

Industrial Problem-Solving Workshop on Medical Imaging

Problem # 2 Rapid Modeling of Internal Structures of Deformable Organs (i.e. Liver)

Edward Xishi Huang and James Drake The Hospital for Sick Children

Problem definition

- Accurate estimation of deformation of the soft organ's internal structures between two images acquired at different conditions
- What information are used?!

Point landmarks [1]

Surface information

Vessel segments and curves [1]

Problem definition

- Application: Tumor treatment using high-intensity focused ultrasound (HIFU) thermal procedures.
- Real-time image guidance is required for targeting.
- Intraoperative imaging systems:
 - Low resolution and quality images
 - Long acquisition time
 - Compatibility with other equipments in the operation room.
- Solution: Updating preoperative treatment plans and physical deformation models based on intraoperatively acquired images.
- The idea: Employing boundary conditions (i.e. curves of vessels and bifurcations of vessels, landmarks, and surface information) to constrain the solution of the deformable model of organ.

Problem definition

- Registering internal structures and surface information of the two set of images acquired from the soft organ.
- Image Registration

Given a reference image R and a template image T, find a reasonable transformation y, so that the transformed image T[y] is similar to R [2].

Modeling internal structures in 2D images using landmarks and vessel segments with known end points

Solution

Landmarks: (x_l, x_l) and (x'_l, y'_l) for l = 1, 2, ..., n

Vessel Curves: y = S(x) and y' = S'(x')

Displacement Function: (u(x, y), v(x, y))

Landmarks: $(x'_l, y'_l) \Leftarrow (x_l + u(x_l, y_l), y_l + v(x_l, y_l))$

Any point on the curve: $(x', y') \Leftarrow (x + u(x, y), y + v(x, y))$

Solution

The cost function to be minimized for landmarks matching:

$$J_1(u,v) = \sum_{l=1}^n \left\{ \left(x_l' - x_l - u(x_l, y_l) \right)^2 + \left(y_l' - y_l - v(x_l, y_l) \right)^2 \right\}$$

The cost function to be minimized for curve matching:

$$(x, S(x)) \Rightarrow (x+u(x, S(x)), S(x)+v(x, S(x)))$$

This point corresponds to

$$(x, S(x)) \implies (x + u(x, S(x)) , S'(x + u(x, S(x))))$$

$$J_2(u, v) = \int_{x_1}^{x_2} |S'(x + u(x, S(x))) - S(x) - v(x, S(x))|^2 dx$$

FIELDS

Problem 1

Solution

The total cost function to be minimized for landmarks and curve matching:

$$J(u, v) = w_1 J_1(u, v) + w_2 J_2(u, v)$$

Having the variational model in optimization model form:

$$u = Ax + By + x_0 + \sum_{i=1}^{N} a_i \varphi_i(x, y)$$
$$v = Cx + Dy + y_0 + \sum_{i=1}^{N} b_i \varphi_i(x, y)$$

 φ_i (*i* = 1, 2, ..., *N*) are radial basis functions.

The cost function in terms of unknown parameters

min
$$J(A, B, C, D, x_0, y_0, a_1, ..., a_N, b_1, ..., b_N)$$

Modeling internal structures in 2D images using landmarks and vessel segments with one end point.

Solution

 (x_e, y_e) is unknown point to be found and needs to be added to the optimization function as follows:

$$J_{2}(x_{e}, u, v) = \left(x_{e}' - x_{e} - u\left(x_{e}, S(x_{e})\right)\right)^{2} + \left(y_{e}' - y_{e} - v\left(x_{e}, S(x_{e})\right)\right)^{2} + \int_{x_{1}}^{x_{e}} \left|S'\left(x + u\left(x, S(x)\right)\right) - S(x) - v\left(x, S(x)\right)\right|^{2} dx$$

Modeling internal structures in 3D image

Landmarks: The same as 2D images

 $J_{1}(u, v, w) = \sum_{l=1}^{n} \left\{ \left(x_{l}' - x_{l} - u(x_{l}, y_{l}, z_{l}) \right)^{2} + \left(y_{l}' - y_{l} - v(x_{l}, y_{l}, z_{l})^{2} + \left(z_{l}' - z_{l} - v(x_{l}, y_{l}, z_{l})^{2} \right)^{2} \right\}$

> Curves:

Parametric cubic representation: piecewise spline

$$x(t) = a_{x}t^{3} + b_{x}t^{2} + c_{x}t + d_{x}$$
$$y(t) = a_{y}t^{3} + b_{y}t^{2} + c_{y}t + d_{y}$$
$$z(t) = a_{z}t^{3} + b_{z}t^{2} + c_{z}t + d_{z}$$

Registration based on surface matching of the object in two set of images

***** The cost function to be minimized:

J(u,v,w) =

 $\int_{\Omega} \left| S'\left(x + u\left(x, y, S(x, y) \right), y + v\left(x, y, S(x, y) \right) \right) - S(x, y) - w\left(x, y, S(x, y) \right) \right|^2 dx \, dy$

Another solution: deformable surface modeling using active contours [3]

Impact

- ***** FEM-based image registration.
- Intensity based [4]

$$\min J(u) = D(T[u], R) + \alpha \frac{1}{2}u^{T}Ku; \quad \alpha \in \Re_{+}$$
$$\frac{\partial J(u)}{\partial u} = \frac{\partial D(T[u], R)}{\partial u} + \alpha Ku = 0$$
$$Ku = f(u) = -\frac{1}{\alpha} \frac{\partial D(T[u], R)}{\partial u}$$

- Multimodality
- Local minima

Impact

FEM-based image registration.

