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Theorem (torus version)

T ∼= (S1)k torus; T

�

M faithfully; M connected.

ψ : M → M diffeomorphism • T -equivariant
• orbit-preserving

Then ∃ η : M → T

• T -invariant
• smooth

such that ψ(x) = η(x) · x ∀x ∈ M

ψ(a · x) = a · ψ(x) = a · η(x) · x = η(x) · (a · x)
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I n t r o d u c t i o n  

In this paper, we study smooth effective actions of a torus T n of dimension n 
on an orbifold of dimension m. Such actions occur naturally in the s tudy of 
Riemannian foliations on simply connected manifolds (see [9]). 

The  basic techniques used by several authors,  Seifert, Orl ik-Raymond ([11]), 
Fintushel  ([4] and [5]), e tc . . ,  for the s tudy of actions of circles or tori on mani- 
folds are easily generalized and hopefully clarified to apply to the more general 
case of orbifolds. In [2] F. Bonahon and L. Siebenmann have made a careful 
s tudy of locally free actions of the circle on 3-orbifolds. 

After  giving in Section 1 the basic definitions, we s tudy in Section 2 the 
general s t ructure  of invariant tubular  neighborhoods of orbits by passing to 
their  universal coverings. They  are described in terms of three invariants: 1) a 
subgroup r0  of the lattice r = I n in R n, 2) a central extension 

0 --* r / r 0  --. A ~ D ~ 1, 

where D is a finite group, 3) a faithful representation p ( the slice representat ion) 
of K into the group of isometries O(B),  w h e r e  K is the maximal  compact  
subgroup of a Lie group G constructed from 2), and B is a Euclidean ball of 
dimension m - n + dim K.  

The way tubular  neighborhoods are glued together  above the  orbit space is 
studied in Section 4 where we use a basic result whose proof was given to us by 
G. Schwarz (cf. Section 3). There is an obstruction for the gluing which is an 
element of H3(W,Z n) (in the sense of (~ech cohomology), where W is the orbit 
space. The different gluings are parameterized by elements of H2(W, Zn). 

In Section 5, we make general observations about  the fundamenta l  group of 
an orbifold and give a theoretical recipe to compute it in terms of da ta  on the 
orbit space W. 

We give in Section 6 a complete list of types of tubular  neighborhoods in 
the orientable case when dim W _< 3 and in Section 7, we make more global 
considerations. 

We do not go far enough towards a classification, but  we hope tha t  this paper  
might give a good framework to start  a deeper analysis. 



Compact Lie groups of type HS: motivation; definition

T

�

an orbifold =⇒ local slices to T -orbits: H

� Rn/Γ

(Γ finite, H ⊆ T closed),

given by compact K

� Rn for 1→ Γ→ K → H
π→ 1

(?)
=⇒ K0︸︷︷︸

identity
component

⊆ Z (K )︸ ︷︷ ︸
centre

⇐⇒: K of type HS

(?)Proof: H abelian =⇒ π(kak−1a−1) = 1, ∀k, a ∈ K

=⇒ ∀a ∈ K , k 7→ kak−1a−1 maps K0︸︷︷︸
connected

to Γ︸︷︷︸
discrete

and 1 7→ 1,

=⇒ ∀a ∈ K ∀k ∈ K0, kak−1a−1 = 1, =⇒ K0 ⊆ Z(K)



Theorem (non-abelian version)

K compact Lie of type HS; K

�

M faithfully; M connected

ψ : M → M diffeomorphism • K -equivariant
• orbit-preserving

Then ∃ η : M → K

• K -equivariant (conjugation on target)

• smooth
such that ψ(x) = η(x) · x ∀x ∈ M

type HS :⇐⇒ K0 ⊆ Z(K)
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1) All points of U are regular if and only if At3 K is the neutral element of G, 
or equivalently if A is free abelian. In that case A\(G • B) = T n • B, 
where H is the isomorphic image of K in the quotient T n = G/A  of G; 
hence we recover the usual description of tubular neighborhoods of orbits 
in the case of an action of T '~ on a manifold. 

For instance, let Cp be the cyclic subgroup of order p of the unit circle T 1 
and p be the representation of Cp in 0(2) associating to e 21r/p the rotation 
of angle 27rq/p, where q and p are relatively prime. The action of T 1 on the 
homogeneous 2-ball bundle T 1 • B describes the tubular neighborhood 
of a singular fiber with Seifert invariants which can be computed from 
(p, q). In the above description, the subgroup F0 is equal to {0}, the group 
G is R x Cp, the subgroup A of G is generated by (1/p, e2ir/P), K is the 
subgroup {0} • Cp, and the slice representation associates to (0, e 2i€ 
the rotation of angle 2~rq/p. 

