Torus Actions in Topology
Fields Institute for Research in Mathematics
May 11, 2020.

Complex Grassmann manifolds $G_{n, k}=G_{n, k}(\mathbb{C})$

$G_{n, k}-k$-dimensional complex subspaces in \mathbb{C}^{n},

- The coordinate-wise \mathbb{T}^{n} - action on \mathbb{C}^{n} induces \mathbb{T}^{n} - action on $G_{n, k}$.
- This action is not effective $-T^{n-1}=\mathbb{T}^{n} / \Delta$ acts effectively.
- $d=k(n-k)-(n-1)$ - complexity of T^{n-1}-action;
- $d \geq 2$ for $n \geq k+3, k \geq 2$.
- \mathbb{T}^{n}-action extends to $\left(\mathbb{C}^{*}\right)^{n}$-action on $G_{n, k}$

Problem: Describe the combinatorial structure and algebraic topology of the orbit space $G_{n, k} / \mathbb{T}^{n} \cong G_{n, n-k} / \mathbb{T}^{n}$.

- V. M. Buchstaber and S. Terzić, Topology and geometry of the canonical action of T^{4} on the complex Grassmannian $G_{4,2}$ and the complex projective space $C P^{5}$, Moscow Math. Jour. Vol. 16, Issue 2, (2016), 237-273.
- V. M. Buchstaber and S. Terzić, Toric Topology of the Complex Grassmann Manifolds, Moscow Math. 19, no. 3, (2019) 397-463.
- V. M. Buchstaber and S. Terzić, The foundations of (2n, k)-manifolds, Sb. Math. 210, No. 4, 508-549 (2019).
- I. M. Gelfand and V. V. Serganova, Combinatoric geometry and torus strata on compact homogeneous spaces, Russ. Math. Survey 42, no.2(254), (1987), 108-134. (in Russian)
- I. M. Gelfand, R. M. Goresky, R. D. MacPherson and V. V. Serganova, Combinatorial Geometries, Convex Polyhedra, and Schubert Cells, Adv. in Math. 63, (1987), 301-316.
- M. M. Kapranov, Chow quotients of Grassmannians I, Adv. in Soviet Math., 16, part 2, Amer. Math. Soc. (1993), 29-110.

We describe here the orbit space $G_{n, 2} / T^{n}$ in terms of :

1. "soft" chamber decomposition $L\left(\mathcal{A}_{n, 2}\right)$ for $\Delta_{n, 2}$,

- $\mathcal{A}=\Pi \cup\left\{x_{i}=0,1 \leq i \leq n\right\} \cup\left\{x_{i}=1,1 \leq i \leq n\right\}$ - hyperplane arrangement in \mathbb{R}^{n};
- $\Pi=\left\{x_{i_{1}}+\ldots+x_{i_{j}}=1,1 \leq i_{1}<\ldots<i_{I} \leq n, 2 \leq I \leq\left[\frac{n}{2}\right]\right\} ;$
- $L(\mathcal{A})$ - face lattice for \mathcal{A};
- $L\left(\mathcal{A}_{n, 2}\right)=L(\mathcal{A}) \cap \stackrel{\circ}{\Delta}_{n, 2}$;

2. spaces of parameters F_{C} for $C \in L\left(\mathcal{A}_{n, 2}\right)$ - parametrize $\left(\mathbb{C}^{*}\right)^{n}$ - orbits in $\mu_{n, 2}^{-1}(C) \subset G_{n, 2}$;
3. universal space of parameters \mathcal{F}.

Moment map

The Plücker embedding $G_{n, k} \rightarrow \mathbb{C} P^{N-1}, N=\binom{n}{k}$, is given by

$$
L \rightarrow P(L)=\left(P_{l}\left(A_{L}\right), I \subset\{1, \ldots n\},|I|=k\right)
$$

$P_{l}\left(A_{L}\right)$ - Plücker coordinates of L in a fixed basis.
The moment map $\mu_{n, k}: G_{n, k} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\mu_{n, k}(L)=\frac{1}{|P(L)|^{2}} \sum\left|P_{l}\left(A_{L}\right)\right|^{2} \Lambda_{l}, \quad|P(L)|^{2}=\sum\left|P_{l}\left(A_{L}\right)\right|^{2}
$$

where $\Lambda_{l} \in \mathbb{R}^{n}$ has 1 at k places and it has 0 at the other $(n-k)$ places, the sum goes over the subsets $I \subset\{1, \ldots, n\},|I|=k$.

