Okubo algebras in characteristic 3 and valuations

Mélanie Raczek

Université Catholique de Louvain (Belgium)

Toronto, May 14, 2013

Introduction

1978: Okubo defines Okubo algebras (pseudo-octonion algebra) over \mathbb{C} . **1990**: Classification of Okubo algebras in characteristic different from 3 by Elduque and Myung.

1996: Conceptual definition of pseudo-octonion algebra by Elduque and Pérez.

1997: Classification of Okubo algebras in characteristic 3 by Elduque.

Elduque describes Okubo algebras in characteristic 3 as a "limit" of Okubo algebras in other characteristics.

Goal: To confirm this behavior by the use of valuations.

Outline

Preliminaries

- Okubo algebras
- Valuations on division algebras
- 2 Residue of Okubo algebras

Okubo algebras

Definition

An Okubo algebra A over a field F is a (non unital, non associative) algebra over F such that $A \otimes_F F_{alg}$ is the pseudo-octonion algebra over F_{alg} (i.e. the split octonion algebra with a twisted product).

Okubo algebras are symmetric composition algebras, i.e. algebras with a (unique) non-degenerate quadratic form n, called the *norm*, such that x(yx) = (xy)x = n(x)y for all x, y.

Classification over F with $char(F) \neq 3$ and $F \ni \omega$

Theorem (Elduque and Myung)

Assume that $char(F) \neq 3$ and F contains a primitive cube root of unity ω . Okubo algebras over F are the $(A^0, *)$ where

- A is a degree 3 central simple algebra over F
- $A^0 = \{x \in A \mid \operatorname{Trd}(x) = 0\}$, Trd being the reduced trace of A

•
$$x * y = \frac{1-\omega}{3}(xy - \omega^2 yx) - \frac{1}{3} \operatorname{Trd}(xy) \cdot 1$$
 (Okubo product)

Classification over F with $char(F) \neq 3$ and $F \not\ni \omega$

Theorem (Elduque and Myung)

Assume that $char(F) \neq 3$ and F does not contain a primitive cube root of unity $\omega \in F_{alg}$.

Okubo algebras over F are the $(Sym(A)^0, *)$ where

- A is a degree 3 central simple algebra over $F(\omega)$
- τ is an $F(\omega)/F$ -involution of the second kind on A

•
$$\text{Sym}(A)^0 = \{x \in A \mid \tau(x) = x \text{ and } \text{Trd}(x) = 0\}$$

• * is the Okubo product

Classification over F with char(F) = 3

For $\alpha, \beta \in F^{\times}$, consider $F[a, b] = F[X, Y]/(X^3 - \alpha, Y^3 - \beta)$, where a and b are the images of X and Y, and define $C_{\alpha,\beta}$ as the subspace

$$C_{\alpha,\beta} = \operatorname{span}\langle a^i b^j \mid 0 \le i, j \le 2, (i,j) \ne (0,0) \rangle \subset F[a,b].$$

Theorem (Elduque)

Assume that char(F) = 3. Okubo algebras over F are the $(C_{\alpha,\beta}, *)$ where • $\alpha, \beta \in F^{\times}$

•
$$\diamond$$
 on $F[a,b]$ is defined by $a^i b^j \diamond a^{i'} b^{j'} = \left(1 - \left|\begin{array}{cc}i & j\\i' & j'\end{array}\right|\right) a^{i+i'} b^{j+j'}$

• $x * y \in C_{\alpha,\beta}$ is the unique element such that $x \diamond y = b(x,y) + x * y$ with $b(x,y) \in F$

Valuations on division algebras

Let D be a division ring, Γ a totally ordered abelian group and ∞ a symbol.

Definition

A map $v: D \to \Gamma \cup \{\infty\}$ is a *valuation* on D if

(i)
$$v(x) = \infty$$
 if and only if $x = 0$

(ii)
$$v(xy) = v(x) + v(y)$$

(iii)
$$v(x+y) \ge \min\{v(x), v(y)\}$$

$$\begin{split} &\Gamma_D := v(D^{\times}) \text{ value group} \\ &\mathscr{O}_D := \{x \in D \mid v(x) \geq 0\} \text{ valuation ring} \\ &\mathfrak{m}_D := \{x \in D \mid v(x) > 0\} \text{ maximal ideal} \\ &\overline{D} := \mathscr{O}_D/\mathfrak{m}_D \text{ residue division ring, } \mathscr{O}_D \to \overline{D} \colon x \mapsto \overline{x} \end{split}$$

Height of a division algebra

Assume that D is a degree p central division algebra over a field F such that $char(\overline{F}) = p$ and $[\overline{D} \colon \overline{F}] \cdot (\Gamma_D \colon \Gamma_F) = p^2$ (D is defectless).

