

Applications of the Chang Skjelbred Lemma to positive and non-negative Curvature

Michael Wiemeler (joint with O. Goertsches / L. Kennard & B. Wilking) May 2020

A question and a problem.

Question

What are the topological implications of positive sectional curvature?

A question and a problem.

Question

What are the topological implications of positive sectional curvature?

Problem

Classify manifolds admitting metrics of positive sectional curvature.

Examples of positively curved manifolds.

There are only very few examples of manifolds admitting metrics of positive sectional curvature.

Examples of positively curved manifolds.

- There are only very few examples of manifolds admitting metrics of positive sectional curvature.
- For dim M > 24 all known examples are diffeomorphic to S^n , $\mathbb{C}P^n$, or $\mathbb{H}P^n$.

Examples of positively curved manifolds.

- There are only very few examples of manifolds admitting metrics of positive sectional curvature.
- For dim M > 24 all known examples are diffeomorphic to S^n , $\mathbb{C}P^n$, or $\mathbb{H}P^n$.
- Other examples are known in low dimensions.
- These are certain homogeneous spaces and biquotient spaces.

Topological implications of positive curvature.

For closed manifolds *M* the following is known:

Classical results

► Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.

Topological implications of positive curvature.

For closed manifolds *M* the following is known:

Classical results

- ► Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.
- ► Theorem of Synge: $sec(M^{2n}) > 0 \Rightarrow |\pi_1(M)| \le 2$.
- ▶ Theorem of Bonnet-Myers: $Ric(M^n) > 0 \Rightarrow |\pi_1(M)| < \infty$.

Topological implications of positive curvature.

For closed manifolds M the following is known:

Classical results

- Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.
- ► Theorem of Synge: $sec(M^{2n}) > 0 \Rightarrow |\pi_1(M)| \le 2$.
- ► Theorem of Bonnet-Myers: $Ric(M^n) > 0 \Rightarrow |\pi_1(M)| < \infty$.
- ► Gromov's Betti number Theorem: $sec(M^n) \ge 0 \Rightarrow \sum_i b_i(M) < C(n)$.

There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- But there are the following conjectures:

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- ▶ But there are the following conjectures:

Hopf's Conjecture I

If M is a closed, even-dimensional positively curved manifold, then the Euler characteristic of M is positive.

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- ▶ But there are the following conjectures:

Hopf's Conjecture I

If M is a closed, even-dimensional positively curved manifold, then the Euler characteristic of M is positive.

Hopf's Conjecture II

 $S^2 \times S^2$ does not admit a positively curved metric.

Remarks.

The first conjecture would imply that $S^{2n+1} \times S^{2n'+1}$ does not admit a positively curved metric.

Remarks.

- The first conjecture would imply that $S^{2n+1} \times S^{2n'+1}$ does not admit a positively curved metric.
- ▶ The first conjecture is true in dimensions two and four.

A programme.

Grove's Programme

Classify simply connected positively/non-negatively curved manifolds with large isometry group first.

A programme.

Grove's Programme

Classify simply connected positively/non-negatively curved manifolds with large isometry group first.

Here "Classify" can also mean "compute topological invariants of..."

Previous Results for sec > 0

Some classification results for positively curved, simply connected manifolds with an isometric action of a torus *T*

Authors	dim M	dim T	Result
Grove, Searle (1994)	n	$\left[\frac{n+1}{2}\right]$	diffeo class
Wilking (2003)	<i>n</i> ≥ 10	$\geq \frac{n}{4} + 1$	homotopy class
Fang, Rong (2005)	n > 7	$\left[\frac{n-1}{2}\right]$	homeo class
Amann, Kennard (2014)	2 <i>n</i>	$\geq 2\log_2 2n + 2$	$2 \le x(M) \le 2^{3(\log_2 2n)^2}$

Previous Results for sec > 0

Some classification results for positively curved, simply connected manifolds with an isometric action of a torus *T*

