Peterson Schubert calculus

Rebecca Goldin

George Mason University

Workshop on Torus Actions in Topology
Fields Institute
May 12, 2020

Schubert Calculus: some history

"Kalkül der Abzählenden Geometrie" (Calculus of Enumerative Geometry), Hermann Schubert, 1874.
Questions in algebraic geometry with finite \# of solutions

- How many lines in 3-space, in general, intersect four given lines?
- Principle of conservation of number:

Mathematical Essays and Recreations, 1898.

- The Magic Square
- The Fourth Dimension
- The Squaring of the Circle

Schubert calculus of the Grassmannian $\operatorname{Gr}(k, n)$

Definition

The Grassmannian of k planes on \mathbb{C}^{n} is denoted $\operatorname{Gr}(k, n)$ and is given as a set by $\left\{V_{k} \subset \mathbb{C}^{n}\right\}$, where V_{k} is a k-dimensional subspace of \mathbb{C}^{n}.

The space of (all possible) blue lines through R_{1} forms a three-dimensional subvariety X_{1} of $\operatorname{Gr}(2,4)$. Similarly, the space of lines through each of R_{2}, R_{3} and R_{4} form three-dimensional subvarieties X_{2}, X_{3}, X_{4}, respectively.
The only blue lines that intersect R_{1}, R_{2}, R_{3} and R_{4} are in the intersection

$$
X_{1} \cap X_{2} \cap X_{3} \cap X_{4}
$$

If the intersections are transverse, we count the \# of points.

Flag manifolds

Let G be a complex reductive Lie group, B a Borel subgroup. The coset space G / B is the set of flags. When $G=G l(n, \mathbb{C})$, we get the flag manifold for type A_{n-1}.

Definition

The flag manifold $F I(n, \mathbb{C})$ is the collection $\left\{V_{\bullet}\right\}$ of all complete flags in \mathbb{C}^{n}

$$
V_{\bullet}:=\{0\}=V_{0} \subset V_{1} \subset \ldots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}
$$

with $\operatorname{dim}\left(V_{i}\right)=i$.

- Identify V_{\bullet} with any $n \times n$ invertible matrix $A \in G I(n, \mathbb{C})$, where the subspace V_{i} is identified with the span of the leftmost i columns of A.
- This is unique up to right multiplication by an upper triangular matrix. Thus we identify $F I(n, \mathbb{C})$ with $G I(n, \mathbb{C}) / B$, where B is the set of upper triangular matrices.

Schubert varieties

Definition

For any $w \in W$, the Schubert variety X_{w} is the closure of B orbits, $B \cdot w B \subset G / B$.

- $\operatorname{dim}_{\mathbb{C}} X_{w}=\ell(w)$, where $\ell(w)$ is the length of the word w
- Each fundamental homology class $\left[X_{w}\right] \in H_{2 \ell(w)}(G / B)$
- Fundamental classes $\left\{\left[X_{w}\right]: w \in W\right\}$ form a basis for $H_{*}(G / B)$
- Dual basis $\left\{\sigma_{w}: w \in W\right\}$ forms a basis for $H^{*}(G / B)$
- The class σ_{w} has support on $X^{w}:=\overline{B_{-} \cdot w B}$
- $\left\{\sigma_{w}\right\}$ are called Schubert classes ${ }^{1}$

[^0]What can be said of intersecting Schubert classes and opposite Schubert classes, in general position?

