Applications of Ramsey theory in topological dynamics

Dana Bartošová ¹ Aleksandra Kwiatkowska ² Jordi Lopez Abad ³ Brice R. Mbombo ⁴

^{1,4}University of São Paulo

²UCLA

³ICMAT Madrid and University of São Paulo

Forcing and its Applications
April 1

The first author was supported by the grants FAPESP 2013/14458-9 and FAPESP 2014/12405-8.

(KPT) Topological dynamics and Ramsey theory

- (KPT) Topological dynamics and Ramsey theory
 - (G) Gurarij space
 - group of linear isometries
 - approximate Ramsey propety for finite dimensional normed spaces

(KPT) Topological dynamics and Ramsey theory

- (G) Gurarij space
 - group of linear isometries
 - approximate Ramsey propety for finite dimensional normed spaces
- (S) Poulsen simplex
 - new characterization
 - group of affine homeomorphisms
 - approximate Ramsey propety for finite dimensional simplexes

(KPT) Topological dynamics and Ramsey theory

- (G) Gurarij space
 - group of linear isometries
 - approximate Ramsey propety for finite dimensional normed spaces
- (S) Poulsen simplex
 - new characterization
 - group of affine homeomorphisms
 - approximate Ramsey propety for finite dimensional simplexes
- (L) Lelek fan
 - group of homeomorphism
 - exact Ramsey property for sequences in FIN_k

G-flow $G \times X \longrightarrow X$ - a continuous action

```
G-flow G \times X \longrightarrow X - a continuous action \uparrow \qquad \qquad \uparrow topological compact group Hausdorff space
```

$$\begin{array}{ll} G\text{-flow} \\ G \times X \longrightarrow X \text{- a continuous action} \\ \uparrow & \uparrow \\ \text{topological} & \text{compact} \\ \text{group} & \text{Hausdorff space} \end{array}$$

$$ex = x$$
$$g(hx) = (gh)x$$

$$\begin{array}{ll} G\text{-flow} \\ G \times X \longrightarrow X \text{- a continuous action} \\ \uparrow & \uparrow \\ \text{topological} & \text{compact} \\ \text{group} & \text{Hausdorff space} \end{array}$$

$$ex = x$$
$$g(hx) = (gh)x$$

X is a minimal G-flow $\longleftrightarrow X$ has no proper closed invariant subset.

$$\begin{array}{ll} G\text{-flow} \\ G \times X \longrightarrow X \text{- a continuous action} \\ \uparrow & \uparrow \\ \text{topological} & \text{compact} \\ \text{group} & \text{Hausdorff space} \end{array}$$

$$ex = x$$
$$g(hx) = (gh)x$$

X is a minimal G-flow $\longleftrightarrow X$ has no proper closed invariant subset.

The universal minimal flow M(G) is a minimal flow which has every other minimal flow as its factor.

$$G$$
-flow $G \times X \longrightarrow X$ - a continuous action \uparrow topological compact group Hausdorff space

$$ex = x$$
$$g(hx) = (gh)x$$

X is a minimal G-flow \longleftrightarrow X has no proper closed invariant subset.

The universal minimal flow M(G) is a minimal flow which has every other minimal flow as its factor.

G is extremely amenable \longleftrightarrow its universal minimal flow is a singleton (\longleftrightarrow every G-flow has a fixed point).

Theorem (Ramsey)

For every $k \le m$ and $r \ge 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

Theorem (Ramsey)

For every $k \le m$ and $r \ge 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

A class K of finite structures satisfies the Ramsey property if for every $A \leq B \in K$

Theorem (Ramsey)

For every $k \le m$ and $r \ge 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

A class \mathcal{K} of finite structures satisfies the Ramsey property if for every $A \leq B \in \mathcal{K}$ and $r \geq 2$ a natural number

Theorem (Ramsey)

For every $k \le m$ and $r \ge 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

A class \mathcal{K} of finite structures satisfies the Ramsey property if for every $A \leq B \in \mathcal{K}$ and $r \geq 2$ a natural number there exists $C \in \mathcal{K}$ such that

Theorem (Ramsey)

For every $k \le m$ and $r \ge 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

A class \mathcal{K} of finite structures satisfies the Ramsey property if for every $A \leq B \in \mathcal{K}$ and $r \geq 2$ a natural number there exists $C \in \mathcal{K}$ such that

for every colouring of copies of A in C by r colours, there is a copy B' of B in C, such that all copies of A in B' have the same colour.

