Arnold diffusion for convex nearly integrable systems

V. Kaloshin

November 24, 2014
Plan of the talk

- Motivation: Ergodic and quasiergodic hypothesis.
 - Nearly integrable systems and the problem of Arnold diffusion
 - Results in 3, 4, and more degrees of freedom
 - Indication of Arnold diffusion in the Solar system
 - Stochastic aspects of Arnold diffusion
Plan of the talk

- Motivation: Ergodic and quasiergodic hypothesis.
- Nearly integrable systems and the problem of Arnold diffusion
 - Results in 3, 4, and more degrees of freedom
 - Indication of Arnold diffusion in the Solar system
 - Stochastic aspects of Arnold diffusion
Plan of the talk

- Motivation: Ergodic and quasiergodic hypothesis.
- Nearly integrable systems and the problem of Arnold diffusion
- Results in 3, 4, and more degrees of freedom
 - Indication of Arnold diffusion in the Solar system
 - Stochastic aspects of Arnold diffusion
Motivation: Ergodic and quasiergodic hypothesis.
Nearly integrable systems and the problem of Arnold diffusion
Results in 3, 4, and more degrees of freedom
Indication of Arnold diffusion in the Solar system
Stochastic aspects of Arnold diffusion
Plan of the talk

- Motivation: Ergodic and quasiergodic hypothesis.
- Nearly integrable systems and the problem of Arnold diffusion
- Results in 3, 4, and more degrees of freedom
- Indication of Arnold diffusion in the Solar system
- Stochastic aspects of Arnold diffusion
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{align*}
\dot{q} &= \partial_p H \\
\dot{p} &= -\partial_q H
\end{align*}
\]

Let $S_E = \{(q, p) \in T^* M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{align*}
\dot{q} &= \partial_p H \\
\dot{p} &= -\partial_q H
\end{align*}
\]

(1)

Let $S_E = \{(q, p) \in T^*M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{aligned}
\dot{q} &= \partial_p H \\
\dot{p} &= -\partial_q H
\end{aligned}
\] (1)

Let $S_E = \{(q, p) \in T^*M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{align*}
 \dot{q} &= \partial_p H \\
 \dot{p} &= -\partial_q H
\end{align*}
\]

(1)

Let $S_E = \{(q, p) \in T^*M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{align*}
\dot{q} &= \partial_p H \\
\dot{p} &= -\partial_q H
\end{align*}
\]

Let $S_E = \{(q, p) \in T^* M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (**Fermi-Pasta-Ulam**) Chains of nonlinear springs

\[\ddot{u}_n = k(u_{n+1} - u_n) - k(u_n - u_{n-1}) + \alpha(u_{n+1} - u_n)^2 + \alpha(u_n - u_{n-1})^2\]

the α-term — nonlinearity. Most “small” solutions are almost periodic!
Motivation: Ergodic Hypothesis

Let \(H : \mathbb{R}^{2n} \rightarrow \mathbb{R} \) be a smooth function, \((q, p) \in \mathbb{R}^n \times \mathbb{R}^n\). Let \(X_H \) be the Hamiltonian flow associated to \(H \).

\[
\begin{cases}
\dot{q} = \partial_p H \\
\dot{p} = -\partial_q H
\end{cases}
\]

Let \(S_E = \{(q, p) \in T^* M : H(q, p) = E\} \) be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow \(X_H \) on a generic energy surface \(S_E \) ergodic?

Numerical doubts (**Fermi-Pasta-Ulam**) Chains of nonlinear springs

\[
\ddot{u}_n = k(u_{n+1} - u_n) - k(u_n - u_{n-1}) + \alpha(u_{n+1} - u_n)^2 + \alpha(u_n - u_{n-1})^2
\]

the \(\alpha \)-term — nonlinearity.

Most “small” solutions are almost periodic!
Motivation: Ergodic Hypothesis

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^n \times \mathbb{R}^n$. Let X_H be the Hamiltonian flow associated to H.

\[
\begin{align*}
\dot{q} &= \partial_p H \\
\dot{p} &= -\partial_q H
\end{align*}
\]

Let $S_E = \{(q, p) \in T^* M : H(q, p) = E\}$ be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian flow X_H on a generic energy surface S_E ergodic?

Numerical doubts (**Fermi-Pasta-Ulam**) Chains of nonlinear springs

\[
\ddot{u}_n = k(u_{n+1} - u_n) - k(u_n - u_{n-1}) + \alpha(u_{n+1} - u_n)^2 + \alpha(u_n - u_{n-1})^2
\]

the α-term — nonlinearity. **Most** “small” solutions are **almost periodic**!
Quasiergodic Hypothesis

KAM theory Each *nearly integrable* systems has collections of invariant tori of positive measure \Rightarrow no ergodicity!