- $\operatorname{Im} \mu_{n, k}=$ convexhull $\left(\Lambda_{l}\right)=\Delta_{n, k}$ - hypersimplex.
- $\Delta_{n, k}$ is in the hyperplane $x_{1}+\cdots+x_{n}=k$ in $\mathbb{R}^{n}, \operatorname{dim} \Delta_{n, k}=n-1$.
- $\mu_{n, k}$ is \mathbb{T}^{n}-invariant, it unduces the map $\hat{\mu}_{n, k}: G_{n, k} / \mathbb{T}^{n} \rightarrow \Delta_{n, k}$.

T^{n}-action, moment map and $\operatorname{Aut} G_{n, k}$

Lemma

Let $H<$ Aut $G_{n, k}$ consists of the elements which commutes with the canonical T^{n}-action on $G_{n, k}$. Then

- $H=T^{n-1} \rtimes S_{n}$ for $n \neq 2 k$;
- $H=\mathbb{Z}_{2} \times\left(T^{n-1} \rtimes S_{n}\right)$ for $n=2 k$.

Let $f \in \operatorname{Aut} G_{n, k}$ and assume there exists (combinatorial) isomorphism $\bar{f}: \Delta_{n, k} \rightarrow \Delta_{n, k}$ such that the diagram commutes:

$$
\begin{gather*}
\substack{G_{n, k} \\
\downarrow_{n, k}} \\
\Delta_{n, k} \xrightarrow{\bar{f}} \stackrel{\downarrow_{n, k}}{\mu_{n, k}} \tag{1}\\
\Delta_{n, k} .
\end{gather*}
$$

Proposition

Let $H<\operatorname{Aut}_{G_{n, k}}$ consists of those elements which satisfy (1). Then

- $H=T^{n-1} \rtimes S_{n}$ for $n \neq 2 k ; H=\mathbb{Z}_{2} \times\left(T^{n-1} \rtimes S_{n}\right)$ for $n=2 k$.
- $\bar{t}=i d_{\Delta_{n, k}}$ for $t \in T^{n-1}$;
- $\overline{\mathfrak{s}}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\mathfrak{s}(1)}, \ldots, x_{\mathfrak{s}(n)}\right)$ for $\mathfrak{s} \in S_{n}$;
- $\bar{c}_{n, k}\left(x_{1}, \ldots, x_{n}\right)=\left(1-x_{1}, \ldots, 1-x_{n}\right)$ for $c_{n, k} \in \mathbb{Z}_{2}, n=2 k$ - duality automorphism.

Corollary

- $\hat{\mu}_{n, k}^{-1}(x)$ is homeomorphic to $\hat{\mu}_{n, k}^{-1}(\mathfrak{s}(x))$ for $x \in \Delta_{n, k}$ and $\mathfrak{s} \in S_{n}$
- $\hat{\mu}_{n, k}^{-1}(x)$ is homeomorphic to $\hat{\mu}_{n, k}^{-1}(\mathbf{1}-x)$ for $x \in \Delta_{n, k}$, when $n=2 k$.

Strata on $G_{n, k}$

Let $M_{l}=\left\{L \in G_{n, k} \mid P^{\prime}(L) \neq 0\right\}, \quad I \subset\{1, \ldots, n\}, \quad|I|=k$.

- M_{l} is an open and dense set in $G_{n, k}$ and $G_{n, k}=\bigcup M_{l}$.
- M_{l} contains exactly one T^{n} - fixed point x_{l}.
- Set $Y_{l}=G_{n, k} \backslash M_{l}$.