2) It is easy to see that the subgroup F0 is canonically associated to the orbit 
of x; the isomorphism class of the extension A is also well defined and the 
slice representation is defined up to conjugacy. 

3. E q u i v a l e n c e  o f  A c t i o n s  

Consider a smooth effective action of T n on the orbifold X, and let ~r be the 
projection of ]XI onto the space of T'~-orbits W = Tn\IXI.  On W we consider 
the usual functional structure: a map f of an open set of W in a smooth manifold 
is smooth if, for each uniformizing chart ~: U -+ U of X, the map f o ;v o ~v is 
smooth. 

The aim of this paragraph is to prove the following theorem which is an easy 
application of the basic Lemma 3.2 whose proof was communicated to us by G. 
Schwarz. 

3.1. T h e o r e m .  A diffeomorphism h of an orbifold X commuting with an ac- 
tion of T n and preserving the orbits is of the form h(x) = f ( r ( x ) ) ,  x, where f 
is a smooth map of the space of orbits in T n. 

3.2. L e m m a .  (G. Schwarz). Let B be an open Euclidean ball centered at the 
origin of R q. Let K be a compact subgroup of the orthogonal group O(q), whose 
component Ko of the identity is a torus in the center of K.  Let H be a diffeo- 
morphism of B such that H(v) E K �9 v for all v E B. Then there is a smooth 
map F : B  ~ K such that H(v) = F ( v ) . v .  

Counterexample: S1 � C
ψ(z) := z orbit-preserving diffeomorphism

6 ∃ smooth η : C→ S1 such that ψ(z) = η(z) · z ∀z ∈ C

η(re iθ) = e−2iθ
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Proo f  of  the Lemma.  By hypothesis,  H preserves the  spheres centered at the 
1 

0 of Rq. Let Ht be the diffeomorphism of B defined by Ht = -~H(tv) origin 
b 

for 0 < t < 1 and b y  H0 = the derivative of H at 0 for t = 0. Note tha t  H0 E 
O(q). The family Ht is smooth and Ht(v) E g .  v for each t 6 [0, 1] and v e B. 
After  replacing H by H o  1 o H,  we can assume tha t  H0 is the identity. 

Let E be the vector space Rq • R on which K acts as usual on the first factor, 
and by the identi ty on the second factor. Consider on B • [0,1] the smooth 
vector field X ,  tangent  to the orbits of K ,  defined by 

X ( v , t )  = (J'~Ht+s(H~l(v))L=o,O ) �9 

If P is a K-invariant  polynomial on Re • R, then X �9 P = 0. Let X 1 , . . .  ,X~ 
be vector fields on E = R q • R corresponding to a basis ) ( 1 , . . . , - ~ ,  of the Lie 
algebra of K.  The hypotheses of Proposition 9.3 of Schwarz [14] are obviously 
satisfied; hence any polynomial vector field on E annihilating the K - h v a r i a n t  
polynomials is of the form ~ ai(v, t )Xi ,  where the coefficients ai are polynomi- 
als. 

It follows from the considerations of pages 64-65 of [14] tha t  ~ 

X(v , t )  = ~_, ai(v, t)Xi ,  

where the coefficients ai are smooth functions on B • [0, 1]. Indeed, the jet of 
any order of X is a polynomial vector field on E annihilating the K-invariant  
polynomials,  hence is a linear combination of the X~'s with polynomial coeffi- 
cients. It follows tha t  the Taylor series of X at (0, 0) is a linear combination of 
the Xi's with coefficients which are formal power series. By the same argument ,  
the same is true at any point w of B • [0, 1] using a slice at w. Therefore one 
can apply Theorem 1 of Malgrange ([10], Expos~ 25, page 1). 

Consider now the t ime depending vector field ) (  = ~ ai(v,t) f( i  on K,  de- 
pending smoothly on the parameter  v E B and let F(v , t )  E K be the solution 
of the corresponding differential equation with initial value F(v,O) = v. Then 
Ht(v) = F ( v , t ) . v ,  hence H(v) = F ( v , 1 ) . v .  

Proof of the Theorem. It is sufficient to prove the theorem for X = U, a tubular  
neighborhood as described in Section 2. With  the notation of Section 2, U is the 
orbifold quotient  of a manifold /) = G • B by the action of A, and G/A = T n 
acts natural ly on U. The orbit space W is identified wi th  the quotient K \ B  of 
the slice B by the action of K.  

Let h be a diffeomorphism of U commuting with the action of T '~ and pre- 
serving the orbits. By definition, it lifts as a diffeomorphism h o f / )  which is 

“All-linear HS lemma”:

K compact Lie of type HS; K

�

W linear action;

ψ : W →W orbit-preserving K -equivariant(∗) linear isomorphism.

