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High Structure Low Structure

Continuum of Structure

Three inexorable pressure in 
mathematics that tend to push from 

left to right:
• Generalization
• Abstraction
• reduction to 

combinatorics



Plan of the talk

Give examples from both 
combinatorial and descriptive set 
theory

Talk about one example I’ve been 
involved with



Birth of Set Theory as a 
distinct subarea of math
When working on sets of 
uniqueness for trigonometric series 
Cantor discovered that there were 
different sizes of infinity

Is |{real numbers}| the first 
uncountable cardinal? 



Closely related: non-
constructive existence 

principles

Well ordering principle (Axiom of 
Choice)

Hahn Banach Theorem



This tradition continues to 
this day with the label

 “Combinatorial Set Theory”



Issues arising from basic 
questions in measure theory

“Complexity” hierarchies of sets 
(open/closed sets used to generate 
the Borel sets by transfinite 
induction)

Continuous images of closed 
subsets of Polish Spaces



“Descriptive Set Theory”

Borel, Baire, Lebesgue

Egorov, Luzin, Suslin



These remain the two main 
streams of set theory

may fertile interactions



Investigations of the AC and CH led 
to the work of Godel and Cohen 

showing that 

• the CH is independent of ZFC.

• The AC is independent of ZF.

 



Solovay’s Theorem

Assuming an innocuous large 
cardinal exists it is consistent to 
have:

ZF + Countable Axiom of Choice + 

“All subsets of the real numbers are 
Lebesgue Measurable”



The Borel Conjecture

A set A ⊆ R has strong measure zero iff for all 
⟨εi : i ∈ N⟩ of positive numbers there are 

intervals ⟨Ii : i ∈ N⟩ such that
A ⊆ ∪Ii. 



The Borel Conjecture:

Every strong measure zero set is 
countable.



The Borel Conjecture is 
independent

•Luzin: Assuming CH the Borel 
Conjecture is False

•Laver (1976): It is consistent with 
ZFC that the Borel Conjecture is 
True



Rich Laver
1942-2012



Marczewski’s Question

Let X be a Polish space and A a 
subset of X. Then A is 

perfectly meager 

iff A�P is meager inside every 
perfect set P.



Marczewski’s Question

In 1935 Marczewski asked: 

Are perfectly meager sets closed 
under products?



Marczewski’s Question

•Reclaw (1991): CH implies “no”

•Bartoszynski (2000): Consistently “yes”



In 1947 Kaplansky asked whether every 
algebraic homomorphism of C(X) to a 

Banach algebra B is necessarily 
continuous.

Kaplansky: Banach Algebras



•In 1978, 1979 Dales and Esterelle 
independently showed that: If the CH holds 
it is possible to construct a counterexample.

• Solovay (1979, using an important Lemma 
by Woodin) showed that it is consistent that 
the answer is “Yes”

• Woodin (early 1980’s) showed it is 
consistent that with MA that the answer is 
“Yes”.



Ramsey Theory:

Combinatorial Set Theory



This kind of Ramsey theory is 
exemplified by people like Erdos and 
Hajnal. Full use of the Axiom of Choice 
(and any convenient cardinal 
arithmetic). 
Clearest example is the Erdos-Rado 
theorem

Version 1: 
Combinatorial Set Theory



• (finite Ramsey’s Theorem) For all k, m there 
is an l > k such that if D is a set of size l and
f : [D]2 → {0, . . . m − 1} then there is an H ⊆D 

of size k such that f is constant on [H]2. In 
symbols:

l → (n)2m.

• (Erdos-Rado Theorem) For all κ, μ there is 

a λ > κ such that 

λ → (κ)2μ.
NOT a straightforward generalization.



Version 2: Descriptive Set Theory



Let [N]N be the collection of infinite subsets of 
N. This has a natural topology, the Ellentuck 
Topology.

Galvin-Prikry Theorem: If B ⊂ [N]N is Borel 
then there is an infinite H ⊆ N such that either
• [H]N ⊆ B or
• [H]N ∩ B = ∅.



The descriptive Ramsey theory played an 
important role in Gower’s Dichotomy 
theorem(s) in Banach spaces.

Descriptive Ramsey theory was developed into 
a very powerful general theory by Todorcevic.

