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Introduction.

According to good compactification theorem for any algebraic variety X in the
complex torus there is a toric compactification M ⊃ (C∗)n such that the closure
X ox X in M does not intersect orbits in M whose dimension is smaller then
codimension of X in M . If M1 is a good compactification for X and π : M1 → M
is a proper equivariant map then M1 also is a good compactification for X.

Problem. Fix a positive 0-divisor D at the union Mn−k of n − k dimensional
orbits of a complete toric variety M ⊃ (C∗)n. Under what condition on D there is
an algebraic variety Y ⊂ (C∗)n with dimY = k which does not intersect orbits of
dimension smaller then k whose intersection with Mn−k equal to D? If there are
such varieties Y than describe all of them.

Let M be a complete complex toric variety.

About 25 year ago I completely solved this problem for the case n = 2, k = 1
dealing with algebraic curves in toric surface (see [1]). This solution provides an
elementary proof of the classical Weil reciprocity law and to its converse statement
(previously unknown). It also was one of the first results in tropical geometry.

The next step was made only very recently: I completely solved the this problem
for the case when n > 1 is an arbitrary number and k = n−1 dealing with algebraic
hypersurfaces in toric variety.

Conditions on zero divisor D necessary for solvability of the problem in these
cases split into three groups: additive and multiplicative balance conditions and
rigidity conditions.

In the talk I will present analogous necessary condition for general case and will
explain why these conditions are also sufficient if k = n − 1. This result could be
considered as a natural continuation of [1].
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Statements of results

For an orbit O of M we denote by M(O) the complete toric variety equal to the
closure of O in M . By D(O) we denote the 0-cycle in M(O) induced by the 0 cycle
A ∈ M ⊃ M(O).

Lemma. If Y ⊂ M is a solution for Problem with 0-divisor D then Y ∩M(O)
is a solution for the induced Problem in toric variety M(O) and the divisor D(O).

For the case when n > 1 is an arbitrary number and k = 1 dealing with a curve
in n-dimensional toric variety one can prove the following theorem.

Theorem on necessary conditions for curves For the solvability of the
Problem for k = 1 the zero divisor D located at the union of n − 1 dimensional
orbits has to satisfy the additive and multiplicative balance conditions and rigidity
condition.

Corollary (on necessary conditions for general case). If the problem in
the case n > k ≥ 1 has at least one solution for zero divisor D then for any n−k+1
dimensional orbit O the induced zero divisor D(O) has to satisfy the additive and
multiplicative balance conditions and rigidity condition.

Theorem (on sufficient conditions for the case k = n− 1).

1) The problem has at least one solution Y if and only if for each two-dimensional
orbit O the problem for the toric surface M(O) and the 0-cycles D(O) has at least
one solution.

2) Moreover the intersection of any solution Y with the torus (C∗)n can be de-
fined by equationQ = 0 whereQ is a Laurent polynomial whose Newton polyhedron
∆ is defined up to a ship and can be found explicitly.

3) The coefficients of Q at monomials belonging to vertices and edges of ∆ can
be found explicitly up to a common factor.

4) All other coefficients of Q are arbitrary complex numbers.
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Classical reciprocity laws.

The origin for balance conditions are the following classical reciprocity laws.

Theorem (Additive reciprocity law) For any meromorphic function f on a
compact curve Γ the following condition holds:

∑
a∈Γ

ordaf = 0.

Proof. Let O ⊂ Γ be the set of poles and zeros of f . For each point a ∈ O let γa
be a small circle running around a in the contr clockwise direction. The the cycle
γ =

∑
γa is equal to zero in H1(Γ \O,Z). Thus

1

2π

∫
γ

df

f
= 0

Let f, g be a couple of meromorphic functions on Γ. Let u be a parameter about
a point a ∈ Γ̃ such that u(a) = 0. Assume that about the point a

f = buk + . . . , g = cum + . . . .

To the couple (f, g) and a point p ∈ Γ̃ one associate:

the Weil symbol [f, g]a = (−1)kmbmc−k ∈ C∗.

The following reciprocity law was discovered by A.Weil.