Formalization of Schubert's "Principle of Conservation of Number"

 Intersections of Schubert varieties can be measured by the product structure in the cohomology ring of G / B.We have a basis $\left\{\sigma_{w}\right\}$ of $H^{*}(G / B)$, as a module over \mathbb{C}. Therefore,

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u, v}^{w} \sigma_{w}
$$

for some $c_{u, v}^{w} \in \mathbb{C}$

Theorem

The coefficients $c_{u, v}^{w} \geq 0$ and $c_{u, v}^{w}=0$ unless $\ell(u)+\ell(v)=\ell(w)$.
Pseudo-Proof:

$$
c_{u, v}^{w} "=" \#\left(X^{u} \cap X^{v} \cap X_{w}\right)
$$

T action on G / B

T be a maximal torus of G (for $G=G l(n, \mathbb{C})$, choose T diagonal matrices) Properties of G / B :

- T acts on G / B on the left.
- X_{w} is invariant under T.
- The T fixed points G / B are isolated, given by

$$
(G / B)^{T}=\{\tilde{w} B \in G / B: \tilde{w} \in N(T)\}
$$

where $\tilde{w} B=\tilde{v} B$ if $\tilde{w}=\tilde{v}$ in $N(T) / T$. Thus $(G / B)^{T}$ is in 1-1 correspondence with $W:=N(T) / T$. When $G=G l(n, \mathbb{C}), W \cong S_{n}$.
$\Longrightarrow H_{T}^{*}(G / B)$ natural ring to consider.
Properties of equivariant cohomology H_{T}^{*} :

- T-equivariant map $f: Y \rightarrow X$ induces $f^{*}: H_{T}^{*}(X) \rightarrow H_{T}^{*}(Y)$
- $Y \subset X$ a T-equivariant inclusion of manifolds, or of varieties when X is smooth. [Y] represents an equivariant cohomology class in $H_{T}^{*}(Y)$
- $H_{T}^{*}(X)$ is a module over $H_{T}^{*}(p t)$ induced by $X \rightarrow p t$
- $H_{T}^{*}(p t) \cong S\left(\mathrm{t}^{*}\right)$, a polynomial ring with $\operatorname{dim}(T)$ variables

Equivariant Cohomology for Flag Manifolds

Properties of equivariant cohomology ring $H_{T}^{*}(G / B)$:

Theorem (Chang-Skjelbred '74, Hsiang '75)
The inclusion of the fixed point set $G / B^{T} \hookrightarrow G / B$ induces an injection

$$
H_{T}^{*}(G / B) \longrightarrow H_{T}^{*}\left((G / B)^{T}\right)=\bigoplus_{v \in W} H_{T}^{*}(p t)
$$

- Since X_{w} is invariant under $T,\left\{\sigma_{w}\right\}_{w \in W}$ are a basis for $H_{T}^{*}(G / B)$ as a module over $H_{T}^{*}(p t)$.
- We obtained σ_{w} by duality but we it has has a geometric interpretation
- σ_{w} is supported on $X^{w}:=\overline{B_{-} w B / B}$

Basis statement:

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u, v}^{w} \sigma_{w}, \quad c_{u, v}^{w} \in H_{T}^{*}(p t) \cong \mathbb{C}[t]
$$

The choice of Borel results in a choice of positive roots $\alpha_{1}, \ldots, \alpha_{n-1}$, the weights of the T action on $\operatorname{Lie}(B)$.

Theorem (Gr, 1999)

The polynomial $c_{u, v}^{w}$ is a polynomial in $\alpha_{1}, \ldots, \alpha_{n-1}$ with nonnegative coefficients, for all $u, v, w \in W$.

This theorem is the equivariant analog of saying that the intersections of Schubert varieties occur in positively oriented points, which can then be added up to get an intersection number.

Example (Multiplying two Schubert classes in $G I(3, \mathbb{C}) / B)$

- Basis $\left\{\sigma_{u}\right\}_{u \in W}$. So $\sigma_{u} \sigma_{v}=\sum_{w} c_{u, v}^{w} \sigma_{w}$.
- $H_{T}^{*}(G / B) \rightarrow \oplus_{u \in w} H_{T}^{*}(u B / B):\left.\sigma_{w} \mapsto \oplus_{v \in w} \sigma_{w}\right|_{v}$
- Image of the moment map $\mu(G / B) \subseteq \mathfrak{t}^{*}$ is convex hull of $\mu\left((G / B)^{T}\right)$
- H_{T}^{*} (fixed point) is identified with polynomials on t^{*}
- Each Schubert class has an associated 6-tuple of polynomials.
- $G l(3, \mathbb{C})$: a Schubert class σ_{w} restricted to a fixed point is a product of arrows, or 0
- The product structure: multiply the weights at each fixed point