Ramsey classes and extremely amenable groups

Ramsey classes

- finite linear orders (Ramsey)
- finite linearly ordered graphs (Nešetřil and Rödl)
- finite linearly ordered metric spaces (Nešetřil)
- finite Boolean algebras (Graham and Rothschild)

Ramsey classes and extremely amenable groups

Ramsey classes

- finite linear orders (Ramsey)
- finite linearly ordered graphs (Nešetřil and Rödl)
- finite linearly ordered metric spaces (Nešetřil)
- finite Boolean algebras (Graham and Rothschild)

Extremely amenable groups

- $Aut(\mathbb{Q}, <)$ (Pestov)
- Aut(OR) OR the random ordered graph (Kechris, Pestov & Todorčević)
- $\operatorname{Iso}(\mathbb{U}, d)$ (Pestov)
- Homeo(C, C) (C, C) the Cantor space with a generic maximal chain of closed subsets (KPT; Glasner & Weiss)

 \mathcal{A} - a first order structures

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

G = Aut(A) with topology of pointwise convergence

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of ${\mathcal A}$

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of $\mathcal A$

$$G_A = \{ g \in G : ga = a \ \forall a \in A \}$$

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of A

$$G_A = \{ g \in G : ga = a \ \forall a \in A \}$$

form a basis of neighbourhoods of the identity.

 \mathcal{A} - a first order structures

 \mathcal{A} is ultrahomogeneous \longleftrightarrow every partial finite isomorphism can be extended to an automorphism of \mathcal{A} .

G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of \mathcal{A}

$$G_A = \{ g \in G : ga = a \ \forall a \in A \}$$

form a basis of neighbourhoods of the identity.

Theorem (KPT; NvT)

 $\operatorname{Aut}(\mathcal{A})$ is extremely amenable \longleftrightarrow finitely-generated substructures of \mathcal{A} satisfy the Ramsey property and are rigid.

 $G = Aut(\mathcal{A}) - \mathcal{A}$ ultrahomogeneous

 $G = \operatorname{Aut}(A) - A$ ultrahomogeneous $G^* = \operatorname{Aut}(A^*) - A^*$ ultrahomogeneous expansion of A

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$ ultrahomogeneous $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$ ultrahomogeneous expansion of \mathcal{A} Finite substructures of \mathcal{A}^* satisfy the Ramsey property and are rigid.

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$ ultrahomogeneous $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$ ultrahomogeneous expansion of \mathcal{A} Finite substructures of \mathcal{A}^* satisfy the Ramsey property and are rigid.

OFTEN
$$M(G) \cong \widehat{G/G^*}$$

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$ ultrahomogeneous $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$ ultrahomogeneous expansion of \mathcal{A} Finite substructures of \mathcal{A}^* satisfy the Ramsey property and are rigid.

OFTEN
$$M(G) \cong \widehat{G/G^*}$$

Structure \mathcal{A}	$M(\operatorname{Aut}(\mathcal{A}))$	authors
N	linear orders on \mathbb{N}	Glasner and Weiss
random graph \mathcal{R}	linear orders on \mathcal{R}	KPT
Cantor space C	maximal chains of	Glasner and Weiss
	closed subsets of C	

 $\bullet \ \ ultrahomogeneous$

• Ramsey property

- ullet ultrahomogeneous
- ullet approximately ultrahomogeneous
- Ramsey property
- approximate Ramsey property

- ultrahomogeneous
- ullet approximately ultrahomogeneous
- projectively ultrahomogeneous

- Ramsey property
- approximate Ramsey property
- dual Ramsey property

- ultrahomogeneous
- approximately ultrahomogeneous
- projectively ultrahomogeneous
- approximately projectively ultrahomogeneous

- Ramsey property
- approximate Ramsey property
- dual Ramsey property
- approximate dual Ramsey property