Let $\sigma \subset\{I, I \subset\{1, \ldots, n\},|I|=k\}$ and define the stratum W_{σ} by

$$
W_{\sigma}=\left(\cap_{l \in \sigma} M_{l}\right) \cap\left(\cap_{l \notin \sigma} Y_{l}\right) \text { if this intersection is nonempty. }
$$

- $W_{\sigma} \cap W_{\sigma^{\prime}}=\emptyset$ for $\sigma \neq \sigma^{\prime}$,
- W_{σ} is $\left(\mathbb{C}^{*}\right)^{n}$ - invariant, $G_{n, k}=\cup_{\sigma} W_{\sigma}$
- W_{σ} are no open, no closed and their geometry is not nice.

Strata on $G_{n, k}$

Lemma
$\mu_{n, k}\left(W_{\sigma}\right)=\stackrel{\circ}{P}_{\sigma}, \quad P_{\sigma}=\operatorname{convhull}(\Lambda, l, I \in \sigma)$
Such P_{σ} is called an admissible polytope

- $\left\{W_{\sigma}\right\}$ coincide with the strata of Gel'fand-Serganova:

$$
W_{\sigma}=\left\{L \in G_{n, k}: \mu_{n, k}\left(\overline{\left(\mathbb{C}^{*}\right)^{n} \cdot L}\right)=P_{\sigma}\right\},
$$

- Any face of an admissible polytope is an admissible polytope.
- $\mu_{n, k}(W)=\stackrel{\circ}{\Delta}_{n, k}, \quad \mu_{n, k}(f i x e d ~ p o i n t)=$ vertex.
- $\Delta_{n, k}$ and its faces are admissible polytopes.

Theorem

All points from W_{σ} have the same stabilizer $T_{\sigma}\left(\left(\mathbb{C}^{*}\right)_{\sigma}\right)$.
Torus $T^{\sigma}=T^{n} / T_{\sigma}$ acts freely on W_{σ}.

Moment map decomposes as $\mu_{n, k}: W_{\sigma} \rightarrow W_{\sigma} / T^{\sigma} \xrightarrow{\hat{\mu}_{n, k}} \stackrel{\circ}{P}_{\sigma}$.

Theorem

$\hat{\mu}_{n, k}: W_{\sigma} / T^{\sigma} \rightarrow \stackrel{\circ}{P}_{\sigma}$ is a locally trivial fiber bundle with a fiber an open algebraic manifold F_{σ}. Thus,

$$
W_{\sigma} / T^{\sigma} \cong \dot{P}_{\sigma} \times F_{\sigma} .
$$

F_{σ} - the space of parameter for W_{σ};

$$
F_{\sigma} \cong W_{\sigma} /\left(\mathbb{C}^{*}\right)^{\sigma} .
$$

To summarize: $\quad G_{n, k} / T^{n}=\cup_{\sigma} W_{\sigma} / T^{\sigma} \cong \cup_{\sigma}\left(\stackrel{\circ}{P}_{\sigma} \times F_{\sigma}\right)$

$$
G_{n, k} / T^{n}=\overline{W / T^{n-1}} \cong \overline{{\stackrel{\circ}{\Delta_{n, k}} \times F} .}
$$

Goal: Describe P_{σ}, F_{σ} and the corresponding compactification \mathcal{F} for F

Grassmannians $G_{n, 2}$

Admissible polytopes
$\Delta_{n, 2} \subset \mathbb{R}^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{1}+\ldots+x_{n}=2\right\} ; \operatorname{dim} P_{\sigma} \leq n-1$, for any σ.

Proposition

If $\operatorname{dim} P_{\sigma} \leq n-3$ then $P_{\sigma} \subset \partial \Delta_{n, 2}$.

- $\partial \Delta_{n, 2}=\left(\cup_{n} \Delta^{n-2}\right) \cup\left(\cup_{n} \Delta_{n-1,2}\right)$
- $\mu_{n, k}^{-1}\left(\partial \Delta_{n, 2}\right)=\left(\cup_{n} \mathbb{C} P^{n-2}\right) \cup\left(\cup_{n} G_{n-1,2}\right)$

If $\operatorname{dim} P_{\sigma}=n-2$ and $P_{\sigma} \subset \partial \Delta_{n, 2}$:

- $P_{\sigma}=\Delta^{n-2}$ or
- $P_{\sigma} \subseteq \Delta_{n-1,2}$ is an admissible polytope for $G_{n-1,2}$.

