Geometric rigidity in normed spaces¹

Derek Kitson

Department of Mathematics and Statistics Lancaster University

5th-9th August 2014
Workshop on Making Models, Fields Institute Toronto

¹Supported by EPSRC grant EP/J008648/1

Rigidity in normed spaces

Let *X* be a finite dimensional real vector space.

The dual space X^* is the vector space of linear functionals $f:X\to\mathbb{R}.$

Let $\|\cdot\|$ be a norm on X and let $S=\{x\in X:\|x\|=1\}$ be the unit sphere.

A support functional for a point $x_0 \in S$ is a linear functional $f \in X^*$ such that $|f(x)| \le 1$ for all $x \in S$ and $f(x_0) = 1$.

The norm is smooth at a point $x_0 \in S$ if there exists a unique support functional for x_0 .

The rigidity matrix

Let G be a finite simple graph.

A bar-joint framework is a pair (G, p) with $p = (p_v)_{v \in V} \in X^{|V|}$ a placement of the vertices of G in X.

An edge vw is well-positioned if the norm on X is smooth at the point $\frac{p_v-p_w}{\|p_v-p_w\|}\in S.$

The unique support functional at $\frac{p_v-p_w}{\|p_v-p_w\|}$ is denoted $\varphi_{v,w}$.

The bar-joint framework (G,p) is well-positioned if every edge is well-positioned.

The rigidity matrix

Let (G, p) be a well-positioned bar-joint framework.

The rigidity matrix R(G,p) is an $|E| \times |V|$ matrix with entries in the dual space X^* given by,

$$a_{(e,v)} = \left\{ \begin{array}{ll} \varphi_{v,w} & \text{ if } e = vw \text{ for some vertex } w, \\ 0 & \text{ otherwise} \end{array} \right.$$

for all $(e, v) \in E \times V$.

Rigidity in normed spaces

The rigidity map for G is,

$$f_G: X^{|V|} \to \mathbb{R}^{|E|}, \quad x = (x_v)_{v \in V} \mapsto (\|x_v - x_w\|)_{vw \in E}$$

The configuration space for (G, p) is,

$$C(G, p) = \{ x \in X^{|V|} : f_G(x) = f_G(p) \}$$

An infinitesimal flex of (G,p) is a vector $u \in X^{|V|}$ such that,

$$D_u f_G(p) = 0.$$

Rigidity in normed spaces

A rigid motion of $(X, \|\cdot\|)$ is a collection of continuous paths

$$\gamma_x: [-1,1] \to X, \qquad x \in X$$

such that for all $x, y \in X$

- 1. $\gamma_x(0) = x$,
- 2. γ_x is differentiable at 0,
- 3. $\|\gamma_x(t) \gamma_y(t)\| = \|x y\|$ for all t.

An infinitesimal flex u is trivial if it is derived from a rigid motion,

$$u_v = \gamma'_{p_v}(0)$$
 for all $v \in V$.

Rigidity in normed spaces

A bar-joint framework (G, p) in $(X, ||\cdot||)$ is

- infinitesimally rigid if every infinitesimal flex of (G, p) is trivial.
- isostatic if
 - 1. it is infinitesimally rigid, and,
 - removing any bar will result in a framework which is not infinitesimally rigid.

A bar-joint framework (G, p) is Γ -symmetric if there exists

- (i) a group action $\theta: \Gamma \to \operatorname{Aut}(G)$, and,
- (ii) an isometry-valued representation $\tau:\Gamma\to \operatorname{GL}(X)$ such that $\tau(\gamma)(p_v)=p_{\theta(\gamma)v}$ for all $\gamma\in\Gamma$ and all $v\in V$.

