Quotients of strongly proper posets, and related topics

Sean Cox

Virginia Commonwealth University
scox9@vcu.edu

Forcing and its Applications Retrospective Workshop, March 2015
Joint work with John Krueger.
A conjecture of Viale-Weiss

The principle ISP(\(\omega_2\)):

- introduced by Weiss
- follows from PFA (Viale-Weiss), and many consequences of PFA factor through ISP(\(\omega_2\)).

Conjecture (Viale-Weiss): ISP(\(\omega_2\)) is consistent with large continuum (i.e. \(> \omega_2\)).
The principle ISP(ω_2):
- introduced by Weiss
- follows from PFA (Viale-Weiss), and many consequences of PFA factor through ISP(ω_2).
- **Conjecture (Viale-Weiss):** ISP(ω_2) is consistent with large continuum (i.e. $> \omega_2$).

Theorem (C.-Krueger 2014)

Proved the conjecture of Viale-Weiss. Developed general theory of quotients of strongly proper forcings.
Outline

1 Approximation property and guessing models

2 Strongly proper forcings and their quotients

3 an application: the Viale-Weiss conjecture

4 Specialized guessing models, and a question
Definition (Hamkins)
Let \((W, W')\) be transitive models of set theory such that:

- \(W \subseteq W'\)
- \(\mu\) is regular in \(W\)

We say \((W, W')\) has the \(\mu\)-approximation property iff whenever:

1. \(X \in W'\);
2. \(X\) is a bounded subset of \(W\);
3. \(\forall z \in W \mid z^W < \mu \implies z \cap X \in W\)

then \(X \in W\).
Approximation property

Definition (Hamkins)

Let \((W, W')\) be transitive models of set theory such that:

- \(W \subset W'\)
- \(\mu\) is regular in \(W\)

We say \((W, W')\) has the \(\mu\)-approximation property iff whenever:

1. \(X \in W'\);
2. \(X\) is a bounded subset of \(W\);
3. \(\forall z \in W \; |z|^W < \mu \implies z \cap X \in W\)

then \(X \in W\).

We will focus on the case \(\mu = \omega_1\) throughout this talk.
The class G_{ω_1}

Definition (Viale-Weiss)

M is ω_1-guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1-approximation property (where H_M is transitive collapse of M).

Definition (Viale-Weiss)

$\text{ISP}(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

$$G_{\omega_1} \cap P_{\omega_2}(H_\theta) \text{ is stationary}$$
The class G_{ω_1}

Definition (Viale-Weiss)

M is ω_1-guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1-approximation property (where H_M is transitive collapse of M).

Definition (Viale-Weiss)

$\text{ISP}(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

$$G_{\omega_1} \cap P_{\omega_2}(H_\theta) \text{ is stationary}$$

Theorem (Viale-Weiss)

The Proper Forcing Axiom (PFA) implies $\text{ISP}(\omega_2)$.
The class G_{ω_1}

Definition (Viale-Weiss)

M is ω_1-guessing, denoted $M \in G_{\omega_1}$, iff $|M| = \omega_1 \subset M$ and (H_M, V) has the ω_1-approximation property (where H_M is transitive collapse of M).

Definition (Viale-Weiss)

$ISP(\omega_2)$ is the statement: for all regular $\theta \geq \omega_2$:

$$G_{\omega_1} \cap P_{\omega_2}(H_\theta)$$ is stationary

Theorem (Viale-Weiss)

The Proper Forcing Axiom (PFA) implies $ISP(\omega_2)$.

Generalization of theorems of Baumgartner, Krueger
Consequences of PFA that factor through ISP

- $TP(\omega_2)$
- Every tree of height and size ω_1 has at most ω_1 many cofinal branches (in particular no Kurepa trees)
 - together with $2^{\omega_1} = \omega_2$ this yields $\diamondsuit^+(S^2_1)$ (Foreman-Magidor)
- Failure of $\square(\theta)$ for all $\theta \geq \omega_2$ (Weiss; actually failure of weaker forms of square)
- SCH (Viale)
- IA$^{\omega_1} \neq * \text{ Unif}_{\omega_1}$ and stronger separations (Krueger)
- Laver Diamond at ω_2 (Viale from PFA, Cox from ISP plus $2^\omega = \omega_2$)
Consequences of PFA that factor through ISP