Theorem (Multiplicative reciprocity law) For any meromorphic functions
f, g on a compact curve Γ the following condition holds:

∏
a∈Γ

[f, g]a = 1.

One can prove this reciprocity law in very different ways. One of its proof follows
from the Abel.s type theorem which I will discuss later.

Another proof is topological: one can defined an element in H1(Γ \ O,Z) with
values in C∗ whose value on the cycle γa equals to [f, g]a. The law follows now from
the equality

∑
γa = 0 in H1(Γ \O,Z). I use this topological approach in the talk.
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Additive balance condition.

Consider the problem for general case n > k ≥ 1 for the 0 -cycleD whose support
belongs to the union of (n − k) dimensional orbits. For any (n − k) dimensional
orbit Oα denote by µα(D) the degree of the induced divisor D(Oα).

The closureM(O) of any (n−k+1) dimensional orbit O is (n−k+1) dimensional
variety. Any (n−k) dimensional orbit Oα in M(O) (which is automatically an orbit
in M corresponds an irreducible integral vector vα belonging to the lattice of one
parameter groups in O.

Theorem (on additive balance condition) If the problem has at least one
solution for a zero divisorD then it satisfies the following additive balance condition:
for any (n− k + 1) dimensional orbit O the relation∑

µα(D)vα = 0

holds, where the sum is taken over all (n− k) dimensional orbits Oα in M(O).
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Graph with marked complex edges.

Let M1 = {(Oi, Ai, Bi, Ti)} be a finite collection of Riemann spheres Oi named
edges with fixed three points:

two points Ai, Bi named vertices and a marked point Ti.

Let us choose some couples of spheres Oi,Oj and some identification of one vertex
of Oi with one vertex of Oj or both vertices of Oi with both vertices of Oi.

The collection M1 with the above identification we will consider as a singular
complex curve Γ1. It also could be considered as a graph with complex edges {Oi}
with the set of marked points T and the set of vertices V ⊂ Γ1 obtained from the
set ∪{Ai, Bi} by the above identification.

Choose an order on the set of vertices on the sphere Oα at denote these ver-
tices by v1α, v

2
α. The choice order allows to identify Oα with CP 1 by the natural

isomorphism ρ
v1
α

α : Oα → CP 1 such that

ρ
v1
α

α (v1α) = 0, ρ
v1
α

α (v2α) = 1, ρ
v1
α

α (Tα) = ∞.

The inverse map uv1α
α to the map ρv

1α
α we call a natural parametrization

of Oα (there are two natural parametrization of the edge corresponding to two
orderings of its vertices).
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Abel’s type theorem

A function f : Γ1 → CP 1 is allowed if its restriction fα on each edge Oα ∼ CP 1

is a nonzero rational function and at each vertex v the following condition holds. Let
uv
α be the natural parametrization of an edge Oα containing v (such that uv

α(0) = v).
Let Cα be the coefficient at the smallest degree of uv

α in Laurent series of fα at v.
Then Cα has to be independent of the choice of edge Oα, i.e. Cα = C(v).

An allowed function is called Laurent polynomial if its restriction on any edge
has no poles away from the vertices on the edge.

The only invertible Laurent polynomials are monomials, i.e. are functions
C
∏

ukα
α where C ̸= 0 is a constant, uα are natural parameters and kα ∈ Z.

The principal divisor (f) of an allowed function f is the divisor
∑

(ordaf)a
where the sum is taken over all points a ∈ Γ\V . By a 0 divisor D on Γ1 we mean a
formal sum

∑
µ(a)a where the function µ takes values in Z and has nonzero values

at a finite set not intersecting V .

A cycle C in Γ1 is a sequence of edges O1 , . . . , Ok and vertices v1, . . . , vk such
that vi ∈ Oi ∩ Oi+1 for i = 1, . . . k − 1 and vk ∈ Ok ∩ O1 With this cycle C one
associate the set of identifications ρvii : Oi → CP 1 of its edges with CP 1.

Definition. A zero divisor D =
∑

µ(a)a satisfies the multiplicative balance
condition for the cycle C = {O1, . . . , Ok; v1, . . . , vk} if the following relation holds∏

Oi∈C

(
∏
a∈Oi

(−ρvii (a))µ(a)) = 1.