Define external and internal permutation representations,

$$P_V: \Gamma \to \mathrm{GL}(\mathbb{R}^{|V|}), \quad P_V(\gamma)(a_v)_{v \in V} = (a_{\theta(\gamma)^{-1}v})_{v \in V}$$

$$P_E: \Gamma \to \mathrm{GL}(\mathbb{R}^{|E|}), \quad P_E(\gamma)(a_e)_{e \in E} = (a_{\theta(\gamma)^{-1}e})_{e \in E}$$

The sets of vertices and edges which are fixed by $\gamma \in \Gamma$ are denoted by V_{γ} and E_{γ} , respectively.

Theorem (DK - B Schulze, 2014)

If (G, p) is well-positioned and Γ -symmetric then,

- (i) $df_G(p) \in \operatorname{Hom}_{\Gamma}(\tau \otimes P_V, P_E)$.
- (ii) $\mathcal{T}(G,p)$ is $\tau \otimes P_V$ -invariant.

If (G, p) is also isostatic then,

- (i) $\chi(P_E) = \chi(\tau \otimes P_V) \chi((\tau \otimes P_V)^{(T)}).$
- (ii) $|E_{\gamma}| = \operatorname{tr}(\tau(\gamma)) |V_{\gamma}| \operatorname{tr}((\tau \otimes P_V)^{(T)}(\gamma)).$

If the group of linear isometries of $(X, \|\cdot\|)$ is finite then,

- (i) $|E| = \dim(X) (|V| 1)$, and,
- (ii) $|E_{\gamma}| = \operatorname{tr}(\tau(\gamma)) (|V_{\gamma}| 1)$ for each $\gamma \in \Gamma$.

A symmetry operation $\gamma \in \Gamma$ is called

- 1. an inversion if $\tau(\gamma) = -I$.
- 2. a reflection if $\tau(\gamma) = I 2P$ where P is a rank one projection on X.
- 3. an n-fold rotation if there exists a two-dimensional subspace Y of X with a complementary space Z such that $\tau(\gamma) = S \oplus I_Z$ where $S: Y \to Y$ has matrix representation

$$\begin{pmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix}$$

with respect to some basis for Y.

Corollary

Suppose (G,p) is well-positioned, isostatic, Γ -symmetric and $\gamma \in \Gamma$ is a reflection.

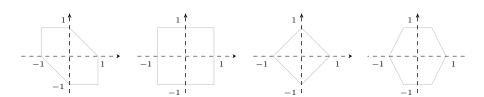
- (i) $|E_{\gamma}| = (\dim(X) 2)(|V_{\gamma}| 1)$.
- (ii) If $\dim(X) = 2$ then $|E_{\gamma}| = 0$.
- (iii) If $dim(X) \ge 3$ then the following two conditions hold,
 - (a) $|V_{\gamma}| \geq 1$, and,
 - (b) $|V_{\gamma}| = 1$ if and only if $|E_{\gamma}| = 0$.

Corollary

Suppose (G,p) is well-positioned, isostatic, Γ -symmetric and $\gamma \in \Gamma$ is a half-turn rotation.

- (i) $|E_{\gamma}| = (\dim(X) 4) (|V_{\gamma}| 1).$
- (ii) If dim(X) = 2, then one of the following conditions holds,
 - (a) $|V_{\gamma}| = 0$, and, $|E_{\gamma}| = 2$.
 - (b) $|V_{\gamma}| = 1$, and, $|E_{\gamma}| = 0$.
- (iii) If dim(X) = 3, then one of the following conditions holds,
 - (a) $|V_{\gamma}| = 0$, and, $|E_{\gamma}| = 1$.
 - (b) $|V_{\gamma}| = 1$, and, $|E_{\gamma}| = 0$.
- (iv) If $\dim(X) = 4$, then $|E_{\gamma}| = 0$.
- (v) If $dim(X) \ge 5$, then the following conditions hold,
 - (a) $|V_{\gamma}| \geq 1$, and,
 - (b) $|V_{\gamma}| = 1$ if and only if $|E_{\gamma}| = 0$.

Polyhedral norms



Let \mathcal{P} be a convex symmetric d-dimensional polytope in \mathbb{R}^d .