- $TP(\omega_2)$
- Every tree of height and size ω_1 has at most ω_1 many cofinal branches (in particular no Kurepa trees)
 - together with $2^{\omega_1} = \omega_2$ this yields $\lozenge^+(S^2_1)$ (Foreman-Magidor)
- Failure of $\Box(\theta)$ for all $\theta \geq \omega_2$ (Weiss; actually failure of weaker forms of square)
- SCH (Viale)
- $\text{IA}_{\omega_1} \not\equiv \text{Unif}_{\omega_1}$ and stronger separations (Krueger)
- Laver Diamond at ω_2 (Viale from PFA, Cox from ISP plus $2^\omega = \omega_2$)

Even more consequences of PFA factor through “specialized” ISP; more on that later.
Let T be a tree of height ω_2 and width $< \omega_2$. By stationarity of G_{ω_1} there is an $M \in G_{\omega_1}$ such that $M \prec (H_{\omega_3}, \in, T)$. Let $\sigma : H_M \rightarrow M \prec H_{\omega_3}$ be inverse of collapsing map of M; let

$$\alpha := M \cap \omega_2 = \text{crit}(\sigma)$$

and $T_M := \sigma^{-1}(T)$

Our goal is to prove that $H_M \models "T_M \text{ has a cofinal branch}"$.

Example: $ISP(\omega_2)$ implies $TP(\omega_2)$

Let T be a tree of height ω_2 and width $< \omega_2$. By stationarity of G_{ω_1} there is an $M \in G_{\omega_1}$ such that $M \prec (H_{\omega_3}, \in, T)$. Let $\sigma : H_M \to M \prec H_{\omega_3}$ be inverse of collapsing map of M; let

$$\alpha := M \cap \omega_2 = \text{crit}(\sigma) \text{ and } T_M := \sigma^{-1}(T)$$

Our goal is to prove that $H_M \models \text{“} T_M \text{ has a cofinal branch”}$.

Since (H_M, V) has the ω_1-approximation property, it suffices to find (in V) a cofinal b through T_M such that every proper initial segment of b is an element of H_M. But since T is thin, then $T_M = T|\alpha$. Pick any t on the α-th level of T; then $t \downarrow$ is a cofinal branch through $T_M = T|\alpha$ and every proper initial segment is of course in H_M.
1. Approximation property and guessing models

2. Strongly proper forcings and their quotients

3. an application: the Viale-Weiss conjecture

4. Specialized guessing models, and a question
A suborder \mathbb{P} of \mathbb{Q} is regular iff maximal antichains in \mathbb{P} remain maximal antichains in \mathbb{Q}.
A suborder \(P \) of \(Q \) is regular iff maximal antichains in \(P \) remain maximal antichains in \(Q \).

Definition

Suppose \(P \) is a regular suborder of \(Q \) and \(G_P \) is \(P \)-generic. In \(V[G_P] \) the (possibly nonseparable) quotient \(Q/G_P \) is the set of \(q \in Q \) which are compatible with every member of \(G_P \). Order is inherited from \(Q \).

\[
Q \sim P \ast \dot{Q}/\dot{G}_P
\]
A suborder \mathbb{P} of \mathbb{Q} is \textit{regular} iff maximal antichains in \mathbb{P} remain maximal antichains in \mathbb{Q}.

Definition

Suppose \mathbb{P} is a regular suborder of \mathbb{Q} and $G_\mathbb{P}$ is \mathbb{P}-generic. In $V[G_\mathbb{P}]$ the (possibly nonseparative) quotient $\mathbb{Q}/G_\mathbb{P}$ is the set of $q \in \mathbb{Q}$ which are compatible with every member of $G_\mathbb{P}$. Order is inherited from \mathbb{Q}.

$$\mathbb{Q} \sim \mathbb{P} \ast \check{\mathbb{Q}}/\check{G}_\mathbb{P}$$

Important variation: “\mathbb{P} is regular in \mathbb{Q} below q”
The following notion is due to Mitchell.

Definition

Given a poset \mathbb{P} and a model M, a condition $p \in \mathbb{P}$ is an (M, \mathbb{P}) strong master condition iff “$M \cap \mathbb{P}$ is a regular suborder of \mathbb{P} below p”.

(we focus only on countable M)
The following notion is due to Mitchell.

Definition

Given a poset \mathbb{P} and a model M, a condition $p \in \mathbb{P}$ is an (M, \mathbb{P}) strong master condition iff “$M \cap \mathbb{P}$ is a regular suborder of \mathbb{P} below p”.