We note that many of the combinatorial ideas 
come from forcing type results. (Prikry 
Forcing, Mathias Forcing.)



The set theoretic development of Abelian Group 
Theory was pushed far by people like Eklof and 
Shelah. Probably the most emblematic results is 
on the Whitehead Conjecture:

Suppose that A is an Abelian group with 
EXT1(A |Z) = 0. 

Then A is free Abelian

Abelian Groups



Shelah showed that 
Whitehead’s conjecture 
is independent of ZFC.



General Topology

Dow, Steprans, Tall, Watson, Weiss, Juhasz, 
Soukup



General Topology in many ways, adds the 
minimal amount of structure to naked sets.

Developed before WW1 by Hausdorf (as part of 
set theory) it was promoted by Hilbert and 

others as a general way of understanding many 
phenomena.



Moore-Mrowka Problem

Is every compact countably tight 
Hausdorff space sequential?

• Ostaszewski  (1976): Assuming Diamond, 
there is a counterexample.

• Balogh (after Todorcevic): PFA imlies 
“yes”



One of the most famous Problems 
is the Normal Moore Space 

conjecture:

Every Normal Moore Space is 
metrizable



• (Fleissner) If CH is true then the Normal 
Moore Space Conjecture is false.

• (Kunen, Nykos) If there is a supercompact 
cardinal then it is consistent that the Normal 
Moore Space Conjecture is true.



Another Nice Toronto Example of 
this phenomenon: 

Classification of Linear 
Operators on Hilbert Spaces



Cast of Characters:

• H a separable infinite dimensional Hilbert 
Space
• B(H) the collection of bounded operators on 
H. 
• K(H) the ideal of compact operators
• Q(H) = B(H)/K(H) the “Calkin Algebra”



By reducing modulo the compact 
operators one gets a structure
theory:

Berg-Weyl-von Neumann theorem

By reducing “random noise” the 
conjugacy relation becomes tractable.
“Compalent” equivalence relation

Why Q(H)?



Essentially Normal Operators

Essentially normal operators are those that commute with their adjoints 
in the Calkin algebra (i.e. mod compact operators)

Are these classifiable?

For example: is it possible that for A,B essentially normal operators:

• A is compalent to B iff
• there is an automorphism Φ of Q(H) with Φ([A]) = [B]



Inner automorphisms preserve much more 
structure on Q(H): 

for example they preserve “Fredholm index.”

First question: Is every automorphism inner?

Inner vs. Outer



• Phillips and Weaver (2007): CH implies 
there is an automorphism that is not inner

• Farah (2010): PFA implies all 
automorphisms are inner.

Familiar Pattern
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Borel SetsOpen/closed sets Analytic Sets Σ1
2-sets Projective sets Definable Sets

These are strict hierarchies!
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Classification 
Problems

When can you take one problem 
(an equivalence relation relation you 

are trying to characterize) 
and reduce it to another 

(the equivalence relation “invariants”)



Definition Let X and Y be Polish spaces and 
E ⊆ X × X, F ⊆ Y × Y be equivalence relations. 



Definition Let X and Y be Polish spaces and 
E ⊆ X × X, F ⊆ Y × Y be equivalence relations. 

Then E is Borel reducible to F iff there is a 
Borel function f : X → Y such that 

for all x1, x2 ∈ X:



Definition Let X and Y be Polish spaces and 
E ⊆ X × X, F ⊆ Y × Y be equivalence relations. 

Then E is Borel reducible to F iff there is a 
Borel function f : X → Y such that 

for all x1, x2 ∈ X:
x1Ex2    if and only if    f(x1)Ff(x2). 



Definition Let X and Y be Polish spaces and 
E ⊆ X × X, F ⊆ Y × Y be equivalence relations. 

Then E is Borel reducible to F iff there is a 
Borel function f : X → Y such that 

for all x1, x2 ∈ X:
x1Ex2    if and only if    f(x1)Ff(x2). 

In symbols E ≤B F.



The general classification program 
from the DST point of view:

Consider mathematical classification problems 
and place them in the ZOO of equivalence 
relations under ≤B.