- ultrahomogeneous
- approximately ultrahomogeneous
- projectively ultrahomogeneous
- approximately projectively ultrahomogeneous

- Ramsey property
- approximate Ramsey property
- dual Ramsey property
- approximate dual Ramsey property

Structure	homogeneous w.r.t.
\mathbb{N},\mathcal{R}	embeddings
Gurarij space	linear isometric embeddings
Lelek fan	epimorphisms
Poulsen simplex	affine epimorphisms

(1) separable Banach space

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$||i - f \upharpoonright E|| < \varepsilon$$

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$||i - f \upharpoonright E|| < \varepsilon$$

LUSKY

Conditions (1),(2),(3) uniquely define \mathbb{G} up to a linear isometry.

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$||i - f \upharpoonright E|| < \varepsilon$$

LUSKY

Conditions (1),(2),(3) uniquely define \mathbb{G} up to a linear isometry.

KUBIŚ-SOLECKI; HENSON

Simple proof - metric Fraïssé theory.

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group BASIS

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

 \bullet E - finite dimensional subspace of $\mathbb G$

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

- ullet E finite dimensional subspace of ${\mathbb G}$
- $\varepsilon > 0$

 $Iso_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

- ullet E finite dimensional subspace of ${\mathbb G}$
- $\varepsilon > 0$

$$V_{\varepsilon}(E) = \{ g \in \operatorname{Iso}(\mathbb{G}) : ||g \upharpoonright E - \operatorname{id} \upharpoonright E|| < \varepsilon \}$$

 $Iso_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

- ullet E finite dimensional subspace of ${\mathbb G}$
- $\varepsilon > 0$

$$V_{\varepsilon}(E) = \{ g \in \operatorname{Iso}(\mathbb{G}) : ||g| \upharpoonright E - \operatorname{id} \upharpoonright E|| < \varepsilon \}$$

BEN YAACOV

 $\operatorname{Iso}_l(\mathbb{G})$ is a universal Polish group.

 $Iso_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

- ullet E finite dimensional subspace of ${\mathbb G}$
- $\varepsilon > 0$

$$V_{\varepsilon}(E) = \{ g \in \operatorname{Iso}(\mathbb{G}) : ||g| \upharpoonright E - \operatorname{id} \upharpoonright E|| < \varepsilon \}$$

BEN YAACOV

 $\operatorname{Iso}_l(\mathbb{G})$ is a universal Polish group.

Katětov construction

Approximate Ramsey property for finite-dimensional normed spaces

E,F - finite dimensional spaces $\theta \geq 1$

$$\operatorname{Emb}_{\theta}(E, F) = \{T : E \longrightarrow F : T \text{ embedding } \& \|T\| \|T^{-1}\| \le \theta\}$$

Approximate Ramsey property for finite-dimensional normed spaces

E,F - finite dimensional spaces $\theta \geq 1$

$$\operatorname{Emb}_{\theta}(E,F) = \{T: E \longrightarrow F: T \text{ embedding \& } \|\mathbf{T}\| \ \|\mathbf{T}^{-1}\| \leq \theta \}$$

Theorem (B-LA-M)

r - number of colours, $\varepsilon > 0 \longrightarrow \exists H \text{ f.d. with } \operatorname{Emb}(F, H) \neq \emptyset$ such that for every

$$c: \operatorname{Emb}_{\theta}(E, H) \longrightarrow \{0, 1, \dots, r-1\}$$

 $\exists i \in \text{Emb}_{\theta}(F, H) \text{ and } \alpha < r \text{ such that}$

$$i \circ \operatorname{Emb}_{\theta}(E, F) \subset (c^{-1}(\alpha))_{\theta - 1 + \varepsilon}$$

G - topological group

G - topological group $f: G \longrightarrow \mathbb{R}$ is finitely oscillation stable if

G - topological group $f:G\longrightarrow \mathbb{R} \text{ is finitely oscillation stable if} \quad \forall X\subset G \text{ finite and } \varepsilon>0$