Then ∃ γ ∈ K such that ψ(x) = γ · x ∀x ∈W .

type HS :⇐⇒ K0 ⊆ Z(K)

(∗) or: equivariant with respect to an automorphism of K that is trivial on K0.



Reminder of theorem:

K compact Lie group of type HS; K

�

M faithfully; M connected;
ψ : M → M orbit-preserving K -equivariant diffeomorphism. Then

∃ smooth K -equivariant η : M → K such that ψ(x) = η(x) · x ∀x ∈ K .

Outline of proof of theorem

abelian



• “all-linear” version

• infinitesimal version

• linear action; non-linear ψ

• action by automorphisms on vector bundle

• slice theorem =⇒ general (abelian) case

non-abelian

{
• K finite

• finite + abelian =⇒ general (type HS) case



Compact Lie groups of type HS: examples

K compact: type HS :⇐⇒ K0 ⊆ Z (K ) ⇐⇒ K/Z (K ) finite

Examples: K finite; K compact abelian Lie; their products

Non-product example: (S1 × Z2) o Z2

with Z2 = {1,−1}, where Z2

�

S1 × Z2 by (a, ε) 7→ (εa, ε).

Compact Lie groups of type HS act generically freely

K compact of type HS; K

�

M faithful; M/Z (K ) connected .

Then K acts freely on the principal orbit type stratum Mprinc.

Proof: on Mprinc, all stabilizers are conjugate to some H ⊆ K .
N(H) ⊇ Z(K) and K is of type HS =⇒ K/N(H) is finite.

For representatives k1, . . . , kr of the distinct cosets in K/N(H),
MHi := {points with stabilizer Hi} for Hi := kiHk

−1
i .

M = closure(MH1) t . . . t closure(MHr ).
M/Z(K) is connected and closure(MHi ) are Z(K)-invariant =⇒ r = 1 ;

action is faithful =⇒ H is trivial.



Orbit-preserving equivariant smooth maps are
diffeomorphisms

K compact

�

M;

ψ : M → M orbit-preserving K -equivariant smooth map.

Then ψ is a diffeomorphism.

Proof: Step 1: for M = K/H homogeneous. Step 2: for H

�
W linear.

Step 3: slice theorem + homogeneous case + linear case =⇒ general case

Theorem (stronger non-abelian version)

K compact of type HS; K0 ⊆ A ⊆ Z (K ).

K

�

M faithfully; M/A connected.

ψ : M → M orbit-preserving smooth map, equivariant w.r.t. an
automorphism of K that is trivial on A.

Then ∃ smooth K -equivariant(∗) η : M → K such that
ψ(x) = η(x) · x ∀x ∈ M.

(∗) with respect to twisted-conjugation on the target



Special case — Locally standard actions

(S1)n

� Cn × Rl

Orbit-preserving (S1)n-equivariant diffeomorphism:

ψ(z , t) = (ψ1(z , t), . . . , ψn(z , t); t1, . . . , tl)

ψi (z , t): (S1)i th-equivariant; (S1)j th-invariant ∀j 6= i
ψi (x , t), x real: anti-symmetric in xi ; symmetric in xj ∀j 6= i
Whitney (1943) =⇒ ∃ smooth gi such that

ψi (x , t) = xigi (x1
2, . . . , xn

2; t1, . . . , tl) ∀(x , t) ∈ Rn × Rl

=⇒ ψi (z , t) = zigi (|z1|2, . . . , |zn|2; t1, . . . , tl) ∀(z , t) ∈ Cn × Rl

orbit-preserving =⇒ |gi | = 1.

ηi (z , t) := gi (|z1|2, . . . , |zn|2; t1, . . . , tl)

η := (η1, . . . , ηn). Then ψ(m) = η(m) ·m ∀m = (z , t).

(e.g. Delzant, 1988)



Recall – Outline of proof of theorem

abelian



(1) “all-linear” version

(2) infinitesimal version

(3) linear action; non-linear ψ

(4) action by automorphisms on vector bundle

(5) slice theorem =⇒ general (abelian) case

non-abelian

{
(6) K finite

(7) finite + abelian =⇒ general (type HS) case



(1) Abelian “all-linear” version of theorem

A compact abelian Lie; A

�

W linear action;

ψ : W →W orbit-preserving A-equivariant linear isomorphism.

Then ∃ γ ∈ A such that ψ(x) = γ · x ∀x ∈W .

Sketch of proof:

KW := kernel of the action

Wprinc := principal orbit type stratum = points with stabilizer KW

• Trivial action: take γ = 1.
• Irreducible action: take γ s.t. ψ(x) = γ · x for some x ∈Wprinc.
• Inductive step: suppose W = W1 ⊕W2; assume the theorem
holds for W1 and for W2; take γ such that ψ(x + y) = γ · (x + y)
for some x ∈ (W1)princ and y ∈ (W2)princ.