The Minkowski functional for \mathcal{P} defines a norm on \mathbb{R}^d ,

$$||x||_{\mathcal{P}} = \inf\{\lambda \ge 0 : x \in \lambda \mathcal{P}\}$$

and is characterised by,

$$||x||_{\mathcal{P}} = ||x||_{\mathcal{P}}^{**} = ||x||_{\mathcal{P}^{\triangle}}^{*} = \max_{y \in \mathcal{P}^{\triangle}} x \cdot y = \max_{y \in ext(\mathcal{P}^{\triangle})} x \cdot y$$

Let $\tau:\Gamma\to \mathrm{GL}(\mathbb{R}^d)$ be an isometry-valued group rep.

A group element $\gamma \in \Gamma$ preserves the facets of \mathcal{P} if $\tau(\gamma)F \in \{F, -F\}$ for each facet F of \mathcal{P} .

Theorem (DK, 2013)

If (G,p) is well-positioned in $(\mathbb{R}^d,\|\cdot\|_{\mathcal{P}})$ then the following statements are equivalent.

- (i) (G, p) is continuously rigid.
- (ii) (G, p) is infinitesimally rigid.

Theorem (DK, 2013)

Let G be a finite simple graph and let $\|\cdot\|_{\mathcal{P}}$ be a polyhedral norm on \mathbb{R}^2 . The following statements are equivalent.

- (i) There exists p such that (G,p) is well-positioned and isostatic in $(\mathbb{R}^2, \|\cdot\|_{\mathcal{P}})$.
- (ii) G is (2,2)-tight.

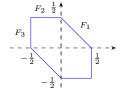
For each edge $vw \in E(G)$ define the set of framework colours,

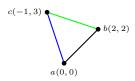
$$\Phi(vw) = \{\{F, -F\} : p_v - p_w \in \operatorname{cone}(F) \cup \operatorname{cone}(-F)\}$$

Let G_F denote the monochrome subgraph of G spanned by edges with framework colour $[F] = \{F, -F\}$.

Denote by $\Phi(G,p)$ the set of all framework colours of (G,p),

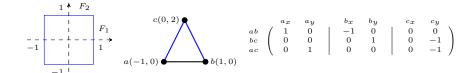
$$\Phi(G, p) = \bigcup_{vw \in E(G)} \Phi(vw)$$





Lemma

Let (G,p) be well-positioned and Γ -symmetric in $(\mathbb{R}^d,\|\cdot\|_{\mathcal{P}})$. If each symmetry operation $\gamma\in\Gamma$ preserves the facets of \mathcal{P} then the monochrome subgraphs of G are Γ -symmetric.



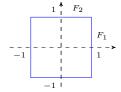
Polyhedral norms

Polyhedral norms

Theorem (DK - S Power, BLMS 2014)

If (G,p) is well-positioned in $(\mathbb{R}^d,\|\cdot\|_{\mathcal{P}})$ and $|\Phi(G,p)|=d$ then the following statements are equivalent.

- (i) (G, p) is isostatic.
- (ii) G_F is a spanning tree in G for each $[F] \in \Phi(G, p)$.



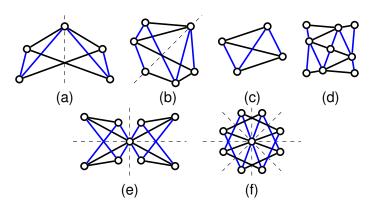


Figure: Symmetric isostatic bar-joint frameworks in $(\mathbb{R}^2, \|\cdot\|_{\infty})$:

- (a), (b) C_s -symmetry; (c) C_2 -symmetry; (d) C_4 -symmetry;
- (e) C_{2v} -symmetry; (f) C_{4v} -symmetry.

Symmetric tree packings

Theorem (DK - B Schulze, 2014)

Let $\|\cdot\|_{\mathcal{P}}$ be a polyhedral norm on \mathbb{R}^2 for which the unit ball \mathcal{P} is a quadrilateral and let G be a finite simple graph with a group action $\theta: \mathbb{Z}_2 \to \operatorname{Aut}(G)$ where $\mathbb{Z}_2 = \langle s \rangle$.