$\sigma_{[132]}$

$\sigma_{[312]} \quad=\quad \alpha_{2} \sigma_{[312]}$

Peterson variety

- B Borel subgroup, $T \subseteq B \subseteq G$ maximal torus
- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ simple roots
- W Weyl group
- $\mathfrak{t} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ Lie algebras
- \mathfrak{g}_{α} root space for α, with basis element $E_{\alpha} \in \mathfrak{g}_{\alpha}$
- $N_{0}=\sum_{\alpha \in \Delta} E_{\alpha}$ regular nilpotent operator

The Peterson variety Pet $\subseteq G / B$

$$
\text { Pet }:=\left\{g B \in G / B \mid \operatorname{Ad}\left(g^{-1}\right)\left(N_{0}\right) \in \mathfrak{b} \oplus \bigoplus_{\alpha \in-\Delta} \mathfrak{g}_{\alpha}\right\}
$$

Features

Related to integrable systems and quantum cohomology Interesting stratification(s) that exhibit mirror symmetry phenomena Rich combinatorial and algebraic structure Less symmetry and "good properties" compared to G / B

Peterson variety in type A_{n-1}

$$
\text { For } n=3 \text {, }
$$

Let N be the regular nilpotent operator, or matrix whose Jordan canonical form consists of one block with 1's on the superdiagonal and 0's elsewhere.

$$
N=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Definition

The Peterson variety $Y \subseteq F I(n ; \mathbb{C})$ is the collection of flags over \mathbb{C}^{n} satisfying $N V_{i} \subseteq V_{i+1}$.

Example ($n=3$)

Unique representation of the points in the Peterson Y given by:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lll}
a & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & b & 1 \\
0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{lll}
c & d & 1 \\
d & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{C}$.

Geometric considerations (type A_{n-1})

$$
Y=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lll}
a & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & b & 1 \\
0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{lll}
c & d & 1 \\
d & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- $\operatorname{dim}_{\mathbb{C}}(Y)=n-1$
- Y has (several) paving by affine varieties/cells.
- Y is not smooth for $n \geq 3$
- Y is a local complete intersection
- Y is normal if and only if $n \leq 3$
- T doesn't act on Y
- One-dimensional torus S acts on Y, where
$S=\left\{\operatorname{diag}\left(t^{n}, t^{n-1}, t^{n-2}, \ldots, t\right)\right\}$ for $t \in \mathbb{C}^{*},\|t\|=1$

We'd like to imitate Schubert calculus on Y.

Peterson Schubert basis

We'd like to imitate Schubert calculus on Y. Consider the composition j^{*}

$$
H_{T}^{*}(G / B) \rightarrow H_{S}^{*}(G / B) \rightarrow H_{S}^{*}(P e t)
$$

restrict action to S, then restrict to the Peterson.

Theorem (Harada-Tymoczko, Drellich)

(Type A_{n-1} :) Pick a subset $A=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n-1\}$ with
$i_{1}<\cdots<i_{k}$, and let $v_{A}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$. Define

$$
p_{A}=j^{*}\left(\sigma_{v_{A}}\right),
$$

where $\sigma_{V_{A}}$ is the S-equivariant Schubert class obtained by restricting the T action to S. Then $H_{S}^{*}(P e t)$ is a free module over $H_{S}^{*}(p t)$ with basis $\left\{p_{A}\right\}$. (All classical types:) More generally pick a subset
$\boldsymbol{A}=\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right\} \subset\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and let $v_{A}=\boldsymbol{s}_{\alpha_{i_{1}}} \boldsymbol{s}_{\alpha_{i_{2}}} \ldots \boldsymbol{s}_{\alpha_{i_{k}}}$. Then
$p_{A}=j^{*}\left(\sigma_{v_{A}}\right)$ is an S-equivariant basis for $H_{S}^{*}($ Pet $)$.