Authors	dim M	dim T	Result
Grove, Searle (1994)	n	$\left[\frac{n+1}{2}\right]$	diffeo class
Wilking (2003)	<i>n</i> ≥ 10	$\geq \frac{n}{4} + 1$	homotopy class
Fang, Rong (2005)	n > 7	$\left[\frac{n-1}{2}\right]$	homeo class
Amann, Kennard (2014)	2 <i>n</i>	$\geq 2\log_2 2n + 2$	$2 \le X(M) \le 2^{3(\log_2 2n)^2}$

- There are also classification results specific to low dimensions.
- Dessai (2007)/Weisskopf (2017) have results on elliptic genera of two-connected positively curved manifolds, where dim T is independend of dim M.

Previous Results for sec ≥ 0

Some classification results for non-negatively curved simply connected manifolds *M* with isometric action of a torus *T*.

Authors	dim M	dim T	Result
W. (2015)	2 <i>n</i>	$n, M^T \neq \emptyset$	equivar. diffeo. class.
Escher, Searle (2017)	n	isotropy maximal action	equivar. diffeo. class.

Previous Results for sec ≥ 0

Some classification results for non-negatively curved simply connected manifolds *M* with isometric action of a torus *T*.

Authors	dim M	dim T	Result
W. (2015)	2 <i>n</i>	$n, M^T \neq \emptyset$	equivar. diffeo. class.
Escher, Searle (2017)	n	isotropy maximal action	equivar. diffeo. class.

▶ There are also classification results specific to low dimensions.

Previous Results for sec ≥ 0

Some classification results for non-negatively curved simply connected manifolds *M* with isometric action of a torus *T*.

Authors	dim M	dim T	Result
W. (2015)	2 <i>n</i>	$n, M^T \neq \emptyset$	equivar. diffeo. class.
Escher, Searle (2017)	n	isotropy maximal action	equivar. diffeo. class.

- There are also classification results specific to low dimensions.
- It is conjectured that the dimension of a torus acting on a simply connected non-negatively curved manifold M is bounded from above by $\left[\frac{2}{3} \dim M\right]$.

Main results I.

Theorem (Goertsches, W. 2015)

Let M be a positively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_3 .

Main results I.

Theorem (Goertsches, W. 2015)

Let M be a positively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_3 . Then $H^*(M, \mathbb{Q})$ is isomorphic to the rational cohomology of one of

$$S^{2n}$$
, $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{O}P^2$.

Main results II.

Theorem (Gortsches, W. 2018)

Let M be a non-negatively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_4 .

Main results II.

Theorem (Gortsches, W. 2018)

Let M be a non-negatively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_4 .

Then there is a non-negatively curved torus manifold \tilde{M} and a finite group G acting isometricly on \tilde{M} such that

$$H^*(M; \mathbb{Q}) \cong H^*(\tilde{M}/G; \mathbb{Q}).$$

Let M be a manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ with an action of a torus T. Then:

 $ightharpoonup H_T^*(M) o H^*(M)$ is surjective with kernel generated by $H^{0}(BT)$.

Let M be a manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ with an action of a torus T. Then:

- $ightharpoonup H_T^*(M) o H^*(M)$ is surjective with kernel generated by $H^{0}(BT)$.
- $ightharpoonup H_T^*(M)$ is a free module over $H^*(BT)$.

Let M be a manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ with an action of a torus T. Then:

- $ightharpoonup H_T^*(M) o H^*(M)$ is surjective with kernel generated by $H^{0}(BT)$.
- $ightharpoonup H_T^*(M)$ is a free module over $H^*(BT)$.
- ▶ The natural map ι^* : $H_T^*(M) \to H_T^*(M^T)$ is injective.