The following statements are equivalent.

- (i) There exists a representation $\tau: \mathbb{Z}_2 \to \operatorname{GL}(\mathbb{R}^2)$ and a point p such that the bar-joint framework (G,p) is well-positioned and isostatic in $(\mathbb{R}^2, \|\cdot\|_{\mathcal{P}})$ and \mathcal{C}_s -symmetric with respect to θ and τ , where the symmetry operation s is a reflection which preserves the facets of \mathcal{P} .
- (ii) G is expressible as a union of two edge-disjoint spanning trees, both of which are \mathbb{Z}_2 -symmetric with respect to θ , and no edge of G is fixed by s.

Theorem (DK - B Schulze, 2014)

Let $\|\cdot\|_{\mathcal{P}}$ be a polyhedral norm on \mathbb{R}^2 for which the unit ball \mathcal{P} is a quadrilateral and let G be a finite simple graph with a group action $\theta: \mathbb{Z}_2 \to \operatorname{Aut}(G)$ where $\mathbb{Z}_2 = \langle s \rangle$. The following statements are equivalent.

- (i) There exists a representation $\tau: \mathbb{Z}_2 \to \operatorname{GL}(\mathbb{R}^2)$ and a point p such that the bar-joint framework (G,p) is well-positioned and isostatic in $(\mathbb{R}^2, \|\cdot\|_{\mathcal{P}})$ and \mathcal{C}_2 -symmetric with respect to θ and τ , where the symmetry operation s is a half-turn rotation.
- (ii) G is expressible as a union of two edge-disjoint spanning trees, both of which are \mathbb{Z}_2 -symmetric with respect to θ , and either no edge or two edges of G are fixed by s.

Let $\theta: \mathbb{Z}_2 \to \operatorname{Aut}(G)$ be an action of $\mathbb{Z}_2 = \langle s \rangle$ on G.

The pair (G, θ) is admissible if,

- (i) no edge of G is fixed by s, and,
- (ii) G is expressible as a union of two edge-disjoint spanning trees, both of which are \mathbb{Z}_2 -symmetric with respect to θ .

Lemma

If (G, θ) is an admissible pair then,

- (i) there exists exactly one vertex v_0 in G which is fixed by s.
- (ii) the unique fixed vertex v_0 has even degree and degree at least 4.

Theorem (DK - B Schulze, 2014)

If (G, θ) is admissible then there exists a construction chain,

$$W_5 = G^1 \to G^2 \to \cdots \to G^n = G,$$

such that for each $k = 1, 2, \dots, n-1$,

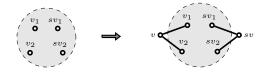
- (i) (G^k, θ) is admissible, and,
- (ii) $G^k \to G^{k+1}$ is one of six allowable (\mathbb{Z}_2, θ) graph extensions.

Allowable graph extensions

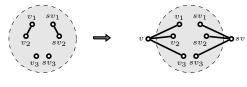
Symmetric tree packings

Derek Kitson

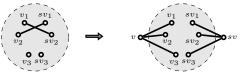
1. 1-extension.



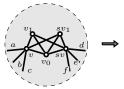
2. 2-extension.



3. Modified 2-extension.

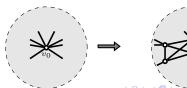


Allowable graph extensions



4. Wheel extension.

5. Vertex split.



6. Fixed-vertex-to- W_5 .

- D.K. and S.C. Power, Infinitesimal rigidity for non-Euclidean bar-joint frameworks, Bull. London Math. Soc. (2014)
- D.K., Finite and infinitesimal rigidity with polyhedral norms, arXiv:1401.1336
- D.K. and B. Schulze, Maxwell-Laman counts for symmetric bar-joint frameworks in normed spaces, arXiv:1406.0998
- D.K. and B. Schulze, Rigidity characterisations for graphs with two edge-disjoint symmetric spanning trees.

Thank you