Structure constants in $H_{S}^{*}($ Pet $)$

$H_{S}^{*}(P e t)$ is a free module over $H_{S}^{*}(p t)$ with basis $\left\{p_{A}\right\}$ for

$$
A \subseteq\{1, \ldots n-1\} .
$$

Definition

Let $A, B, C \subseteq\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Define $b_{A, B}^{C}$ to be the coefficient of p_{C} in

$$
p_{A} \cdot p_{B}=\sum_{C \subset\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}} p_{A, B}^{C} p_{C}, \quad b_{A, B}^{C} \in H_{S}^{*}(\{p t\}) \cong \mathbb{C}[t]
$$

Is $b_{A, B}^{C}$ a polynomial in t with nonnegative coefficients? Is there a combinatorially positive formula to count it?

Theorem (G.-Gorbutt) In type A_{n-1}, Yes and Yes.

S-fixed points of the Peterson

There's a commutative diagram

$$
\begin{array}{cc}
H_{T}^{*}(G / B) & \stackrel{i^{*}}{\longrightarrow} \bigoplus_{w B \in(G / B)^{T}} H_{T}^{*}(w B) \\
\downarrow^{j^{*}} & \downarrow^{\pi} \\
H_{S}^{*}(P e t) \xrightarrow{i^{*}} \bigoplus_{w B \in(P e t)^{s}} H_{S}^{*}(w B)
\end{array}
$$

Fixed point set (Pet) ${ }^{S}$
A subset of simple roots Δ
W_{A}, the Weyl group of the parabolic subgroup generated by A w_{A} longest element of W_{A}

$$
(P e t)^{S}=\left\{w_{A} \mid A \subseteq \Delta\right\}
$$

Structure constants $b_{A, B}^{C}$ with $p_{A} p_{B}=\sum_{C} b_{A, B}^{C} p_{C}$

Observation

Let $A, B \subseteq\{1, \ldots, n-1\}$ be nonempty. Then $b_{A, B}^{C} \neq 0$ implies

- C contains $A \cup B$ due to support considerations of p_{C}, and
- $|C| \leq|A|+|B|$ due to degree considerations

Geometric picture:

Theorem (Tymoczko)

The Bruhat decomposition BwB/B of the flag variety intersects the Peterson variety in a paving by affine cells.

This paving is not a priori the way that the classes p_{A} come about.

- $p_{A}=j^{*}\left(\sigma_{v_{A}}\right)$ where $\sigma_{v_{A}}$ are supported on B_{-}orbits
- Pet are singular and do not a priori have Poincaré duality in the sense of pairing homology and cohomology.
- The product $p_{A} p_{B}$ does not a priori have positive coefficients in the expansion.

Combinatorial Positivity for $b_{A, B}^{C}$

$p_{A} p_{B}=\sum_{C} b_{A, B}^{C} p_{C}$ in type A_{n-1}
Lemma (Harada-Tymoczko, 2011)
Suppose A and B are distinct nonempty, nonadjacent consecutive sequences of $\{1, \ldots, n-1\}$. Then $p_{A} \cdot p_{B}=p_{A \cup B}$.

Recasting:

- $b_{A, B}^{A \cup B}=1$ when A, B are consecutive, but $A \cup B$ not consecutive.
- If A is not consecutive, write $A=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ as a union of maximal consecutive sets A_{k}. Then $p_{A}=\prod_{j} p_{A_{j}}$. So in a moral sense, we only need consider when A is consecutive.