G - topological group $f:G\longrightarrow \mathbb{R}$ is finitely oscillation stable if $\forall X\subset G$ finite and $\varepsilon>0$ $\exists g\in G$ such that $\mathrm{osc}(f\upharpoonright gX)<\varepsilon.$

 ${\cal G}$ - topological group

 $f:G\longrightarrow \mathbb{R}$ is finitely oscillation stable if $\forall X\subset G$ finite and $\varepsilon>0$ $\exists g\in G$ such that $\mathrm{osc}(f\upharpoonright gX)<\varepsilon.$

Theorem (Pestov)

TFAE

- G is extremely amenable,
- every $f: G \longrightarrow \mathbb{R}$ bounded left-uniformly continuous is finite oscillation stable.

 ${\cal G}$ - topological group

 $f:G\longrightarrow \mathbb{R}$ is finitely oscillation stable if $\forall X\subset G$ finite and $\varepsilon>0$ $\exists g\in G$ such that $\mathrm{osc}(f\upharpoonright gX)<\varepsilon.$

Theorem (Pestov)

TFAE

- G is extremely amenable,
- every $f: G \longrightarrow \mathbb{R}$ bounded left-uniformly continuous is finite oscillation stable.

Theorem (B-LA-M)

 $\operatorname{Iso}_l(\mathbb{G})$ is extremely amenable.

Urysohn space U

Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Urysohn space U

Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Corollary (Pestov)

Iso(\mathbb{U}) is extremely amenable.

(1) metrizable

- (1) metrizable
- (2) contains every metrizable simplex as its face

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

POULSEN

The set of extreme points of P is dense in P.

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

POULSEN

The set of extreme points of P is dense in P.

FACT

 $T:\{0,1\}^{\mathbb{Z}}\longrightarrow\{0,1\}^{\mathbb{Z}}$ the shift \Rightarrow T-invariant probability measures form P

 $S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n+1 \text{ extreme points}$

 $S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n+1 \text{ extreme points}$

 $\mathrm{Epi}(S_n, S_m) := \mathrm{continuous}$ affine surjections $S_n \longrightarrow S_m$

 $S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n+1 \text{ extreme points}$

$$\mathrm{Epi}(S_n,S_m) := \mathrm{continuous}$$
 affine surjections $S_n \longrightarrow S_m$

AH(P) := group of affine homeomorphisms of P + compact-open topology

 $S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n+1 \text{ extreme points}$

$$\mathrm{Epi}(S_n, S_m) := \mathrm{continuous}$$
 affine surjections $S_n \longrightarrow S_m$

AH(P) := group of affine homeomorphisms of P + compact-open topology

(U) $\forall n \; \exists \phi : P \longrightarrow S_n$ – continuous affine surjection (APU) $\forall \varepsilon > 0 \; \forall n \; \forall \phi_1, \phi_2 : P \longrightarrow S_n \; \exists f \in AH(P)$ with $d(\phi_1, \phi_2 \circ f) < \varepsilon$

 $S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n+1 \text{ extreme points}$

$$\mathrm{Epi}(S_n,S_m) := \mathrm{continuous}$$
 affine surjections $S_n \longrightarrow S_m$

AH(P) := group of affine homeomorphisms of P + compact-open topology

- (U) $\forall n \; \exists \phi : P \longrightarrow S_n$ continuous affine surjection
- (APU) $\forall \varepsilon > 0 \ \forall n \ \forall \phi_1, \phi_2 : P \longrightarrow S_n \ \exists f \in AH(P)$ with $d(\phi_1, \phi_2 \circ f) < \varepsilon$

Theorem (B-LA-M)

(U) + (APU) characterize P among non-trivial metrizable simplexes up to affine homeomorphism.