Admissible ($n-2$)- polytopes

Let $\operatorname{dim} P_{\sigma}=n-2$ and $P_{\sigma} \cap \stackrel{\circ}{\Delta}_{n, 2} \neq \emptyset$ - interior admissible polytope

Proposition

The interior admissible polytopes of dimension $n-2$ coincide with the polytopes obtained by the intersection with $\Delta_{n, 2}$ of the planes

$$
\Pi: x_{i_{1}}+\ldots+x_{i_{1}}=1, \quad 1 \leq i_{1}<\ldots<i_{1} \leq n, \quad 2 \leq 1 \leq\left[\frac{n}{2}\right] .
$$

- S_{n} acts on Π by permutation of coordinates;
- $\Pi_{\{i, j\}}$ - the planes from Π which contain the vertex $\Lambda_{i j}$;
- $\Pi_{\{i, j\}}: x_{\{i \text { or } j\}}+x_{l_{2}}+\ldots+x_{l_{s}}=1,2 \leq s \leq\left[\frac{n}{2}\right]$;
- $\left|\Pi_{\{i, j\}}\right|=2^{n-2}-2, S_{n} \cdot \Pi_{i j}=\Pi$ with stabilizer $S_{2} \times S_{n-2}$;

Proposition

The number of irreducible representations for $S_{2} \times S_{n-2}$-action on $\Pi_{\{i, j\}}$ is $\left[\frac{n-2}{2}\right]$. Their dimensions are:

$$
\begin{gathered}
\text { for } n \text { odd : }\binom{n-2}{1}, 1 \leq 1 \leq\left[\frac{n-2}{2}\right], \\
\text { for } n \text { even : }\binom{n-2}{1}, 1 \leq 1<\left[\frac{n-2}{2}\right] \text { and } \frac{2}{n-2}\binom{n-2}{\frac{n-2}{2}} .
\end{gathered}
$$

Corollary

An interior ($n-2$)-dimensional polytope has $n_{p}=p(n-p)$ vertices for $2 \leq p \leq\left[\frac{n}{2}\right]$.

Corollary

The number q_{p} of $(n-2)$ - polytopes which have n_{p} vertices is

$$
\begin{gathered}
q_{p}=\binom{n}{p} \text { for } n \text { odd } \\
q_{p}=\binom{n}{p} \text { for } n \text { even and } 1 \leq p \leq \frac{n-2}{2}, \\
q_{\frac{n}{2}}=\frac{1}{2}\binom{n}{\frac{n}{2}} \text { for } n \text { even. }
\end{gathered}
$$

Examples.

- $G_{4,2}-\operatorname{dim} P_{\sigma}=2$, one S_{4}-generator, it has 4 vertices, altogether 3 polytopes, $x_{1}+x_{i}=1, i=2,3,4$.
- $G_{5,2}-\operatorname{dim} P_{\sigma}=3$, one S_{5}-generator, it has 6 vertices, altogether 10 polytopes, $x_{i}+x_{j}=1,1 \leq i<j \leq 5$
- $G_{6,2}-\operatorname{dim} P_{\sigma}=4$, two S_{6}-generators, they have 8 and 9 vertices, altogether 15 and 10 polytopes respectively (correspond to $S_{2} \times S_{4}$ - action on \mathbb{C}^{7} which has 2 irreducible summands of dimension 4 and 3), $x_{i}+x_{j}=1, \quad x_{1}+x_{i}+x_{j}=1,1 \leq i<j \leq 6$.

Admissible polytopes of dimension $n-1$

Theorem

They are given by $\Delta_{n, 2}$ and the closure of the intersections with ${\Delta_{n, 2}}$ of all collections of the half-spaces of the form

$$
x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{k}} \leq 1, i_{1}, \ldots i_{k} \in\{1, \ldots, n\}, 2 \leq k \leq n-2,
$$

such that if $x_{i_{\rho}}$ and $x_{i_{q}}$ contribute to the collection then $i_{p} \neq i_{q}$, where $1 \leq p, q \leq n-2$.

