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Holonomy of a Riemannian manifold

Md — a connected Riemannian manifold. There is defined a parallel
translation of vector fields along paths.

Let p ∈ Md and we consider loops with which start and end at p.
For simplicity, we assume that Md is simply-connected.

The translation hγ of tangent vectors at p along a loop γ
determines the automorphism of the tangent space

hγ : TpM → TpM,

which preserves the inner product. All automorphisms of type hγ
form the closed Lie subgroup Hol(Md ) of SO(d) — the holonomy

group of Md . Up to conjugations this subgroup does not depend on
the base point p.



Berger’s Theorem

If a simply-connected Riemannian manifold Md is not locally
symmetric (i.e. the identity ∇iRjklm = 0 does not hold) and the
action of Hol(Md ) on TpM

d is irreducible (in particular, Md is not
a product), then its holonomy group belongs to the following list:

◮ SO(n) (dimM = n);

◮ U(n) (dimM = 2n,Kähler);

◮ SU(n) (dimM = 2n,Calabi–Yau);

◮ Sp(n) (dimM = 4n, hyperkähler);

◮ Sp(n)Sp(1) (dimM = 4n, quaternionic–Kähler);

◮ G2 (dimM = 7);

◮ Spin(7) (dimM = 8).

SU(n),SU(n),Sp(n),Sp(n)Sp(1),G2, and Spin(7) are called
special holonomy groups.



The original Berger list contained the group Spin(9) ⊂ SO(16), but
it was showed that manifold with such the holonomy group are
locally symmetric (Alekseevsky, Brown–Gray).
Since Sp(k) ⊂ SU(2k) ⊂ U(2k), manifolds with Sp(n) or SU(n)
holonomy are Kähler manifolds.

Manifolds with SU(n),Sp(n),G2, or Spin(7) holonomy are
Ricci-flat, i.e. satisfy Einstein’s equations (in vacuum):

Rik = 0.

These are the only known examples of simply-connected Ricci-flat

compact manifolds.

If dimM = 7 or 8, then M admits a nontrivial parallel spinor field if
and only if its holonomy group is G2 or Spin(7).



Explicit examples of Ricci-flat metric on these manifolds are

unknown.

All known results concern only the existence of such metrics:

Yau’s theorem (on Calabi–Yau manifolds, 1977),

the generalized Kummer construction: Joyce (1995: TN/Γ for G2

and Spin(7), 1999: CY 8/Γ for Spin(7))

the twisted connected sum and its generalizations (for constructing
G2 manifolds): Kovalev (2003), Kovalev–Lee (2011),
Corti–Haskins–Nordström–Pacini (2015) and etc.

Compact Calabi–Yau manifolds are distinguished by the condition
c1 = 0 (follows from Yau’s theorem).



Qauternionic–Kähler manifolds are Einstein manifolds:

Rik −
1

n
Rgik = 0, R = const 6= 0.

All known examples of compact quaternionic–Kähler manifolds are
locally symmetric.

For every simple Lie group there exists a symmetric
quaternionic–Kähler manifold of positive scalar curvature: R > 0
(Wolf spaces).

Conjecture: Wolf spaces are exactly all complete
quaternionic–Kähler manifolds of positive scalar curvature
(LeBrun–Salamon).



Minimal models by Sullivan

M = M0 ⊕M1 ⊕ . . . — a free graded–commutative algebra over
Q with homogeneous generators x1, . . . such that
1 ≤ deg xi ≤ deg xj for i ≤ j and all Mk are finite-dimensional. We
assume that M0 = Q, i.e. an algebra is connected.

Such an algebra with a differential d : Mi → Mi+1, i ≥ 1, is
minimal if dxi ∈

∧
(x1, . . . , xi−1) for i ≥ 1.

A minimal algebra M is the minimal model of A if there is a
homomorphism of d.g.a f : M → A which induces an isomorphism
f ∗ : H∗(M)

=
−→ H∗(A).



Theorem [Sullivan]
For every compact simply-connected manifold or nilmanifold X the

algebra A(X ) of Q-polynomial forms on X there is a minimal

algebra MX and a homomorphism f : MX → AX which induces

an isomorphism in cohomology. The algebra MX determines the

rational homotopy type of X and

Hom (π∗(X ),Q) = MX /MX ∧MX .

A minimal algebra M is formal if there exists a homomorphism of
d.g.a f : (M, d) → (H∗(M), 0) which induces an isomorphism of
cohomology rings.