(2) Infinitesimal version of theorem

T torus. T

�

W linearly. ξt smooth family of vector fields on W ,
everywhere tangent to orbits. Then
∃ smooth αt : W → Lie(T ) such that ξt(x) = αt(x) · x ∀x ∈W .

(3) Linear action; non-linear ψ (abelian group)
A compact abelian, A

�

W linearly.
ψ : W →W orbit-preserving A-equivariant diffeomorphism.
“All linear” version =⇒ WLOG dψ|0(x) = Id

=⇒ ψt(x) :=

{
x if t = 0
1
tψ(tx) if t ∈ (0, 1]

is smooth.

ξt(ψt(x)) = d
dtψt(x) defines time-dependent vector field ξt ,

tangent to orbits. Infinitesimal version =⇒ ξt(y) = αt(y) · y for
some αt : W → Lie(T ). ηt(x) := exp

∫ t
0 ατ (x)dτ satisfies

ψt(x) = ηt(x) · x ∀x ∈W .



(4) Version for vector bundles (abelian group)

A compact abelian, H ⊆ A closed, H

�

W linearly

A

�

Ω := A×H W
π−→ A/H

ψ : Ω→ Ω orbit-preserving A-equivariant diffeomorphism.

Step 1: ∃ A-invariant smooth map η̂ : Ω→ A such that
π(ψ(x)) = η̂(x) · π(x) ∀x ∈ Ω

Step 2: By Step 1, WLOG π(ψ(x)) = π(x) ∀x ∈ Ω.
By the deformation argument, ∃ ηH : W → H such that
ψ([1,w ]) = ηH(w) · [1,w ] ∀w ∈W . Then η([a,w ]) := a · ηH(w)
satisfies ψ(x) = η(x) · x ∀x ∈ Ω.

(5) General abelian case: follows by Koszul’s slice theorem.



(6) Version for finite group

K finite

�

M faithfully; M/Z (K ) connected.

ψ : M → M orbit-preserving smooth map.

Then M = ∪kCk where Ck := {x ∈ M | ψ(x) = k · x}
Baire category theorem =⇒ ∪k interior(Ck) is dense

=⇒ M = ∪kclosure(interior(Ck)).

This union is disjoint. (On the intersection of the kth and k ′th sets, the

differentials of x 7→ k · x and x 7→ k ′ · x coincide with those of ψ, hence with

each other; this implies k = k’.)

Ck are Z (K )-invariant and M/Z (K ) is connected =⇒ ∃!k such
that Ck 6= ∅. For it, ψ(x) = k · x ∀x ∈ M.



(7) General case

K0 ⊆ A ⊆ Z (K ); M/A connected.

M ′ := principal orbit type stratum for A

�

M. Then M ′ ⊆ M is
open dense; A

�

M ′ is free; M ′/A is connected.

ψ : M → M, K -orbit preserving, equivariant with respect to an
automorphism of K that fixes A.

ψ : M ′/A→ M ′/A, (K/A)-orbit preserving. Version for finite
group =⇒ ∃ γ ∈ K/A such that ψ([x ]) = γ · [x ] ∀[x ] ∈ M ′/A.
γ ∈ K representative for γ ∈ K/A.

γ−1ψ : M → M is A-equivariant and preserves A-orbits. Abelian
case =⇒ η′ : M → A such that γ−1ψ(x) = η′(x) · x ∀x ∈ M.
Take η(x) = γη′(x).



Fails for homeomorphisms

S1 � C.

ψ(z) := e i/|z| · z
6 ∃ continuous η : C→ S1 such that ψ(x) = η(x) · x ∀x

Fails without compactness

R � R flow of e−1/x
2 ∂
∂x .

ψ =

{
time 1 map on [0,∞)

time −1 map on (−∞, 0]

6 ∃ smooth η : R→ R such that ψ(x) = η(x) · x ∀x .



Fails without faithfulness

S1 �

S1 × S1 by a : (b, c) 7→ (a2b, c).

ψ(b, c) := (cb, c) .

6 ∃ smooth η : S1 × S1 → S1 such that ψ(x) = η(x) · x ∀x .

Fails for general K

SO(3)

�

S2.
ψ(x) := −x , the antipode.

6 ∃ smooth η : S2 → SO(3) such that ψ(x) = η(x) · x ∀x .

Fails if only assume K0 =torus

O(2)

� R2 × R by g · (u, ξ) = (gu, (det g)ξ).

ψ(u, ξ) = (u,−ξ).

6 ∃ smooth η : R2 × R→ R such that ψ(x) = η(x) · x ∀x .



Thank you!