Let M be a manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ with an action of a torus T. Then:

- $ightharpoonup H_T^*(M) o H^*(M)$ is surjective with kernel generated by $H^{0}(BT)$.
- $ightharpoonup H_T^*(M)$ is a free module over $H^*(BT)$.
- ► The natural map ι^* : $H_T^*(M) \to H_T^*(M^T)$ is injective.
- ▶ Hence, to compute $H^*(M)$, it suffices to understand the image of ι^*

Lemma (Chang and Skjelbred 1974)

Let M be a rational cohomology manifold with an action of a torus such that $H_T^*(M)$ is a free module over $H^*(BT)$. Then:

The image of

$$H_T^*(M) \to H_T^*(M^T)$$

coincides with

Lemma (Chang and Skjelbred 1974)

Let M be a rational cohomology manifold with an action of a torus such that $H_T^*(M)$ is a free module over $H^*(BT)$. Then:

The image of

$$H_T^*(M) \to H_T^*(M^T)$$

coincides with the image of

$$H_T^*(M_1) \to H_T^*(M^T)$$
,

Lemma (Chang and Skjelbred 1974)

Let M be a rational cohomology manifold with an action of a torus such that $H_T^*(M)$ is a free module over $H^*(BT)$. Then:

The image of

$$H_T^*(M) \to H_T^*(M^T)$$

coincides with the image of

$$H_T^*(M_1) \to H_T^*(M^T)$$
,

where

$$M_1 = \{x \in M \text{ dim } Tx \le 1\}.$$

Remarks.

▶ So it suffices to understand M_1 to compute the cohomology of M.

Remarks.

- So it suffices to understand M_1 to compute the cohomology of M.
- ▶ By Allday-Franz-Puppe (2014), the conclusion of the above Lemma holds if and only if $H_T^*(M)$ is a reflexive $H^*(BT)$ -module, i.e. the natural map

$$H_{\mathcal{T}}^*(M) \to \operatorname{Hom}_R(\operatorname{Hom}_R(H_{\mathcal{T}}^*(M), R) R),$$

is an isomorphism, where $R = H^*(BT)$.

Why is equivariant formality natural in presence of positive/non-negative curvature?

By the Bott conjecture, a simply connected non-negatively curved manifold would be rationally elliptic.

Why is equivariant formality natural in presence of positive/non-negative curvature?

- By the Bott conjecture, a simply connected non-negatively curved manifold would be rationally elliptic.
- By Hopf's conjecture a positively curved manifold of even dimension, should have positive Euler characteristic.

Why is equivariant formality natural in presence of positive/non-negative curvature?

- By the Bott conjecture, a simply connected non-negatively curved manifold would be rationally elliptic.
- By Hopf's conjecture a positively curved manifold of even dimension, should have positive Euler characteristic.
- Combining these two conjectures implies that a positively curved manifold M^{2n} has $H^{\text{odd}}(M; \mathbb{Q}) = 0$.

The GKM condition.

Definition

Let $k \ge 2$ and M be a closed, orientable manifold with an action of a torus T such that

- 1. $\dim M = 2n$ is even.
- **2.** $H^{\text{odd}}(M) = 0$
- 3. M^T consists of finitely many isolated points p_1, \dots, p_m

The GKM condition.

Definition

Let $k \ge 2$ and M be a closed, orientable manifold with an action of a torus T such that

- 1. $\dim M = 2n$ is even.
- 2. $H^{\text{odd}}(M) = 0$
- 3. M^T consists of finitely many isolated points p_1, \dots, p_m
- 4. At every fixed point p_i , any k weights of $T_{p_i}M$ are linearly independent.

The GKM condition.

Definition

Let $k \ge 2$ and M be a closed, orientable manifold with an action of a torus T such that

- 1. $\dim M = 2n$ is even.
- 2. $H^{\text{odd}}(M) = 0$
- 3. M^T consists of finitely many isolated points p_1, \dots, p_m
- 4. At every fixed point p_i , any k weights of $T_{p_i}M$ are linearly independent.

Then the action is called of type GKM_k .

GKM Graphs.