Examples

- $G_{4,2}-\Delta_{4,2}$ and the half spaces $x_{i}+x_{j} \leq 1,1 \leq i<I \leq 4 ;-(6,5)$.
- $G_{5,2}-\Delta_{5,2}$ and the half spaces
(1) $x_{i}+x_{j} \leq 1-(10,9)$.
(2) $x_{i}+x_{j}+x_{k} \leq 1-(10,7)$.
(3) $x_{i}+x_{j} \leq 1$ and $x_{p}+x_{q} \leq 1,\{i, j\} \cap\{p, q\}=\emptyset-(15,8)$.
- $G_{6,2}-\Delta_{6,2}$ and ithe half spaces
(1) $x_{i}+x_{j} \leq 1-(15,14)$;
(2) $x_{i}+x_{j}+x_{k} \leq 1-(20,12)$;
(3) $x_{i}+x_{j}+x_{k}+x_{l} \leq 1-(15,9)$
(4) $x_{i}+x_{j} \leq 1$ and $x_{p}+x_{q} \leq 1,\{i, j\} \cap\{p, q\}=\emptyset-(45,13)$;
(5) $x_{i}+x_{j} \leq 1$ and $x_{p}+x_{q}+x_{s} \leq 1,\{i, j\} \cap\{p, q, s\}=\emptyset-(60,11)$.

Space of parameteres F_{σ} for the strata W_{σ}

The main stratum W is in the chart M_{12} given by:

$$
\begin{equation*}
c_{i j}^{\prime} z_{i} w_{j}=c_{i j} z_{j} w_{i}, \quad 3 \leq i<j \leq n \tag{2}
\end{equation*}
$$

$$
\left(c_{i j}^{\prime}: c_{i j}\right) \in \mathbb{C} P_{A}^{1}=\mathbb{C} P^{1} \backslash\{A=\{(1: 0),(0: 1),(1: 1)\}\}
$$

The parameters $\left(c_{i j}: c_{i j}^{\prime}\right)$ satisfy the relations:

$$
\begin{equation*}
c_{k i}^{\prime} c_{k j} c_{i j}^{\prime}=c_{k i} c_{k j}^{\prime} c_{i j}, \quad 3 \leq k<i<j \leq n . \tag{3}
\end{equation*}
$$

$$
F=W /\left(\mathbb{C}^{*}\right)^{n}=\left\{\left(c_{i j}: c_{i j}^{\prime}\right) \in\left(\mathbb{C} P_{A}^{1}\right)^{N} \subset\left(\mathbb{C} P^{1}\right)^{N}: c_{k i}^{\prime} c_{k j} c_{i j}^{\prime}=c_{k i} c_{k j}^{\prime} c_{i j}\right\}
$$

where $N=\binom{n-2}{2}$.

Any straum $W_{\sigma} \subset M_{12}$ is defined by:

$$
P^{1 j_{2}}=0, P^{2 i_{1}}=0, P^{i j}=03 \leq i_{1}, j_{1}, i, j \leq n, i \neq j
$$

In the local coordinates: $z_{i_{1}}=w_{j_{2}}=0$ and $z_{i} w_{j}=z_{j} w_{i}$.

$$
F_{\sigma}=\left\{\left(c_{i j}: c_{i j}^{\prime}\right) \in\left(\mathbb{C} P_{B}^{1}\right)^{\prime}: c_{k i}^{\prime} c_{k j} c_{i j}^{\prime}=c_{k i} c_{k j}^{\prime} c_{i j}\right\}
$$

where $\mathbb{C} P_{B}^{1}=\mathbb{C} P^{1} \backslash\{B=\{(1: 0),(0: 1)\}\}$ and $0 \leq I \leq N$.

Proposition

If P_{σ} is an interior polytope and $\operatorname{dim} P_{\sigma}=n-2$ then F_{σ} is a point.

A universal space of parameters \mathcal{F}

We introduced \mathcal{F} in (B-T, MMJ, 2019) to be a compactification of F which realizes:

$$
\overline{\stackrel{\circ}{n, 2} \times F}=G_{n, 2} / T^{n} .
$$

\mathcal{F} is axiomatized in (B-T, Mat. $\mathrm{Sb}, 2019)$ for $(2 n, k)$-manifolds.