Approximate Ramsey property for P

 $\mathrm{Epi}_0(S_n,S_m)$ - continuous affine surjections preserving 0

Approximate Ramsey property for P

 $\mathrm{Epi}_0(S_n,S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

 $d \leq m$ and r natural numbers and $\varepsilon > 0$ given $\longrightarrow \exists n$ such that for every colouring

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is $\pi \in \text{Epi}_0(S_n, S_m)$ and $\alpha < r$ such that

$$\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$$

Approximate Ramsey property for P

 $\mathrm{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

 $d \leq m$ and r natural numbers and $\varepsilon > 0$ given $\longrightarrow \exists n$ such that for every colouring

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is $\pi \in \operatorname{Epi}_0(S_n, S_m)$ and $\alpha < r$ such that

$$\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$$

p - extreme point of P

$$AH_p(P) = \{ f \in AH(P) : f(p) = p \}$$

Approximate Ramsey property for P

 $\mathrm{Epi}_0(S_n,S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

 $d \leq m$ and r natural numbers and $\varepsilon > 0$ given $\longrightarrow \exists n$ such that for every colouring

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is $\pi \in \operatorname{Epi}_0(S_n, S_m)$ and $\alpha < r$ such that

$$\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$$

p - extreme point of P

$$AH_p(P) = \{ f \in AH(P) : f(p) = p \}$$

Theorem (B-LA-M)

 $AH_p(P)$ is extremely amenable.

Universal minimal flow of AH(P)

Theorem (B-LA-M)

$$M(AH(P)) \cong \widehat{AH(P)/AH_p(P)} \cong P$$

PROBLEM

What is the universal minimal flow of Homeo(Q)?

PROBLEM

What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

PROBLEM

What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

PROBLEM

What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

Q with its natural convex structure.

PROBLEM

What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

Q with its natural convex structure.

Theorem (B-LA-M)

 $\operatorname{Aut}(\mathcal{Q})$ is topologically isomorphic to $\{-1,1\}^{\mathbb{N}} \times S_{\infty}$.

PROBLEM

What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

Q with its natural convex structure.

Theorem (B-LA-M)

 $\operatorname{Aut}(\mathcal{Q})$ is topologically isomorphic to $\{-1,1\}^{\mathbb{N}} \times S_{\infty}$.

Theorem (B-LA-M)

$$M(\operatorname{Aut}(\mathcal{Q})) = \{-1, 1\}^{\mathbb{N}} \times LO(\mathbb{N}).$$

Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik)

continuum = connected compact metric Hausdorff space

Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik)

continuum = connected compact metric Hausdorff space

 $(\mathbb{L},R_s^\mathbb{L})$ - compact, 0-dim, $R_s^\mathbb{L}\subset\mathbb{L}^2$ closed with one or two element equivalence classes

 $(\mathbb{L},R_s^\mathbb{L})$ - compact, 0-dim, $R_s^\mathbb{L}\subset\mathbb{L}^2$ closed with one or two element equivalence classes

$$\mathbb{L}/R_s^{\mathbb{L}} \cong L$$

 $(\mathbb{L},R_s^\mathbb{L})$ - compact, 0-dim, $R_s^\mathbb{L}\subset\mathbb{L}^2$ closed with one or two element equivalence classes

$$\mathbb{L}/R_s^{\mathbb{L}} \cong L$$

 $\mathcal{F} = \{\text{finite fans}\} + \text{surjective homomorphisms}$

 $(\mathbb{L},R_s^\mathbb{L})$ - compact, 0-dim, $R_s^\mathbb{L}\subset\mathbb{L}^2$ closed with one or two element equivalence classes

$$\mathbb{L}/R_s^{\mathbb{L}} \cong L$$

 $\mathcal{F} = \{\text{finite fans}\} + \text{surjective homomorphisms}$

- (U) $T \in \mathcal{F} \leadsto \exists \phi : (\mathbb{L}, R^{\mathbb{L}}) \longrightarrow T$ continuous surjective homomorphism
- (R) X finite, $f: \mathbb{L} \longrightarrow X$ continuous $\leadsto \exists T \in \mathcal{F}, \phi: \mathbb{L} \longrightarrow T$ and $g: T \longrightarrow X$ such that $f = g \circ \phi$
- (PU) $T \in \mathcal{F}, \ \phi_1, \phi_2 : \mathbb{L} \longrightarrow T \leadsto \exists g : \mathbb{L} \longrightarrow \mathbb{L}$ automorphism with $\phi_1 = \phi_2 \circ g$

 $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}})$ and $\operatorname{Homeo}(L)$ + the compact-open topology