Theorem (of Abel’s type). A 0 divisor D in the graph Γ1 is the principal
divisor of an allowed function f : Γ1 → C if and only if D satisfies the multiplicative
balance condition for every cycle in Γ1.

If the condition is satisfied then f can be present explicitly and it is unique up
to multiplication by a monomial C

∏
ukα
α .
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Multiplicative condition for hypersurfaces.

Consider the problem for the case k = n − 1 for the 0 -cycle D whose support
belongs to the union of one dimensional orbits. For any two dimensional orbit Oα

denote by µα(D) the degree of the induced divisor D(Oα).

Each one dimensional orbit Oα has a marked point Tα which is equal to
the image of e ∈ (C∗)n under the factorization map. Its closure is isomorphic to
CP 1 and contains two null-orbits (Aα, Bα). Thus the closure of the union of one
dimensional orbits has a natural structure of the graphΓ1 with complex market
edges.

Each two dimensional orbit O defines the cycle C(O) in the graph Γ1 con-
taining all one-dimensional orbits belonging to the closure M(O) of O: the set of
one dimensional orbit in M(O) has a natural cyclic order Q1, . . . , Ok Such cycles
generate all cycle in Γ1.

Theorem (on multiplicative balance condition for hypersurfaces) If
the problem has at least one solution for a zero divisor D on the union of one
dimensional orbits then for any two dimensional orbit O it satisfies the following
multiplicative balance condition:∏

Oi∈C(O)

(
∏
a∈Oi

(−ρvii (a))µ(a)) = 1.

Below we will state the multiplicative balance condition and the rigidity condition.
To state the multiplicative balance condition some preparation is needed.

Consider a compact complex curve Γ and its meromorphic map (f, g) : Γ →
(C∗)2. The image of Γ is a curve in (C∗)2. This curve has to satisfy an equation
Q = 0 where Q is a Laurent polynomial. Let ∆(Q) be it’s Newton polygon, and
let M∆ be the toric surface associated with ∆.

Corollary. Applying the Abel’s type theorem to M∆ and to the image of the
curve Γ one can obtain a proof of Weil reciprocity law for Γ and f, g (see [1]).
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Interior product of vector with 2-form

Let ω be a 2-form and let w be a vector. The interior product of w with ω is
the 1-form iwω whose value on a vector v is equal to

ω(w ∧ v).

If ω =
∑

pi,jdxi ∧ dxj and w =
∑

wi(∂/∂xi) then iwω =
∑

pi,j(widxj − wjdxi).
The definition implies that iwω(w) = 0.

Let ω be a integral 2-form on the space N of one-parameter groups of the
torus(C∗)n. i.e. let ω have integral values on a product w ∧ v where w, v ∈ Λ∗.
Then for any w ∈ Λ∗ the 1-form iw(ω is a character, i.e.

iw(ω ∈ Λ.

The definition implies that the covector iwω vanish on any vector v proportional to
w. Thus it is a character at a factor group (C∗)n/H where H is a one parameter
grout whose Lie algebra contains the vector w.
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Integral 2-vector over Z/2Z and a balanced set of integral vectors

Let {wα} be a balanced set of integral vectors in N , i.e. such a set that that∑
wα = 0 and let ω be an integral 2-form.

Consider each vector wα as a 1-cycle γα in H1(Tn,Z) where Tn = Rn/Λ. Since∑
wα = 0 the cycle

∑
γα is homological to zero in Tn, thus

∑
wα = ∂σ where σ

is a 2-chain. The chain σ is defined up to addition of an integral 2-cycle σ. The
value of ω on σ is an integral number. Thus we proved the following lemma.

Lemma
∫
σ
ω is a well defined element of R/Z.

Easy to check that this integral is a halfintegral number. O
Take any rational plane L in the space N of one parameter groups. Consider

a projection π : N → L whose kernel is a complimentary to L rational space of
dimension (n− 2). The set {π(wα} is a balanced set of integral vectors in L. Since∑

π(wα) = 0 there a polygon π(σ) ⊂ L whose sides are shifted vectors π(wα. By
Pick formula

2

∫
π(σ)

ω = 2#(σ ∩ Λ∗)−#(∂σ ∩ Λ∗) + 2

where ω is the integral volume form and Λ∗ is the integral lattice in L.