Structure constants $b_{A, B}^{C}$ with $p_{A} p_{B}=\sum_{C} b_{A, B}^{C} p_{C}$

$$
\begin{aligned}
& A \subseteq\{1, \ldots, n-1\} \text { nonempty } \\
& \mathcal{T}_{A}=\min (A), \\
& \mathcal{H}_{A}=\max (A)
\end{aligned}
$$

Theorem (G.-Gorbutt)

Let $A, B, C \subseteq\{1, \ldots, n-1\}$ be nonempty, with A, B consecutive.
(1) If $C=A \cup B$ is not consecutive, then $b_{A, B}^{C}=1$.
(2) If C is consecutive, $A \cup B \subseteq C$, and $|C| \leq|A|+|B|$,

$$
\begin{aligned}
& b_{A, B}^{C}=\frac{\left(\mathcal{H}_{A}-\mathcal{T}_{B}+1\right)!\left(\mathcal{H}_{B}-\mathcal{T}_{A}+1\right)!}{d!\left(\mathcal{T}_{A \cup B}-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\mathcal{H}_{A \cup B}\right)!\left(\max \left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\min \left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)\right)!} t^{d} \\
& \quad \text { where } d=|A|+|B|-|C| .
\end{aligned}
$$

This is manifestly positive! Integral!
$b_{A, B}^{C}=\frac{\left(\mathcal{H}_{A}-\mathcal{T}_{B}+1\right)!\left(\mathcal{H}_{B}-\mathcal{T}_{A}+1\right)!}{d!\left(\mathcal{T}_{A \cup B}-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\mathcal{H}_{A \cup B}\right)!\left(\max \left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\min \left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)\right)!} t^{d}$
where $d=|A|+|B|-|C|$.

Example

Let $A=\{1,2\}, B=\{2,3\}$ and $C=\{1,2,3\}$.

$$
\begin{aligned}
& \mathcal{T}_{A}=1 \quad \mathcal{H}_{A}=2 \\
& \text { (1) (2) } 4 \text { A } \mathcal{T}_{C}=1, \mathcal{H}_{C}=3 \\
& \text { (1) } 2 \text { (4) } 5 \quad \max \left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)=2 \\
& \mathcal{T}_{B}=2 \quad \mathcal{H}_{B}=3 \quad \min \left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)=2 \\
& b_{12,23}^{123}=\frac{(2-2+1)!(3-1+1)!}{1!(1-1)!(3-3)!(2-1)!(3-2)!} t^{2+2-3}=\frac{3!}{1!} t=6 t .
\end{aligned}
$$

Similarly, $b_{12,23}^{1234}=3$. All other $b_{12,23}^{C}=0$. Thus $p_{12} p_{23}=(6 t) p_{123}+3 p_{1234}$.

Theorem (G.-Gorbutt)

Let $A, B, C \subseteq\{1, \ldots, n-1\}$ be nonempty, with A, B consecutive.
(1) If $C=A \cup B$ is not consecutive, then $b_{A, B}^{C}=1$.
(2) If C is consecutive, $A \cup B \subseteq C$, and $|C| \leq|A|+|B|$,

$$
b_{A, B}^{C}=\frac{\left(\mathcal{H}_{A}-\mathcal{T}_{B}+1\right)!\left(\mathcal{H}_{B}-\mathcal{T}_{A}+1\right)!}{d!\left(\mathcal{T}_{A \cup B}-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\mathcal{H}_{A \cup B}\right)!\left(\max \left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)-\mathcal{T}_{C}\right)!\left(\mathcal{H}_{C}-\min \left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)\right)!} t^{d}
$$

where $d=|A|+|B|-|C|$.
(3) Otherwise, $b_{A, B}^{C}=0$.

Theorem (G.-Gorbutt)

Let A, B, C be any nonempty subsets of $\{1, \ldots, n-1\}$. Then $b_{A, B}^{C}$ is obtained as an explicit (positive) sum of products of terms $b_{A_{i}, B_{j}}^{C_{k}}$ where A_{i}, B_{j} are consecutive subsets of $\{1, \ldots, n-1\}$, and C_{k} is either a consecutive subset, or $C_{k}=A_{i} \cup B_{j}$. Details not provided here!