- Conditions 3 + 4 imply that for a GKM manifold M, M_1 is a union of two-dimensional invariant spheres.
- We can associate to M a labeled graph (Γ, a) as follows:

GKM Graphs.

- Conditions 3 + 4 imply that for a GKM manifold M, M_1 is a union of two-dimensional invariant spheres.
- We can associate to M a labeled graph (Γ, a) as follows:
 - \triangleright vertices of Γ are the points in M^T
 - If p_1, p_2 are contained in the same two-sphere $\subset M_1$, then connect p_1, p_2 by an edge.
 - For each edge e in Γ , let $a(e) \in H^2(BT)$ dual to the principal isotropy group of corresponding two-sphere.

GKM Graphs.

- Conditions 3 + 4 imply that for a GKM manifold M, M_1 is a union of two-dimensional invariant spheres.
- We can associate to M a labeled graph (Γ, a) as follows:
 - \triangleright vertices of Γ are the points in M^T
 - If p_1, p_2 are contained in the same two-sphere $\subset M_1$, then connect p_1, p_2 by an edge.
 - For each edge e in Γ , let $a(e) \in H^2(BT)$ dual to the principal isotropy group of corresponding two-sphere.
- If M is GKM $_k$, k > 2, then the graph Γ has higher dimensional faces.

Positively/non-negatively curved GKM manifolds.

Lemma

If M is GKM_3 and admits an invariant metric of positive (non-negative, respectively) curvature, then the two-dimensional faces of Γ have at most 3 (4, resp.) vertices.

Positively/non-negatively curved GKM manifolds.

Lemma

If M is GKM₃ and admits an invariant metric of positive (non-negative, respectively) curvature, then the two-dimensional faces of Γ have at most 3 (4, resp.) vertices.

The two-dimensional faces of Γ are GKM-graphs of four-dimensional invariant submanifolds of M fixed by codimension two tori of T.

Positively/non-negatively curved GKM manifolds.

Lemma

If M is GKM_3 and admits an invariant metric of positive (non-negative, respectively) curvature, then the two-dimensional faces of Γ have at most 3 (4, resp.) vertices.

- The two-dimensional faces of Γ are GKM-graphs of four-dimensional invariant submanifolds of M fixed by codimension two tori of T.
- Now, the claim follows from classification results for four-dimensional positively/non-negatively curved manifolds with continuous symmetry by Hsiang—Kleiner and Searle—Yang.

Lemma

If M is GKM_3 and admits an invariant metric of positive curvature, then the two-dimensional faces of Γ have at most 3 vertices.

It follows from this lemma, that Γ is a complete graph with multiple edges.

Lemma

If M is GKM_3 and admits an invariant metric of positive curvature, then the two-dimensional faces of Γ have at most 3 vertices.

It follows from this lemma, that Γ is a complete graph with multiple edges.

Lemma

If M is GKM_3 and admits an invariant metric of positive curvature, then the two-dimensional faces of Γ have at most 3 vertices.

It follows from this lemma, that Γ is a complete graph with multiple edges.

One easily sees that between any two vertices there are the same number, say *k*, of edges.

- One easily sees that between any two vertices there are the same number, say *k*, of edges.
- Moreover, when there are more than two vertices, one sees:
 - k = 1, 2, 4.
 - If k = 4 then there are exactly three vertices.

- One easily sees that between any two vertices there are the same number, say k, of edges.
- Moreover, when there are more than two vertices, one sees:
 - k = 1, 2, 4.
 - If k = 4 then there are exactly three vertices.
- This means that Γ is the same as in the case of a linear action on S^{2n} , $\mathbb{C}P^n$, $\mathbb{H}P^n$ or $\mathbb{O}P^2$.

- One easily sees that between any two vertices there are the same number, say k, of edges.
- Moreover, when there are more than two vertices, one sees:
 - k = 1, 2, 4.
 - If k = 4 then there are exactly three vertices.
- This means that Γ is the same as in the case of a linear action on S^{2n} , $\mathbb{C}P^n$, $\mathbb{H}P^n$ or $\mathbb{O}P^2$.
- One can show that the weights are also the same as in one of these cases.