Corollary. 2π(σ) is an integral 2- vector on L. Modulo 2 it is equal to the sum
of integral length of the vectors π(wα multiplied by the standard integral 2-vector
vL on L. Since

∑
π(wα = 0 it is also equal mod 2 to the sum of products of

coordinats of vectors π(wα multiplied by vL.Thus 2σ is an integral 2-vector
explicitly computed modulo 2.

Corollary. For any integral 2-form ω the following identity holds:

exp(2πi

∫
σ

ω) = (−1)⟨2σ,ω⟩.



11

Multiplicative balance condition

Let M be an n dimensional toric variety. Let D be a positive 0-cycle located
at the union of (n− 1)-dimensional orbits Oα of M . Denote by vα the irreducible
vector in the fan of M corresponding to Oα. Let µα be the degree of D at Oα. Let
wα be µαvα. Let Cα be the product of A ∩Oα in the factor group Oα.

Theorem (multiplicative balance conditions for k = 1). If the problem
for D has at least one solution then for any integral 2-form ω on the space of
one-parameter groups the following condition holds∏

Oα

iwαω(Cα) = exp(2πi

∫
σ

ω) = (−1)⟨2σ,ω⟩

where 2σ is an integral modulp 2 vector defined above.

Theorem (multiplicative balance conditions for n > k ≥ 1). If the prob-
lem for D located on (n−k) dimensional orbits of M has at least one solution then
for any (n − k + 1 dimensional orbit O the induced divisor D(O) fohas to satisfy
the above multiplicative balance conditions.
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Rigidity condition

Let M be an n dimensional toric variety. Let D be a positive 0-cycle located
at the union of (n− 1)-dimensional orbits Oα of M . Denote by vα the irreducible
vector in the fan of M corresponding to Oα. Let µα be the degree of A at Oα.

Theorem (rigidity condition for the case n > k = 1. Assume that the
multiplicities µα are not equal to zero exactly for two orbits, corresponding to the
vectors v1 and v2.

Then v1 = −v2, or vi = ±v for i = 1, 2 and the curve is a finite sum of a
congruence class of curves Γ±v taken with integral coefficients, where Γ±v is the
one-parameter group whose generating vector is proportional to v.

Under the factorization by Γ±v the curve became the 0-cycle on D(Ov1) and on
D(Ov2) induced from the cycle D on corresponding orbits.

Theorem (rigidity conditions for n > k ≥ 1). If the problem for D located
on (n−k) dimensional orbits of M has at least one solution then for any (n−k+1
dimensional orbit O the induced divisor D(O) fohas to satisfy the above rigidity
conditions.
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Necessary conditions are sufficient for the case k = n− 1.

Let H be a positive Weil divisor in a complete toric variety M ⊃ (C∗)n. The
intersection H ∩ (C∗)n can be defined by Q = 0. Newton polyhedron ∆(Q) = ∆Q

of Q is defined up to a shift.

Lemma. If H not passing through null orbits of M , then the support function
of ∆Q is linear at each cone of the fan FM of M .

Corollary. H is a Cartier divisor. Its equation in a toric affine chart is χQ = 0,
where χ is an appropriate character (whose support function on the cone σ ∈ FM

corresponding to the affine chart is equal to the negative support function of ∆Q.

Theorem. A divisor H having intersection numbers µα with orbits Oα exists if
and only if µα satisfies the additive balance condition. If the condition is satisfied
then there is a unique up to a shift polyhedron ∆ such that H is defined in C∗)n

by an equation Q = 0 with ∆(Q) = ∆.

2) If D satisfies the multiplicative balance condition then one can construct a
unique (up to a simple factor) allowed function on M1 whose principal divisor is D.

3) If in addition D satisfies a rigidity condition then one can “push forward”
the function f and defined (up to a constant factor) all coefficients of Laurent
polynomial Q at the integral points belonging to edges and vertices of ∆.

4) All other coefficients of Q are arbitrary complex numbers.
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