(we focus only on countable M)

“\mathbb{P} is strongly proper”: defined similarly to properness, using strong master condition instead of master condition.
Examples and properties of strongly proper forcings

Examples:
- Todorcevic’s finite \in-collapse
- Baumgartner’s adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Key properties (Mitchell):
$\text{Add}(\omega, V, V_P)$ has the ω_1-approximation property

Remark: To get ω_1 approx, suffices to be strongly proper wrt stationarily many countable models.
Examples and properties of strongly proper forcings

Examples:
- Todorcevic’s finite \in-collapse
- Baumgartner’s adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Key properties (Mitchell):
- absorbs $\text{Add}(\omega)$
- (V, V^P) has the ω_1-approximation property

Remark: To get ω_1 approx, suffices to be strongly proper wrt stationarily many countable models.
Examples and properties of strongly proper forcings

Examples:
- Todorcevic’s finite \in-collapse
- Baumgartner’s adding a club with finite conditions
- adding any number of Cohen reals
- Various (pure) side condition posets of Mitchell, Friedman, Neeman, Krueger, and others.

Key properties (Mitchell):
- absorbs $\text{Add}(\omega)$
- (V, V^P) has the ω_1-approximation property

Remark: To get ω_1 approx, suffices to be strongly proper wrt stationarily many countable models.
Suppose $1_{\mathbb{P}}$ forces that \dot{b} is a **new** subset of θ and that $z \cap \dot{b} \in V$ for every V-countable set z. Let $M \prec (H_{\theta^+}, \in, \dot{b}, \ldots)$ be countable and let p be a strong master condition for M. Since M is countable then by assumption $\check{M} \cap \dot{b}$ is forced to be in the ground model. Let $p' \leq p$ decide this value.
Suppose 1_p forces that \dot{b} is a **new** subset of θ and that $z \cap \dot{b} \in V$ for every V-countable set z. Let $M \prec (H_{\theta^+}, \in, \dot{b}, \ldots)$ be countable and let p be a strong master condition for M. Since M is countable then by assumption $\check{M} \cap \dot{b}$ is forced to be in the ground model. Let $p' \leq p$ decide this value.

Let $p'|M$ be a **reduct** of p' into $M \cap P$. Since \dot{b} is forced to be new and $\dot{b}, p'|M \in M$, then there are $r, s \in M$ below $p'|M$ which disagree about some member of M being an element of \dot{b}. Then clearly they cannot both be compatible with a condition which decides $\check{M} \cap \dot{b}$. In particular they cannot both be compatible with p'. Contradiction.
Quotients of strongly proper forcings

Question

Suppose Q is strongly proper and P is a regular suborder. When does the quotient Q / \dot{G}_P have the following properties?

- strongly proper “wrt V models”?
- ω_1-approximation property?
Quotients of strongly proper forcings

Question

Suppose \mathbb{Q} is strongly proper and \mathbb{P} is a regular suborder. When does the quotient $\mathbb{Q}/\dot{G}_\mathbb{P}$ have the following properties?

- *strongly proper “wrt V models”?*
- *ω_1-approximation property?*

Remark: There are well-known examples of quotients of proper forcings that aren’t proper.
From now on we only deal with “well-met” posets: if $p \parallel q$ then they have a GLB.
The star condition

From now on we only deal with “well-met” posets: if \(p \parallel q \) then they have a GLB

Definition (Krueger)

Assume \(P \) is a suborder of \(Q \).

\(\star(P, Q) \) denotes the statement: whenever \(p \in P \) and \(q_1, q_2 \in Q \) and \(p, q_1, q_2 \) are pairwise compatible, then there is a lower bound for all three.

\(\star(Q) \) is the stronger statement that \(\star(Q, Q) \) holds.