- For $G_{5,2}$ we exlicitely described \mathcal{F} in (B-T, MMJ, 2019)
- For general $G_{n, 2}$ it is proved (Klemyatin, 2019) that \mathcal{F} is provided by the Chow quotient $G_{n, 2} / /\left(\mathbb{C}^{*}\right)^{n}$ by Kapranov.
- Thus, \mathcal{F} is the Grotendick-Knudsen compactification of n-pointed curves of genus 0 .

We decribe here \mathcal{F} using representation of F in local charts for $G_{n, 2}$ defined by the Plücker coordiantes.

Idea:

- $W_{\sigma} \subset M_{12}: z_{i_{1}}=w_{j_{2}}=0$ and $z_{i} w_{j}=z_{j} w_{i}$.
- Assign the new space of parameters $\tilde{F}_{\sigma, 12}$ to W_{σ} using (2).
- The assignment $W_{\sigma} \rightarrow \tilde{F}_{\sigma, i j}$ must not depend on a chart $W_{\sigma} \subset M_{i j}$.
- This determines compactification \mathcal{F} of F in which this assignments should be done.

$$
\bar{F}=\left\{\left(c_{i j}: c_{i j}^{\prime}\right) \in\left(\mathbb{C} P^{1}\right)^{N}, c_{i k} c_{i l}^{\prime} c_{k l}=c_{i k}^{\prime} c_{i l} c_{k l}^{\prime}\right\}, \quad N=\binom{n-2}{2} .
$$

Theorem

Let \mathcal{F} is obtained by blowing up \bar{F} along the submanifolds $\bar{F}_{\text {ikl }} \subset \bar{F}$ defined by

$$
\bar{F}_{i k l}:\left(c_{i k}: c_{i k}^{\prime}\right)=\left(c_{i l}: c_{i l}^{\prime}\right)=\left(c_{k l}: c_{k l}^{\prime}\right)=(1: 1), 3 \leq i<k<1 \leq n .
$$

Then any homeomorphism of F induced by the coordinate change extends to the homeomorphism of \mathcal{F}.

Theorem

The space \mathcal{F} is the universal space of parameters for $G_{n, 2}$

Example

$G_{5,2}-\mathcal{F}$ is the blow up of $\bar{F} \subset\left(\mathbb{C} P^{1}\right)^{3}$
$\bar{F}=\left\{\left(\left(c_{34}: c_{34}^{\prime}\right),\left(c_{35}: c_{35}^{\prime}\right),\left(c_{45}: c_{45}^{\prime}\right)\right) \mid c_{34}^{\prime} c_{35} c_{45}^{\prime}=c_{34} c_{35}^{\prime} c_{45}\right\}$ at the point $\bar{F}_{123}=((1: 1),(1: 1),(1: 1))(\mathcal{F}$ is unique $)$.

Example

$G_{6,2}-\mathcal{F}$ is a blow up of $\bar{F} \subset\left(\mathbb{C} P^{1}\right)^{6}$ up along:

$$
\begin{gathered}
\bar{F}_{345}=\left\{\left((1: 1),(1: 1),\left(c_{36}: c_{36}^{\prime}\right),(1: 1),\left(c_{46}: c_{46}^{\prime}\right),\left(c_{56}: c_{56}^{\prime}\right)\right),\right. \\
\left.c_{36} c_{46}^{\prime}=c_{36}^{\prime} c_{46}, c_{36}^{\prime} c_{56}^{\prime}=c_{36}^{\prime} c_{56}, c_{46} c_{56}^{\prime}=c_{46}^{\prime} c_{56}\right\} \\
\bar{F}_{346}=\left\{\left((1: 1),\left(c_{35}: c_{35}^{\prime}\right),(1: 1),\left(c_{45}: c_{45}^{\prime}\right),(1: 1),\left(c_{56}: c_{56}^{\prime}\right)\right),\right. \\
\\
\left.c_{35} c_{45}^{\prime}=c_{35}^{\prime} c_{45}, c_{35}^{\prime} c_{56}^{\prime}=c_{35}^{\prime} c_{56}, c_{45}^{\prime} c_{56}^{\prime}=c_{45}^{\prime} c_{56}\right\} \\
\bar{F}_{356}= \\
\left(\left(c_{34}: c_{34}^{\prime}\right),(1: 1),(1: 1),\left(c_{45}: c_{45}^{\prime}\right),\left(c_{46}: c_{46}^{\prime}\right),(1: 1)\right), \\
\\
\left.c_{34} c_{45}^{\prime}=c_{34}^{\prime} c_{45}, c_{34} c_{46}^{\prime}=c_{34}^{\prime} c_{46}, c_{45} c_{46}^{\prime}=c_{45}^{\prime} c_{46}\right\} \\
\left.\bar{F}_{456}=\left\{\left(c_{34}: c_{34}^{\prime}\right),\left(c_{35}: c_{35}^{\prime}\right),\left(c_{36}: c_{36}^{\prime}\right),(1: 1),(1: 1),(1: 1)\right)\right\}, \\
\\
\left.c_{34} c_{35}^{\prime}=c_{34}^{\prime} c_{35}, c_{34} c_{36}^{\prime}=c_{34}^{\prime} c_{36}, c_{35}^{\prime} c_{36}=c_{35} c_{36}^{\prime}\right\} .
\end{gathered}
$$

At intersection point $S=(1: 1)^{6}$ blowup is not claimed to be unique.

Virtual spaces of parameters

$$
W_{\sigma} \rightarrow \tilde{F}_{\sigma} \subset \mathcal{F}-\text { virtual space of parameters }
$$

For $x \in \AA_{n, 2}$ denote by

$$
\tilde{x}=\bigcup_{x \in \AA_{\sigma}} \tilde{F}_{\sigma} .
$$

Theorem - Universality

- $\tilde{x}=\mathcal{F}$ for any $x \in \stackrel{\circ}{\Delta}_{n, 2}$.
- $\tilde{F}_{\sigma} \cap \tilde{F}_{\sigma^{\prime}}=\emptyset$ for any $\tilde{F}_{\sigma}, \tilde{F}_{\sigma^{\prime}} \subset \tilde{x}, x \in \stackrel{\circ}{\Delta n, 2}$.

The chamber decomposition for $\Delta_{n, 2}$

Consider the hyperplane arrangement

$$
\begin{gathered}
\mathcal{A}: \Pi \cup\left\{x_{i}=0,1 \leq i \leq n\right\} \cup\left\{x_{i}=1,1 \leq i \leq n\right\} . \\
\Pi: x_{i_{1}}+\ldots+x_{i_{i}}=1, \quad 1 \leq i_{1}<\ldots<i_{i} \leq n, \quad 2 \leq I \leq\left[\frac{n}{2}\right] .
\end{gathered}
$$

- $L(\mathcal{A})$ - face lattice for the arrangement \mathcal{A}
- $L\left(\mathcal{A}_{n, 2}\right)=L(\mathcal{A}) \cap \stackrel{\circ}{\Delta}_{n, 2}$
- $C \in L\left(\mathcal{A}_{n, 2}\right)$ - "soft" chamber for $\Delta_{n, 2}$.

Proposition

The chamber decomposition $L\left(\mathcal{A}_{n, 2}\right)$ coincides with the decomposition of ${ }_{\Delta_{n, 2}}$ given by the intersections of all admissible polytopes .

Chambers and spaces of parameters

- For any $C \in L\left(\mathcal{A}_{n, 2}\right)$ it holds $\hat{\mu}^{-1}(x) \cong \hat{\mu}^{-1}(y) \cong F_{C}$ - follows from Gel'fand-MacPherson results (Lect. Notes In Math. 1987)
- If $\operatorname{dim} C=n-1$ then F_{C} is a smooth manifold (follows from B-T, MMJ, 2019)

Lemma

For any $C \in L\left(\mathcal{A}_{n, 2}\right)$ there exists canonical homeomorphism

$$
h_{C}: \hat{\mu}^{-1}(C) \rightarrow C \times F_{C} .
$$

F_{C} is a compactification F given by the spaces F_{σ} such that $C \subset \dot{P}_{\sigma}$.