Main result I.

Theorem (Goertsches, W. 2015)

Let M be a positively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_3 .

Main result I.

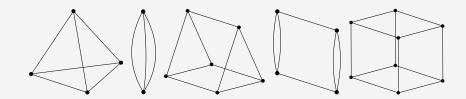
Theorem (Goertsches, W. 2015)

Let M be a positively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_3 . Then $H^*(M; \mathbb{Q})$ is isomorphic to the rational cohomology of one of

$$S^{2n}$$
, $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{O}P^2$.

Non-negatively curved case I.

In presence of of non-negative curvature and GKM₄ the 3-dimensional faces of Γ are of the following types: Δ^3 , Σ^3 , $\Delta^2 \times I$, $\Sigma^2 \times I$, I^3



GKM₄-manifolds with non-negative curvature.

At each vertex p of Γ we have local product structure,

$$\bigvee_{i} VEG(\Delta^{n_i}) \vee \bigvee_{j} VEG(\Sigma^{m_j}).$$

GKM₄-manifolds with non-negative curvature.

 \triangleright At each vertex p of Γ we have local product structure,

$$\bigvee_{i} VEG(\Delta^{n_i}) \vee \bigvee_{j} VEG(\Sigma^{m_j}).$$

This local structure is independent of *p*.

GKM₄-manifolds with non-negative curvature.

At each vertex p of Γ we have local product structure,

$$\bigvee_{i} VEG(\Delta^{n_i}) \vee \bigvee_{j} VEG(\Sigma^{m_j}).$$

This local structure is independent of *p*.

Theorem

There is a normal covering

$$VEG(\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}) \to \Gamma$$

with finite deck transformation group G.

The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.

- The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.
- ► A GKM_n-graph labeling of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$ defines torus manifold over $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$.
- ► Hence to prove main theorem we have to:

- The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.
- ► A GKM_n-graph labeling of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$ defines torus manifold over $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$.
- Hence to prove main theorem we have to:
 - ► Lift GKM₄-labeling a to GKM₄-labeling \tilde{a} of $VEG(\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_i})$.

- The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.
- ► A GKM_n-graph labeling of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$ defines torus manifold over $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$.
- Hence to prove main theorem we have to:
 - ► Lift GKM₄-labeling a to GKM₄-labeling \tilde{a} of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$.
 - \triangleright Extend labeling \tilde{a} to GKM_n-labeling \tilde{a}' .

- The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.
- ► A GKM_n-graph labeling of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$ defines torus manifold over $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$.
- Hence to prove main theorem we have to:
 - ► Lift GKM₄-labeling a to GKM₄-labeling \tilde{a} of $VEG(\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_i})$.
 - Extend labeling \tilde{a} to GKM_n-labeling \tilde{a}' .
 - Extend *G*-action on *VEG* to *G*-action on $\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j}$, compatible with extended labeling.

- The non-negatively curved simply connected torus manifolds are precisely those which have $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$ as orbit space.
- ► A GKM_n-graph labeling of $VEG(\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j})$ defines torus manifold over $\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_j}$.
- Hence to prove main theorem we have to:
 - ► Lift GKM₄-labeling a to GKM₄-labeling \tilde{a} of $VEG(\prod_i \Delta^{n_i} \times \prod_i \Sigma^{m_i})$.
 - \triangleright Extend labeling \tilde{a} to GKM_n-labeling \tilde{a}' .
 - Extend *G*-action on *VEG* to *G*-action on $\prod_i \Delta^{n_i} \times \prod_j \Sigma^{m_j}$, compatible with extended labeling.
- ► All this can be done.

Main result II.

Theorem (Gortsches, W. 2018)

Let M be a non-negatively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_{Δ} .

Main result II.