Examples where \(\star(Q) \) holds:
- \(\text{Col}(\mu, \theta) \)
- Todorcevic’s \(\in \)-collapse
- Krueger’s adequate set forcing
Lemma

Assume \(\star(\mathbb{P}, \mathbb{Q}) \) and let \(G_{\mathbb{P}} \) be generic for \(\mathbb{P} \). Then in \(V[G_{\mathbb{P}}] \):

\[
\left(\forall q_1, q_2 \in \mathbb{Q}/G_{\mathbb{P}} \right) \left(q_1 \parallel_{\mathbb{Q}} q_2 \implies q_1 \parallel_{\mathbb{Q}/G_{\mathbb{P}}} q_2 \right)
\]
Lemma

Assume $\star(\mathbb{P}, \mathbb{Q})$ and let $G_\mathbb{P}$ be generic for \mathbb{P}. Then in $V[G_\mathbb{P}]$:

$$(\forall q_1, q_2 \in \mathbb{Q}/G_\mathbb{P}) \ (q_1 \parallel q_2 \implies q_1 \parallel q_2')$$

Proof: let $q_1, q_2 \in \mathbb{Q}/G_\mathbb{P}$ and suppose $q_1 \land q_2 \neq 0$ in \mathbb{Q}; we will prove that $q_1 \land q_2 \in \mathbb{Q}/G_\mathbb{P}$, i.e. that $q_1 \land q_2$ is compatible with every member of $G_\mathbb{P}$. Let $p \in G_\mathbb{P}$. Then $q_1 \land p \neq 0 \neq q_2 \land p$. By $\star(\mathbb{P}, \mathbb{Q})$ we have $q_1 \land q_2 \land p \neq 0$.

\[(\mathbb{P}, \mathbb{Q}) \text{ implies strong master conditions survive in the quotient}\]

Lemma

Suppose \(\star(\mathbb{P}, \mathbb{Q})\) holds and \(q\) is \((M, \mathbb{Q})\) strong master condition. Then

\[
\Vdash_{\mathbb{P}} \check{q} \in \mathbb{Q}/\dot{G}_{\mathbb{P}} \implies \check{q} \text{ is } (M[\dot{G}_{\mathbb{P}}], \mathbb{Q}/\dot{G}_{\mathbb{P}}) \text{ s.m.c.}
\]
\((P, Q)\) implies strong master conditions survive in the quotient

Lemma

Suppose \(\star(P, Q)\) holds and \(q\) is \((M, Q)\) strong master condition. Then

\[\vdash_P \exists q \in Q / \dot{G}_P \implies \exists q \text{ is } (M[\dot{G}_P], Q / \dot{G}_P) \text{ s.m.c.} \]

Proof sketch: Suppose \(p \in P\) forces that \(\exists q \in Q / \dot{G}_P\) (i.e. \(\exists q \parallel \dot{G}_P\)). Then \(p\) must force that \(M[\dot{G}_P] \cap V = M\); otherwise there is some \(p' \leq p\) forcing \(M \subset M[\dot{G}_P] \cap V\), but \(p'\) still forces \(\exists q \in Q / \dot{G}_P\). So let \(G_P \ast H\) be generic (in the 2-step iteration) with \((p', q) \in G_P \ast H\). But \(q\) is in particular an \((M, Q)\) master condition, so \(M = M[G_P \ast H] \cap V \supset M[G_P] \cap V\). Contradiction.
Recall q is (M, \mathcal{Q}) strong master condition, and we showed that if $q \in \mathcal{Q}/G_P$ then in particular $\mathcal{Q} \cap M = \mathcal{Q} \cap M[G_P] =: \mathcal{Q}_M$. Now \mathcal{Q}_M is regular in \mathcal{Q} below q (this is Σ_0 statement).

Suppose $q' \leq q$, where $q' \in \mathcal{Q}/G_P$. Let $q'|M$ be a reduct of q' into \mathcal{Q}_M. We need to see that:

- $q'|M \parallel G_P$; this is straightforward, especially if $q'|M \geq q'$ as is usually the case; and

- any extension of $q'|M$ in \mathcal{Q}_M/G_P is compatible with q' in \mathcal{Q}/G_P. Suppose q'' is such a condition; so $q'' \parallel G_P$ and is \mathcal{Q}-compatible with q'. By the previous lemma (using the $\star(\mathcal{P}, \mathcal{Q})$ assumption), q' and q'' are compatible in \mathcal{Q}/G_P.
A sufficient condition

Theorem (C.-Krueger)

Suppose:

- Q is well-met;
- There is a stationary set S of countable models M for which Q has universal strong master conditions;
- P is a regular suborder of Q (possibly “below a condition”);
- $\star(\mathcal{P}, Q)$ holds

Then P forces that Q/\dot{G}_P is strongly proper for the stationary set of models of the form $M[\dot{G}_P]$ where $M \in S$. In particular, the quotient has the ω_1 approximation property.