 $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}})$ and $\operatorname{Homeo}(L)$ + the compact-open topology

$$\pi: \mathbb{L} \longrightarrow \mathbb{L}/R_s^{\mathbb{L}} \cong L$$

 $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}})$ and $\operatorname{Homeo}(L)$ + the compact-open topology

$$\pi: \mathbb{L} \longrightarrow \mathbb{L}/R_s^{\mathbb{L}} \cong L$$

induces a continuous embedding $\operatorname{Aut}(\mathbb{L},R_s^{\mathbb{L}}) \hookrightarrow \operatorname{Homeo}(L)$

 $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}})$ and $\operatorname{Homeo}(L)$ + the compact-open topology

$$\pi: \mathbb{L} \longrightarrow \mathbb{L}/R_s^{\mathbb{L}} \cong L$$

induces a continuous embedding $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}}) \hookrightarrow \operatorname{Homeo}(L)$ with a dense image

 $\operatorname{Aut}(\mathbb{L}, R_s^{\mathbb{L}})$ and $\operatorname{Homeo}(L)$ + the compact-open topology

$$\pi: \mathbb{L} \longrightarrow \mathbb{L}/R_s^{\mathbb{L}} \cong L$$

induces a continuous embedding $\mathrm{Aut}(\mathbb{L},R_s^\mathbb{L})\hookrightarrow\mathrm{Homeo}(L)$ with a dense image

$$h \mapsto h^*$$

$$\pi \circ h = h^* \circ \pi.$$

 $\mathcal{F}_{<}$ - finite fans with a linear order extending the natural order $\{C \longrightarrow A\} :=$ all epimorphisms from C onto A

 $\mathcal{F}_{<}$ - finite fans with a linear order extending the natural order $\{C \longrightarrow A\} :=$ all epimorphisms from C onto A

Theorem

 $\mathcal{F}_{<}$ satisfies the Ramsey property.

 $\mathcal{F}_{<}$ - finite fans with a linear order extending the natural order $\{C \longrightarrow A\} :=$ all epimorphisms from C onto A

Theorem

 $\mathcal{F}_{<}$ satisfies the Ramsey property.

For every $A, B \in \mathcal{F}_{<}$ there exists $C \in \mathcal{F}_{<}$ such that for every colouring

$$c: \{C \longrightarrow A\} \longrightarrow \{1, 2, \dots, r\}$$

there exists $f: C \longrightarrow B$ such that $\{B \longrightarrow A\} \circ f$ is monochromatic.

 $\mathcal{F}_{<}$ - finite fans with a linear order extending the natural order $\{C \longrightarrow A\} :=$ all epimorphisms from C onto A

Theorem

 $\mathcal{F}_{<}$ satisfies the Ramsey property.

For every $A, B \in \mathcal{F}_{<}$ there exists $C \in \mathcal{F}_{<}$ such that for every colouring

$$c: \{C \longrightarrow A\} \longrightarrow \{1, 2, \dots, r\}$$

there exists $f: C \longrightarrow B$ such that $\{B \longrightarrow A\} \circ f$ is monochromatic.

Theorem (B-K)

Let $\mathbb{L}_{<}$ be the limit of $\mathcal{F}_{<}$. Then $\operatorname{Aut}(\mathbb{L}_{<})$ is extremely amenable.

Universal minimal flow of Homeo(L)

Theorem (B-K)

• $M(\operatorname{Aut}(\mathbb{L})) \cong \operatorname{Aut}(\widehat{\mathbb{L})/\operatorname{Aut}}(\mathbb{L}_{<})$

Universal minimal flow of Homeo(L)

Theorem (B-K)

- $M(\operatorname{Aut}(\mathbb{L})) \cong \operatorname{Aut}(\widehat{\mathbb{L})/\operatorname{Aut}}(\mathbb{L}_{<})$
- $M(\operatorname{Homeo}(L)) \cong \operatorname{Homeo}(L)/\operatorname{Homeo}(L_{<})$

A question

Is there a non-trivial simplex with extremely amenable group of affine homeomorphisms?

THANK YOU

HAPPY FOOLS' DAY!