Feature based

Internal structures and surface information of the deformable organ provides necessary boundary condition to solve the FEM-based deformation equation.

Example: Linear finite element model of the brain shift and deformation [3].

Impact

***** FEM-based image registration.

References

- [1] Dietlind Zühlke, Sven Arnold, Gernoth Grunst, Peter Wißkirchen, "Intrainterventional registration of 3D ultrasound to models of the vascular system of the liver" GMS CURAC 2007, Vol. 2(1)
- [2] J. Modersitzki, Numerical Methods for Image Registration. New York:Oxford, 2004.
- [3] M. Ferrant, A. Nabavi, B. Macq, F. Jolesz, R. Kikinis, and S. Warfield, "Registration of 3D Intraoperative MR Images of the Brain Using a Finite-Element Biomechanical Model," IEEE Trans. on Medical Imaging, vol. 20, no. 12, pp. 1384–1397, 2001.
- [4] B. Marami, S. Sirouspour, and D. Capson, "Model-Based Deformable Registration of Preoperative 3D to Intraoperative Low-Resolution 3D and 2D Sequences of MR Images," in MICCAI 2011, pp. 460–467, 2011.

Group Members

Edward Xishi Huang C. Sean Bohun Tian Chen Jamil Jabbour Ken Jackson Iain Moyles Cartihk Sharma Yongji Tan Bahram Marami

Motivation

- Modelling a three-dimensional image of the liver is computationally expensive (and has challenging physics)
- Image data arrives in several two-dimensional cross sections (slices) as the body is scanned
- Each slice is identified by unique markers (landmarks and curves)

• If all of the markers from one slice map to all be on a transformed slice then we can consider a series of two-dimensional transformations

Setup

- Landmarks
 - The N distinguishing points on image
- Curves
 - The κ distinguishing curves (vessels) on image
- Assume a transformation from "pre-image" (X, Y) to "post-image" (\tilde{X}, \tilde{Y}) via a transformation (\bar{X}, \bar{Y})

$$ar{X} = X + \sum_{j} a_{j} \phi_{j}(X, Y),$$

 $ar{Y} = Y + \sum_{j} b_{j} \phi_{j}(X, Y),$

• ϕ_j are radial basis functions (RBF)

$$\phi_j(X, Y) = \exp\left(-\frac{(X - X_j)^2 + (Y - Y_j)^2}{\sigma}\right)$$

• (X_j, Y_j) are the *L* allocation points to form a basis set $(L \leq N)$

Setup

- For curves we assume there exists a mapping for curve points on the pre-image (xx, yy) given by yy = S(xx)
- Similarly there exists a map $\tilde{yy} = \tilde{S}(\tilde{xx})$ for the curve points on the post-image (\tilde{xx}, \tilde{yy})
- Often the form of S and \tilde{S} will be through an interpolation (cubic splines)

(日) (同) (三) (三) (三) (○) (○)

• The curves have the requirement that the endpoints are landmarks

Pre Image

Blah

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Post Image

Blah

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Optimization

- We wish to determine the coefficients for the RBF that transforms the pre-image into the post-image
- We determine these by minimizing an error function composed of matching landmarks and curves
- Therefore we consider
 - Landmark Error
 - We wish all terms of the form $\tilde{X}-\bar{X}$ to be small so that the landmarks are close
 - 2 Curve Error
 - We wish the curve points to be close as well i.e. $\vec{xx} \vec{xx}$ and $\tilde{S}(\vec{xx}) \bar{S}(xx)$ are small

• The predicted curve $\bar{S}(xx) = S(xx) + \sum_j b_j \phi_j(xx, S(xx))$

Solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Oops...

Blah

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Constrained Optimization

- There are many local minima to this problem with large energies
- In fact, there are many local minima with small energies that don't represent the "true" solution (lack of global minimizer?)
- Idea: Build in a constraint for each curve that forces the area under the post-image curve to match that of the predicted curve

$$\int_{\tilde{x}_{x_1}}^{x_{x_2}} (\tilde{S}(\tilde{x}) - S(xx) - \sum_j b_j \phi_j) \, \mathrm{d}\tilde{x} = 0$$

Solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Blah

Conclusions

- Created image data
- Performed an optimization to recover RBF coefficients that transform pre-image to post-image

• Included integral constraints to reduce set of minimizers

Future Work

- Apply to real landmark data
- Consider weightings carefully
 - Center of mass type penalty system
 - Voronoi diagrams
- Allow for curve endpoints to move