REMARK: universality isn’t needed if you only want ω_1-approx property.
A sufficient condition

Theorem (C.-Krueger)

Suppose:
- \(Q \) is well-met;
- There is a stationary set \(S \) of countable models \(M \) for which \(Q \) has *universal* strong master conditions;
- \(P \) is a regular suborder of \(Q \) (possibly “below a condition”)
- \(*\!(P, Q) \) holds

Then \(P \) forces that \(Q/G_P \) is strongly proper for the stationary set of models of the form \(M[G_P] \) where \(M \in S \). In particular, the quotient has the \(\omega_1 \) approximation property.

REMARK: universality isn’t needed if you only want \(\omega_1 \)-approx property.
A counterexample

Quotients of strongly proper posets may fail to have the ω_1-approximation property:

Theorem (Krueger)

Assume $2^\omega = \omega_1$ and $2^{\omega_1} = \omega_2$. Let Q be the forcing with coherent adequate sets of countable submodels of H_{ω_3}. Then Q has the following properties:

- Q is strongly proper and ω_2-cc;
- Q forces CH
- Q adds a Kurepa tree on ω_1 with ω_3 many cofinal branches
- There is a regular suborder P of size ω_2 such that

$$\models_P Q/\dot{G}_P \text{ fails to have the } \omega_1 \text{ approximation property}$$
Outline

1. Approximation property and guessing models
2. Strongly proper forcings and their quotients
3. an application: the Viale-Weiss conjecture
4. Specialized guessing models, and a question
Recall Viale-Weiss:

- proved PFA implies ISP(ω₂);
- conjectured that ISP(ω₂) is consistent with large continuum.
Recall Viale-Weiss:
- proved PFA implies ISP(\(\omega_2\));
- conjectured that ISP(\(\omega_2\)) is consistent with large continuum.

Theorem (C.-Krueger)

Assume \(\kappa\) is a supercompact cardinal and \(\theta \geq \kappa\) arbitrary. Let:
- \(\mathbb{P}\) be “adequate set forcing” to turn \(\kappa\) into \(\kappa_2\); (or Neeman’s side condition forcing; or Friedman’s; ...)
- \(\mathbb{Q} = \text{Add}(\omega, \theta)\)

Then \(V^{\mathbb{P} \times \mathbb{Q}} \models \text{ISP}(\omega_2)\) and \(2^\omega = \theta\).
Proof outline

Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \geq \omega_2 = \kappa$ be regular and $\mathcal{A} = (H_\theta[G \times H], \in, \ldots)$ be an algebra.
Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \geq \omega_2 = \kappa$ be regular and
$\mathcal{A} = (H_\theta[G \times H], \in, \ldots)$ be an algebra.

Back in V let $j : V \rightarrow N$ be sufficiently supercompact with
crit$(j) = \kappa$ so that $j[H_\theta] \in N$. $\mathbb{P} \times \mathbb{Q}$ is κ-cc and crit$(j) = \kappa$, so
j : $\mathbb{P} \times \mathbb{Q} \rightarrow j(\mathbb{P} \times \mathbb{Q})$ is a regular embedding; so we can force with the quotient

$$j(\mathbb{P} \times \mathbb{Q})/j[G \times H]$$

and lift j to

$$j : V[G \times H] \rightarrow N[G' \times H']$$
Proof outline

Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$. Let $\theta \geq \omega_2 = \kappa$ be regular and $\mathcal{A} = (H_\theta[G \times H], \in, \ldots)$ be an algebra.

Back in V let $j : V \to N$ be sufficiently supercompact with $\text{crit}(j) = \kappa$ so that $j[H_\theta] \in N$. $\mathbb{P} \times \mathbb{Q}$ is κ-cc and $\text{crit}(j) = \kappa$, so $j : \mathbb{P} \times \mathbb{Q} \to j(\mathbb{P} \times \mathbb{Q})$ is a regular embedding; so we can force with the quotient

$$j(\mathbb{P} \times \mathbb{Q})/j[G \times H]$$

and lift j to

$$j : V[G \times H] \to N[G' \times H']$$

N believes that $j(\mathbb{P} \times \mathbb{Q})$ is strongly proper and the pair

$$j[\mathbb{P} \times \mathbb{Q}], j(\mathbb{P} \times \mathbb{Q})$$

satisfies the star property. So $N[j[G \times H]]$ believes that the quotient in (1) has the ω_1-approximation property; so $(H^V_\theta[G \times H], N[G' \times H'])$ has ω_1-a.p., and also

$$j[H^V_\theta[G \times H]] \prec j(\mathcal{A})$$. Then use elementarity of j.