1. Countable equivalence relations (i.e. 
those with countable classes)
2. Equivalence relations induced by 
S∞-actions
3. Equivalence relations induced by 
Polish Group actions

Important Benchmarks:



S∞-actions

S∞ actions play a special role: they 
characterize the equivalence relations 

that correspond to countable 
“algebraic” invariants 
(up to isomorphism)



Facts

• (Harrington) There is a ≤B-maximal 
analytic equivalence relation

• There is a ≤B-maximal Polish Group 
action

for the problems we discuss, this will be an upper 
bound on the complexity
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What are examples of these 
equivalence relations?



At the top

(Ferenczi-Louveau-Rosendal) 
Isomorphism of separable Banach 
Spaces is the maximal analytic 
equivalence relation.

(Becker-Kechris-Hjorth-Mackey) 
There is an action of Iso(U) which 
gives a maximal Polish Group 
Action.



Hjorth’s Turbulance 

Turbulance is a wonderful property of 
some Polish Group actions. It is very 
powerful generalization of topological 
0-1 laws.

The main consequence of an equivalence 
relation begin turbulant is that no 
generic subset is reducible to an S∞ 
action



Idea: Classify separable, Unital, simple, nuclear 
C∗-algebras using K- theoretic invariants.

The Elliot invariants didn’t turn out to be a 
complete invariant (Rordam and Toms), but 
there are other difficulties ...

Elliot Classification Program



• Isometry is below a Polish Group action.

• The invariant is turbulent (so not reducible to 
an S∞-action.) 

• The classification problem itself is turbulent!

Classification complexity: 
Elliot, Farah, Paulsen, Rosendal, Toms, Tornquist
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The group of Measure 
Preserving Transformations

Many dynamical systems admit an 
invariant probability measure on 
the underlying spaces. Necessary 
for standard “statistics”.

These systems can be paradoxical: 
even concrete completely 
deterministic systems exhibit 
provably random behavior.



Canonical Model

Every non-atomic separable 
probability measure space is 
isomorphic to LM on [0,1]

Hence all of the “statistical” 
dynamical behavior is exhibited in 
the group of invertible measure 
preserving transformations of 
[0,1]. (I call this MPT.)



von Neumann Classification 
Program

In 1932 von Neumann proposed 
classifying the measure preserving 
transformations up to isomorphism. 

Isomorphism corresponds to the 
conjugacy equivalence relation in 
MPT.



von Neumann Classification 
Program

Measure preserving transformations 
can be glued together from the basic 
building blocks: ergodic measure 
preserving transformations.

vN program usually stated as 
classifying the ergodic 
transformations.



Positive Results

Halmos-von Neumann proved that 
translations on compact groups 
can be characterized entirely by 
their spectrum (pps)

Orstein showed that entropy is a 
complete invariant for Bernoulli 
shifts



The spectrum of an operator 
associated with an ergodic MPT is 
a countable subgroup of the unit 
circle.

Entropy is a number.
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What about the general 
classification problem?

After all: Bernoulli Shifts and 
rotations on compact groups are 1st 

category subsets of the space of 
ergodic MPT’s



Hjorth’s Work

• Hjorth showed that the general 
equivalence relation of isomorphism 

for MPT’s was NOT Borel

• Isomorphism for Rank 2 distal flows 
was not reducible to an S∞ action



Generic Classes of actions

• (Foreman-Weiss) The isomorphism 
relation of ergodic MPT’s is turbulent.

•Consequently no generic class can be 
classified algebraicly. (i.e. by S∞ 

actions)



But is the relation even 
Borel?

(Foreman, Rudolph, Weiss) The 
collection of T such that T is 

isomorphic to its inverse is complete 
analytic. Thus

{(S,T) : S and T are ergodic and S iso to T} 
is not Borel
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MPT([0,1])



Diffeomorphisms of smooth 
compact manifolds

(Foreman, Weiss 2010) Let M be the 2-torus. Let 
S be the space of Ck, measure preserving and 
ergodic diffeomorphism (1<k ≤ ∞) of M. Then
the isomorphism relation on S is complete 
analytic.

Even for concrete diffeo’s on the 
torus, classification is inherently 

impossible.
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Even down here there 
are examples of high set 

theoretic complexity

Diophantine algebra

Finite field Theory

Compact Smooth 
Manifolds



Thank you!