Theorem (Gortsches, W. 2018)

Let M be a non-negatively curved manifold with $H^{odd}(M; \mathbb{Q}) = 0$ which admits an isometric action of a torus of type GKM_4 .

Then there is a non-negatively curved torus manifold \tilde{M} and a finite group G acting isometricly on \tilde{M} such that

$$H^*(M; \mathbb{Q}) \cong H^*(\tilde{M}/G; \mathbb{Q}).$$

Remarks

 $ightharpoonup \tilde{M}/G$ is in general an orbifold not a manifold.

Remarks

- $ightharpoonup ilde{M}/G$ is in general an orbifold not a manifold.
- Theorem also true for orientable orbifolds M, then \tilde{M} is also an orbifold.

Remarks

- $ightharpoonup \tilde{M}/G$ is in general an orbifold not a manifold.
- Theorem also true for orientable orbifolds M, then \widetilde{M} is also an orbifold.
- ► Instead of M being non-negatively curved one can require M to be rationally elliptic to get the same conclusion.

Main result III.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$. If M admits an isometric effective equivariantly formal action of T^d , with

 $d \ge 8$,

then M has the rational cohomology of S^n , $\mathbb{C}P^{\frac{n}{2}}$, or $\mathbb{H}P^{\frac{n}{4}}$.

Main result III.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$. If M admits an isometric effective equivariantly formal action of T^d , with

 $d \ge 8$,

then M has the rational cohomology of S^n , $\mathbb{C}P^{\frac{n}{2}}$, or $\mathbb{H}P^{\frac{n}{4}}$.

Tools for the proof I.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$ and that there is an isometric effective action of a torus T^d of dimension

 $d \geq 5$.

Then every component F of M^T has the rational cohomology of S^m , $\mathbb{C}P^m$ or $\mathbb{H}P^m$.

Tools for the proof II.

Theorem (Kennard, W., Wilking 2019)

Let M^n be a equivariantly formal T-manifold such that for every subtorus $T' \subset T$ of codimensoin less than four and each component $F \subset M^{T'}$ we have

$$H^*(F; \mathbb{Q}) \cong H^*(S^m; \mathbb{Q}), H^*(\mathbb{C}P^m; \mathbb{Q}), H^*(\mathbb{H}P^m; \mathbb{Q}).$$

Tools for the proof II.

Theorem (Kennard, W., Wilking 2019)

Let M^n be a equivariantly formal T-manifold such that for every subtorus $T' \subset T$ of codimensoin less than four and each component $F \subset M^{T'}$ we have

$$H^*(F; \mathbb{Q}) \cong H^*(S^m; \mathbb{Q}), H^*(\mathbb{C}P^m; \mathbb{Q}), H^*(\mathbb{H}P^m; \mathbb{Q}).$$

Then

$$H^*(M; \mathbb{Q}) \cong H^*(S^n; \mathbb{Q}), H^*(\mathbb{C}P^{\frac{n}{2}}; \mathbb{Q}), H^*(\mathbb{H}P^{\frac{n}{4}}; \mathbb{Q}), H^*(\mathbb{O}P^2).$$

Some corollaries.

Corollary

Hopf's Conjecture I holds for manifolds with isometric T⁵-actions.

Some corollaries.

Corollary

Hopf's Conjecture I holds for manifolds with isometric T^5 -actions.

Corollary

The isometry group of a potential positively curved metric on $S^{2n+1} \times S^{2n'+1}$ has rank at most four.

Some corollaries.

Corollary

Hopf's Conjecture I holds for manifolds with isometric T^5 -actions.

Corollary

The isometry group of a potential positively curved metric on $S^{2n+1} \times S^{2n'+1}$ has rank at most four.

Corollary

The isometry group of a potential positively curved metric on $S^{2n} \times S^{2n'}$ and $S^{2n} \times S^{2n'-1}$, $n' \le n$ has rank at most seven.

Thank you!