Definition (Tignol)

The height of D is $h(D) := \min\{v(xy - yx) - v(xy) | x, y \in D\}.$

One has $0 \le h(D) \le v(p)/(p-1)$.

Residue of Okubo algebras

Let F be a field, char(F) = 0, and let S be an Okubo algebra over F. So S is either $(D^0, *)$ or $(Sym(D)^0, *)$ for some degree 3 central simple algebra D over $F(\omega)$.

Assume furthermore that D is a division algebra (i.e. S does not contain nonzero idempotents) and that D is endowed with a valuation v such that $char(\overline{F}) = 3$.

Goal: To give a criterion for $(\overline{S},\overline{*})$ to be an Okubo algebra over \overline{F} where

$$\overline{S} := \{ \overline{x} \in \overline{D} \mid x \in \mathscr{O}_D \cap S \} \text{ and } \overline{x} \ \overline{*} \ \overline{y} = \overline{x * y}.$$

First case: $\omega \in F$, $S = (D^0, *)$

- [D̄: F̄] · (Γ_D: Γ_F) divides [D: F] (Morandi),
 so if (D̄⁰, *) is an Okubo algebra over F̄ then [D̄: F̄] = 9.
- If $[\overline{D} \colon \overline{F}] = 9$ and h(D) < v(3)/2, then * does not restrict to $\mathscr{O}_D \cap D^0$.

Theorem (R.)

Let F be a field, char(F) = 0, $\omega \in F$. Assume that D is a degree 3 central division algebra over F with valuation v such that $char(\overline{F}) = 3$. Then $(\overline{D^0}, \overline{*})$ is an Okubo algebra over \overline{F} if and only if $[\overline{D}: \overline{F}] = 9$ and h(D) = v(3)/2.

Sketch of proof

The conditions $[\overline{D} \colon \overline{F}] = 9$ and h(D) = v(3)/2 imply that:

- $\overline{*}$ is well-defined;
- the dimension of $\overline{D^0}$ over \overline{F} is equal to 8;
- $(\overline{D^0}, \overline{*})$ is a symmetric composition algebra over \overline{F} (with norm \overline{n}), so $\overline{D^0}$ is either an Okubo algebra or a para-octonion algebra;

•
$$g(\overline{x}) = b_{\overline{n}}(\overline{x}, \overline{x} \ \overline{*} \ \overline{x}) = \overline{x}^3$$
 for all $\overline{x} \in \overline{D^0}$.

Facts:

- A para-octonion algebra always contains a nonzero idempotent;
- a symmetric composition algebra contains a nonzero idempotent if and only if $g: x \mapsto b_n(x, x * x)$ is isotropic.

Second case: $\omega \notin F$, $S = (Sym(D)^0, *)$

Theorem (R.)

Let F be a field, char(F) = 0, $\omega \notin F$.

Assume that D is a degree 3 central division algebra over $F(\omega)$, τ an $F(\omega)/F$ -involution on D, and D is endowed with a valuation v such that $\operatorname{char}(\overline{F}) = 3$.

Then $(\text{Sym}(D)^0, \overline{*})$ is an Okubo algebra over \overline{F} if and only if $[\overline{D}: \overline{F(\omega)}] = 9$ and h(D) = v(3)/2.

Sketch of proof: One can show that $\overline{\operatorname{Sym}(D)^0} \otimes_{\overline{F}} \overline{F(\omega)}$ embeds in $\overline{D^0}$. The conditions $[\overline{D} \colon \overline{F(\omega)}] = 9$ and h(D) = v(3)/2 imply that $\overline{D^0}$ is an Okubo algebra over $\overline{F(\omega)}$ and the dimension of $\overline{\operatorname{Sym}(D)^0}$ over \overline{F} is equal to 8. Okubo algebras in characteristic 3 are always a residue

Theorem (R.)

Let k be a field, char(k) = 3, and let S_0 be an Okubo k-algebra without nonzero idempotents.

- There exist a field F, char(F) = 0, ω ∈ F, and a degree 3 central division algebra D over F with valuation v such that F = k and (D⁰, *) ≅ S₀.
- There exist a field F, char(F) = 0, ω ∉ F, a degree 3 central division algebra D over F(ω) with valuation v and an F(ω)/F-involution τ on D such that $\overline{F} = k$ and $(\overline{\operatorname{Sym}(D)^0}, \overline{*}) \cong S_0$.

Sketch of proof: There exists a Henselian valued field F such that $\overline{F} = k$. Let $\lambda, \mu \in k^{\times}$ be such that $S_0 = C_{\lambda,\mu}$. Take $\alpha, \beta \in F$ such that $\overline{\alpha} = \lambda$, $\overline{\beta} = \mu$, then one can choose $D := (\alpha, \beta)_{F(\omega),\omega}$.

The End