1. Approximation property and guessing models
2. Strongly proper forcings and their quotients
3. an application: the Viale-Weiss conjecture
4. Specialized guessing models, and a question
What Viale-Weiss really proved

Definition
Let’s call M a specialized ω_1 guessing model, and write $M \in sG_{\omega_1}$, iff a certain tree related to M is specialized; in particular $M \in G_{\omega_1}$ and remains so in any outer model with the same ω_1.

They proved that under PFA, $sG_{\omega_1} \cap P_{\omega_2}(H_\theta) (\cap IC_{\omega_1})$ is stationary for all $\theta \geq \omega_2$.
Consequences of PFA which factor through specialized guessing models

- If T is a tree of height and size ω_1 then forcing with T collapses ω_1 (Baumgartner)
- (together with assumption $2^\omega = \omega_2$) Every forcing which adds a new subset of ω_1 either adds a real or collapses ω_2 (Todorcevic)
In V consider the stationary set $S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2})$. Using stationarity of S and the assumption that $2^\omega = \omega_2$, fix a \subset-increasing (non-continuous) chain $\langle M_\alpha \mid \alpha < \omega_2 \rangle$ of elements of S whose union contains H_{ω_1}.

Suppose W is an outer model of V which adds a new subset b of ω_1, and doesn’t add a real. Then it doesn’t add new subsets of countable ordinals either, so for all $\xi < \omega_1$ we have $b \cap \xi \in H_{\omega_1} \subset \bigcup_{\alpha < \omega_2} M_\alpha$. In W define a function $f: \omega_1 \to \omega_{\omega_2}$ by sending ξ to the least α such that $b \cap \xi \in M_\alpha$. This is a cofinal map from $\omega_1 \to \omega_{\omega_2}$ since for any $\alpha < \omega_2$, since $b \not\in M_\alpha$ and M_α is G_{ω_1}-closed, there is some $\xi < \omega_1$ such that $b \cap \xi \not\in M_\alpha$.

47 / 50
Sketch of proof

In \(V \) consider the stationary set \(S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2}) \). Using stationarity of \(S \) and the assumption that \(2^\omega = \omega_2 \), fix a \(\subset \)-increasing (non-continuous) chain \(\langle M_\alpha \mid \alpha < \omega_2 \rangle \) of elements of \(S \) whose union contains \(H_{\omega_1} \).

Suppose \(W \) is an outer model of \(V \) which adds a new subset \(b \) of \(\omega_1 \), and doesn’t add a real. Then it doesn’t add new subsets of countable ordinals either, so for all \(\xi < \omega_1 \) we have

\[
b \cap \xi \in H_{\omega_1}^V \subset \bigcup_{\alpha < \omega_2} M_\alpha
\]
In V consider the stationary set $S := sG_{\omega_1} \cap P_{\omega_2}(H_{\omega_2})$. Using stationarity of S and the assumption that $2^\omega = \omega_2$, fix a \subseteq-increasing (non-continuous) chain $\langle M_\alpha \mid \alpha < \omega_2 \rangle$ of elements of S whose union contains H_{ω_1}.

Suppose W is an outer model of V which adds a new subset b of ω_1, and doesn’t add a real. Then it doesn’t add new subsets of countable ordinals either, so for all $\xi < \omega_1$ we have

$$b \cap \xi \in H_{\omega_1}^V \subset \bigcup_{\alpha < \omega_2} M_\alpha$$

In W define a function $f : \omega_1 \to \omega_2^V$ by sending ξ to the least α such that $b \cap \xi \in M_\alpha$. This is a cofinal map from $\omega_1 \to \omega_2^V$ since for any $\alpha < \omega_2$, since $b \notin M_\alpha$ and M_α is $G_{\omega_1}^W$ then there is some $\xi < \omega_1$ such that $b \cap \xi \notin M_\alpha$.
A new question

Our model of ISP(\(\omega_2\)) plus large continuum is NOT a model of the “specialized” version (because it has a tree of height and size \(\omega_1\) whose forcing doesn’t collapse \(\omega_1\)).
This suggests a natural modification of the Viale-Weiss question:

Question

Assume “specialized” ISP(\(\omega_2\)); i.e. suppose \(sG_{\omega_1}\) is stationary for all \(P_{\omega_2}(H_\theta)\). Does this imply \(2^\omega = \omega_2\)?