Formal spaces

A space X is formal if its minimal model MX is formal, i.e. MX is
the minimal model of (H∗(M), 0). Therewith the rational
homotopy type of X is reconstructed from the cohomology ring.

a differential manifold is geometrically formal if a product of
harmonic forms is harmonic. This property implies formality.

Examples of formal spaces:
1) symmetric spaces (they are geometrically formal);
2) k-symmetric spaces (Kotschick–Terzic);
3) closed simply-connected manifolds of dimension ≤ 6;
4) Kähler manifolds (Deligne–Griffiths–Morgan–Sullivan).

There are nonformal simply-connected symplectic manifolds
(Babenko–I.T., 1998).



Massey products
α1, . . . , αn are homogeneous cohomology classes from H∗(M).
[a1] = α1, . . . , [an] = αn, ai ∈ M, are their representatives meeting
the “Maurer–Cartan equation”:

dA− Ā ∧ A =







0 . . . 0 τ
0 . . . 0 0

. . .
0 . . . 0 0







,

where

A =









0 a1 ∗ . . . ∗ ∗
0 0 a2 . . . ∗ ∗

. . .
0 0 0 . . . 0 an
0 0 0 . . . 0 0









and ā = (−1)ka for a ∈ Mk . The set of classes [τ ] ∈ H∗(M) for
all solutions and choices of ai forms the n-tuple Massey product
〈α1, . . . , αn〉.



Massey products and formality

The simplest example: 〈α1, α2, α3〉. In this case it is necessary that

α1 ∧ α2 = α2 ∧ α3 = 0.

Then take U and V such that dU = a1a2 and dV = a2a3 and put
[τ ] = (−1)p+q−1[a1 ∧ V + (−1)p−1U ∧ a3], where
α1 ∈ Hp , α2 ∈ Hq .

The Massey product 〈α1, . . . , αn〉 is trivial if it contains the zero.

If there is a nontrivial Massey product in M then M is not formal.



Question: are compact simply connected manifolds with special

holonomy groups formal?

Kähler manifolds (U(n),SU(n),Sp(n)) — yes,
quaternionic–Kähler manifolds, G2 and Spin(7) — ?

Possible obstructions to formality for G2 and Spin(7) manifolds are
triple Massey products 〈α1, α2, α3〉 of classes of degree

(2, 2, 2) for G2 manifolds,

(2, 2, 2) и (2, 2, 3) for Spin(7) manifolds.



The Kummer construction:
T 4/〈σ〉, σ : x → −x , σ2 = 1, 〈σ〉 = Z2.
16 fixed points of the involution σ give 16 conic (over RP3) points
in T 4/Z2.
By resolution of singularities we replace these cones by fibrations
over CP1 = S2 with fibers diffeomorphic to the 2-disc.
Every copy of CP1 gives a two-cycle [z ] with self-intersection equal
to −2:

[z ] ∩ [z ] = −2.

The projections of two-tori lead to three copies of 2H =

(
0 2
2 0

)

in the intersection form.
In terms of these cycles the intersection form (over Q) is as follows

(−2)⊕ · · · ⊕ (−2)
︸ ︷︷ ︸

16

⊕(2H) ⊕ 2H ⊕ 2H.

Therefore, the signature of the Kummer surface is equal to −16
and b2 = 22.



Milnor (1958):
an even undetermined unimodular form over Z is uniquely defined

by its rank r and the signature τ :
(
−τ

8

)

E8(−1)⊕

(
r + τ

2

)

H,

where

E8(−1) = (−1) ·















2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2















.

The intersection form of the K3 is equal to

E8(−1) ⊕ E8(−1)⊕ H ⊕ H ⊕ H.

The explicit construction of a canonical basis (without using the
theory of lattices) (Т.,2017).



For a closed oriented n-dimensional manifold X the intersection
form (for cycles)

Hk(X ;Z)× Hl(X ;Z)
∩

−→ Hk+l−n(X ;Z)

is defined by
u ∩ v = D−1(Du ∪ Dv),

where
D : Hi (X ;Z) → Hn−i (X ;Z), i = 0, . . . , n,

— the Poincare duality operator. The intersection ring
(Poincare–Lefschetz–Pontryagin) is dual to the cohomology ring.
If cycles u are v realized by transversally intersections submanifolds
Y and Z , then their intersection is a smooth submanifold W which
realizes the cycle w such that

u ∩ v = w , u ∩ v = (−1)(n−k)(n−l)v ∩ u.