The proof in type A_{n-1} is a crazy induction using localization to fixed points.... and of course involves some combinatorics.

A few words on the combinatorial proof

$P e t^{S}=F l(n ; \mathbb{C})^{T} \cap P e t$
Flags represented by block diagonal permutation matrices whose blocks are antidiagonal. Such a permutation is the long word w_{A} in the the subgroup of W generated by $\left\{s_{i}: i \in A\right\}$.

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad A=\{1,3,4\}
$$

- $P e t^{S}$ is indexed by $A \subseteq[n-1]$.
- $p_{A}=j^{*}\left(\sigma_{v_{A}}\right)$ and for each fixed point w_{A}.
- p_{A} is determined by the set of restrictions $p_{A} \mid w_{C}$ for $C \subset[n-1]$.
- Restricting to fixed points provides a way to compute products inductively.

$$
\left.\left(p_{A} \cdot p_{B}\right)\right|_{w_{C}}=\left.\sum_{D} b_{A, B}^{D} p_{D}\right|_{w_{C}}
$$

- Solve for $b_{A, B}^{C}$:

$$
\left.b_{A, B}^{C} p_{C}\right|_{w_{C}}=p_{A}\left|w_{C} p_{B}\right|_{w_{C}}-\left.\sum_{A \cup B \subset D \subset C}^{D} b_{A, B}^{D} p_{D}\right|_{w_{C}}
$$

- Calculate $p_{D} \mid w_{C}$
- With some algebra:

$$
\left.\begin{array}{l}
b_{A, B}^{C} \frac{(w+m+n)!}{w!x!}=\binom{w+m}{w}\binom{y+m}{x}\binom{w+n}{y}\binom{z+n}{x} \\
\quad-\sum_{\substack{0 \leq i \leq m \\
0 \leq j n \\
i+j<m+n}}(i, j, m-i, x-i-j, z-x+j, y-x+i
\end{array}\right)\binom{w+i+n}{w+i+j} .
$$

Not positive!
Key combinatorial step: a positive formula for the right hand side $e_{\bar{E}}$

A combinatorial identity

$$
\left.\begin{array}{l}
b_{A, B}^{C} \frac{(w+m+n)!}{w!x!}=\binom{w+m}{w}\binom{y+m}{x}\binom{w+n}{y}\binom{z+n}{x} \\
\quad-\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq n \\
i+j<m+n}}(i, j, m-i, x-i-j, z-x+j, y-x+i
\end{array}\right)\binom{w+i+n}{w+i+j} .
$$

Theorem (G.-Gorbutt)
Let $m, n, w, x, y, z \in \mathbb{Z}$ with $w+x=y+z$. Then

$$
\begin{aligned}
& \binom{w+m}{w}\binom{y+m}{x}\binom{w+n}{y}\binom{z+n}{z} \\
& =\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq n}}\left(\begin{array}{c}
m+j, j, m-i, x-i-j, z-x+j, y-x+i
\end{array}\right)\binom{w+i+n}{w+i+j} .
\end{aligned}
$$

One way to count it

Question (Count strings of $m+n+w$ beads of 7 colors with:)

- m blue and green beads: i green and m - i blue
- n red and orange beads: j orange and $n-j$ red
- \# of green beads and yellow beads differ by a fixed constant α
- \# of orange beads and purple beads differ by a fixed constant β
- No red bead lies immediately to the right of a blue bead
- \boldsymbol{w} yellow, purple, and white beads: $\alpha+i$ yellow, $\beta+j$ purple, $w-(\alpha-i+\beta-j)$ white beads

Multinomial counts number of all sequences without the red beads.
Multiply by the number of ways to insert red beads without putting any of them immediately to the right of a blue bead.