- For $G_{4,2}$ it holds $F_{C} \cong \mathbb{C} P^{1}$ for any C,
- In general F_{C} are not all homeomorphic; easy to verify for $G_{5,2}$.

Chambers and virtual spaces of parameters

Corollary

For any $C \in L\left(\mathcal{A}_{n, 2}\right)$ it holds $\tilde{F}_{\sigma} \cap \tilde{F}_{\bar{\sigma}}=\emptyset$ such that $C \subset P_{\sigma} . P_{\bar{\sigma}}$.
\mathcal{F} - a universal space of parameters: there exist the projections

$$
p_{\sigma, 12}: \tilde{F}_{\sigma, 12} \rightarrow F_{\sigma} .
$$

Corollary

The union $\mathcal{F}=\bigcup_{C \subset P_{\sigma}} \tilde{F}_{\sigma}$ is a disjoint union for any $C \in L\left(\mathcal{A}_{n, 2}\right)$.
Therefore, it is defined the projection $p_{C, 12}: \mathcal{F} \rightarrow F_{C}$ by $p_{C, 12}(y)=p_{\sigma, 12}(y)$, where $y \in \tilde{F}_{\sigma, 12}$.

The orbit space $G_{n, 2} / T^{n}$

$$
\begin{gathered}
\mathcal{W}\left(G_{n, 2}\right)=\bigcup_{C \in L\left(\mathcal{A}_{n, 2}\right)}\left(C \times F_{C}\right)-\text { weighted face lattice for } G_{n, 2} \\
\stackrel{\circ}{n}, 2=\bigcup_{C \in L\left(\mathcal{A}_{n, 2}\right)} C-\text { disjoint, } C \times F_{C} \cong \hat{\mu}^{-1}(C) \\
\hat{\mu}^{-1}(\stackrel{\circ}{\Delta} n, 2)=\bigcup_{C \in L\left(\mathcal{A}_{n, 2}\right)} \hat{\mu}^{-1}(C) \cong \bigcup_{C \in L\left(\mathcal{A}_{n, 2}\right)} C \times F_{C} .
\end{gathered}
$$

- $S_{n} \curvearrowright L\left(\mathcal{A}_{n, 2}\right)$ by permuting the coordinates; permutes chambers;
- If $\mathfrak{s}(C)=\hat{C}$ then $\hat{\mu}^{-1}(C) \cong \hat{\mu}^{-1}(\hat{C})$ that is $C \times F_{C} \cong \hat{C} \times F_{\hat{C}}$;
- It follows $S_{n} \curvearrowright \mathcal{W}\left(G_{n, 2}\right)$; (reduces the number of its elements)

Altogether,

$$
G_{n, 2} / T^{n} \cong \hat{\mu}^{-1}\left({\left.\stackrel{\circ}{\Delta_{n, 2}}\right) \cup\left(n \# G_{n-1,2} / T^{n-1}\right) \cup\left(n \# \mathbb{C} P^{n-1}\right) . . . ~ . ~}_{\text {. }}\right.
$$

Propostion

The universal space of parameters $\mathcal{F}_{n-1, k}$ for $G_{n-1,2}(k) \subset G_{n, 2}$,
$1 \leq k \leq n$ can be obtained as

$$
\mathcal{F}_{n-1, k}=\mathcal{F}_{\mid\left\{\left(a_{j i}: c_{i j}^{\prime}\right), i, j \neq k\right\}} .
$$

Consider the space

$$
\mathfrak{P}=\Delta_{n, 2} \times \mathcal{F} .
$$

and the map

$$
G: \mathfrak{P} \rightarrow G_{n, 2} / T^{n}, \quad G(x, y)=h_{C}^{-1}\left(x, p_{C, 12}(y)\right) \text { if and only if } x \in C .
$$

Theorem

G is a continuous surjection and $G_{n, 2} / T^{n}$ is homeomorphic to the quotient of the space \mathfrak{P} by the map G.