Example of the Joyce G2 manifold

Take on T 7 = R7/Z7 the involutions

α((x1, . . . , x7)) = (−x1,−x2,−x3,−x4, x5, x6, x7),

β((x1, . . . , x7)) = (b1 − x1, b2 − x2, x3, x4,−x5,−x6, x7),

γ((x1, . . . , x7)) = (c1 − x1, x2, c3 − x3, x4, c5 − x5, x6,−x7),

which pairwise commute

αβ = βα, αγ = γα, βγ = γβ,

and therefore for all b1, b2, c1, c3, c5 induce an action of Γ = Z3
2 on

T 7.
Take the following constants

b1 = c5 = 0, b2 = c1 = c3 =
1

2
,

which correspond to a simply-connected manifold M7.



◮ Γ acts on H∗(T 7) by involutions, H1(T 7) and H2(T 7) have
no nontrivial invariant subspaces and the invariant subspace of
H3(T 7) is generated by the forms

dx2 ∧ dx4 ∧ dx6, dx3 ∧ dx4 ∧ dx7, dx5 ∧ dx6 ∧ dx7,

dx1 ∧ dx2 ∧ dx7, dx1 ∧ dx3 ∧ dx6,

dx1 ∧ dx4 ∧ dx5, dx2 ∧ dx3 ∧ dx5.

This implies that

b1(T 7/Γ) = b2(T 7/Γ) = 0, b3(T 7/Γ) = 7.

Since the 7-form dx1 ∧ · · · ∧ dx7 is Γ-invariant,
∗ : Hk(T 7) → H7−k(T 7) maps invariant forms into invariant
ones, and, therefore,

b6(T 7/Γ) = b5(T 7/Γ) = 0, b4(T 7/Γ) = 7.

◮ The action of Γ = Z3
2 is not free. For every involution α, β, or

γ its fixed points set consists of 16 three-tori.



◮ Γ/Z2 acts by nontrivial permutations on the point sets of α, β,
and γ and a Γ-orbit of every such a torus consists of four tori.

◮ Products of different elementary involutions, i.e. αβ and etc.,
have no fixed points.

◮ Every involution α, β, or γ acts on T 7 such that

T 7/Z2 = T 3 × (T 4/Z2),

where T 4/Z2 is a singular Kummer surface. Moreover
π1(T

7/Γ) = 0.

◮ The singular set in T 7/Γ splits into 12 three-tori. For every
singular torus there is a neighborhood homeomorphic to

U = T 3 × (D/〈−1〉),

where D = {|z | ≤ τ : z ∈ C2}.

◮ From topological point of view, M7 is constructed from T 7/Γ
by fiberwise resolution of singularities in D/Z2.



◮ The rational homology groups of M7 have the following form:

b2 = 12 and the generators are given by 12 cycles cδi
corresponding to submanifolds of the form CP1 which appear
after the resolution of singularities;

b3 = 43 and the generators are given by 7 cycles tk
represented by three-tori corresponding to invariant 2-forms on
T 7 and by 12 families of products of CP1 and generating
1-cycles in singular tori: λδij .

Here δ ∈ {α, β, γ}, i = 1, 2, 3, 4, j = 1, 2, 3, k ∈ {α, β, γ, 1, 2, 3, 4}.



Theorem.

The rational homology groups H∗(M
7;Q) have the following

generators of dimension ≤ dimM7 = 7:

dim = 2 : cδi ; dim = 3 : cδij , tδ, ti ;

dim = 4 : c ′δij , t ′δ, t ′i ; dim = 5 : c ′δi ,

where δ ∈ {α, β, γ}, i = 1, . . . , 4, j = 1, 2, 3. Nontrivial

intersections are as follows:

cδi ∩ c ′δi = −2, cδij ∩ c ′δij = −2, tδ ∩ t ′δ = 4, ti ∩ t ′i = 8,

c ′δi ∩ c ′δi = −2tδ, t ′δ ∩ c ′δi = 4cδi .



Remarks.

1) For describing the cohomology ring it is enough to correspond to
every generator a ∈ H∗, dim a = k a generator
ā ∈ H∗, deg ā = n− k , and every relation of the form a ∩ b = c

replace by a relation ā ∪ b̄ = c̄ .

2) The first line in Theorem describes the pairing of the groups Hk

and Hn−k (the Poincare duality), which takes the form a → a′.

3) M7 has no nontrivial Massey products.

4) Joyce’s examples obtained by the generalized Kummer
construction, roughly speaking, split into three types. For certain
examples of other types the intersection rings were calculated by
our students I.V. Fedorov and V.E. Todikov in their diploma works.