$$
\sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}}\binom{w+m+j}{i, j, m-i, w-\alpha-\beta-i-j, \beta+j, \alpha+i}\binom{w+i+n}{n-j}
$$

The role of combinatorics

$$
\begin{aligned}
& b_{A, B}^{c} \frac{(w+m+n)!}{w!x!}=\binom{w+m}{w}\binom{y+m}{x}\binom{w+n}{y}\binom{z+n}{x} \\
& w+m+j \\
&-\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq n \\
i+j<m+n}}\left(\begin{array}{c}
w, j, m-i, x-i-j, z-x+j, y-x+i
\end{array}\right)\binom{w+i+n}{w+i+j} \\
& \quad=\binom{w+m+n}{m, n, x-m-n, z-x+n, y-x+m}
\end{aligned}
$$

What does Peterson Schubert calculus have to do with 7-colored-beaded strings?

On positivity

Conjecture (G.-Mihalcea-Singh)

Let $\alpha_{1}, \ldots, \alpha_{d}$ be the weights of the action of S on Lie(N), the Lie algebra of the unipotent radical. Then $b_{A, B}^{C} \in H_{s}^{*}(p t)$ is a polynomial in $\alpha_{1}, \ldots, \alpha_{d}$ with non-negative coefficients.

- Schubert calculus on G / B is positive, even in $H_{S}^{*}(G / B)$.

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u, v}^{w} \sigma_{w}, \quad c_{u, v}^{w} \in H_{s}^{*}(p t)
$$

$c_{u, v}^{w}$ are polys in one variable with nonnegative coefficients.

- Therefore

$$
p_{A} \cdot p_{B}=j^{*}\left(\sigma_{v_{A}}\right) \cdot j^{*}\left(\sigma_{V_{B}}\right)=j^{*}\left(\sigma_{V_{A}} \cdot \sigma_{V_{B}}\right)=\sum_{w} c_{V_{A}, v_{B}}^{w} j^{*} \sigma_{w}
$$

Then

$$
j^{*}\left(\sigma_{w}\right)=\sum_{A}(\text { presumably positive }) p_{A}
$$

implies the desired positivity.

$$
j^{*}\left(\sigma_{w}\right)=\sum_{A}(\text { presumably positive }) p_{A}
$$

- Recall σ_{w} is the Poincaré dual of the opposite Schubert class $\left[X^{w}\right]$.
- Pet has a paving by affine cells $\operatorname{Pet}^{0}(A)=B w B / B \cap$ Pet.

What is needed:

- $j_{*}\left(\overline{\operatorname{Pet}{ }^{0}(A)}\right)=\sum_{u \in W} c_{A, u}\left[X_{u}\right]$ (in homology) is a positive sum (true by a theorem due to W. Graham)
- Pairing between homology classes $\overline{\operatorname{Pet} t^{0}(A)}$ and cohomology classes p_{A} (requires some geometry)
- $j^{*}\left(\sigma_{w}\right)=\sum_{D}\left(c_{D, w}\right) p_{D}$

Then the product has a positive expansion:

$$
p_{A} \cdot p_{B}=j^{*}\left(\sigma_{v_{A}} \cdot \sigma_{v_{B}}\right) \sum_{w} c_{V_{A}, V_{B}}^{w} j^{*} \sigma_{w}=\sum_{w \in W, D \subset \Delta} c_{V_{A}, V_{B}}^{w} c_{D, w} p_{D}
$$

Questions:

- What about positivity for other nilpotent Hessenberg varieties?
- Do combinatorial formulas for nilpotent Hessenberg Schubert calculus result in formulas for other calculi?
- Can understanding this geometry build on our understanding of Hessenberg varieties of Springer fibers?
- How can other pavings by affine (cells or varieties) be useful?

Thank you!

[^0]: ${ }^{1}$ also called opposite Schubert classes