Quasiergodic Hypothesis (Birkhoff, Ehrenfest) Does a generic Hamiltonian flow on a generic energy surface S_E have a dense orbit?
Quasiergodic Hypothesis

KAM theory Each *nearly integrable* systems has collections of invariant tori of positive measure \Rightarrow no ergodicity!

Quasiergodic Hypothesis (Birkhoff, Ehrenfest) Does a generic Hamiltonian flow on a generic energy surface S_E have a dense orbit?
Quasiergodic Hypothesis

KAM theory Each *nearly integrable* systems has collections of invariant tori of positive measure \Rightarrow no ergodicity!

Quasiergodic Hypothesis (Birkhoff, Ehrenfest) Does a generic Hamiltonian flow on a generic energy surface S_E have a dense orbit?
Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^n$ be angle, $I \in \mathbb{R}^n$ be action.

A Hamiltonian system is **Arnold-Liouville integrable** if for an open set $U \subset \mathbb{R}^n$ there exists a symplectic map $\Phi : \mathbb{T}^n \times U \to \mathbb{R}^{2n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$\begin{cases} \dot{\varphi} = \partial_I(H \circ \Phi)(I) = \omega(I), \\ I = 0. \end{cases}$$

(φ, I)–action-angle coordinates

In particular, $\Phi(\mathbb{T}^n \times U)$ is foliated by invariant n-dim’l tori & on each torus \mathbb{T}^n the flow is linear.
Let $H : \mathbb{R}^{2n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^n$ be angle, $I \in \mathbb{R}^n$ be action.

A Hamiltonian system is **Arnold-Liouville integrable** if for an open set $U \subset \mathbb{R}^n$ there exists a symplectic map $\Phi : \mathbb{T}^n \times U \rightarrow \mathbb{R}^{2n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

\[
\begin{cases}
\dot{\varphi} = \partial_I (H \circ \Phi)(I) = \omega(I), \\
\dot{I} = 0.
\end{cases}
\]

(φ, I)—action-angle coordinates

In particular, $\Phi(\mathbb{T}^n \times U)$ is foliated by invariant n-dim’l tori & on each torus \mathbb{T}^n the flow is linear.
Integrable systems & action-angles coordinates

Let $H : \mathbb{R}^{2n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^n$ be angle, $I \in \mathbb{R}^n$ be action.

A Hamiltonian system is **Arnold-Liouville integrable** if for an open set $U \subset \mathbb{R}^n$ there exists a symplectic map $\Phi : \mathbb{T}^n \times U \rightarrow \mathbb{R}^{2n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\begin{align*}
\dot{\varphi} &= \partial_I(H \circ \Phi)(I) = \omega(I), \\
\dot{I} &= 0.
\end{align*}
$$

(φ, I)–action-angle coordinates

In particular, $\Phi(\mathbb{T}^n \times U)$ is foliated by invariant n-dimensional tori and on each torus \mathbb{T}^n the flow is linear.
Integrable systems

- Newtonian two body problem.
- Pendulum \(H = \frac{I^2}{2} - \cos 2\pi \varphi, \ (\varphi, I) \in T^*T = T \times \mathbb{R} \).
- Harmonic oscillator \(\ddot{q} = -kq \) or \(H = \frac{p^2}{2} + \frac{kq^2}{2} \).
- Motion in a central force field \(\ddot{q} = F(||q||)q \).
- Newtonian two center problem.
- Lagrange’s top, Kovaleskaya’s top, Euler top.
- Toda lattice: chain \(\cdots < x_0 < x_1 < \cdots \) with the neighbor interaction \(\sum_i \exp(x_i - x_{i+1}) \).
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an \(n \)-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, l) \in T^* \mathbb{T} = \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(\|q\|)q$.
- Newtonian two center problem.
- Lagrange’s top, Kovaleskaya’s top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{p^2}{2} - \cos 2\pi \varphi$, $(\varphi, I) \in T^* T = T \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(||q||)q$.
- Newtonian two center problem.
- Lagrange’s top, Kovaleskaya’s top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, I) \in T^*T = \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(\|q\|)q$.
- Newtonian two center problem.
- Lagrange’s top, Kovaleskaya’s top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.

- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, l) \in T^*\mathbb{T} = \mathbb{T} \times \mathbb{R}$.

- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.

- Motion in a central force field $\ddot{q} = F(\|q\|)q$.

- Newtonian two center problem.

- Lagrange’s top, Kovaleskaya’s top, Euler top.

- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.

- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.

- A geodesic flow on an n-dim’l ellipsoid with different main axes.

- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, l) \in T^*T = \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(\|q\|)q$.
- Newtonian two center problem.
 - Lagrange’s top, Kovaleskaya’s top, Euler top.
 - Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$
 - Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
 - A geodesic flow on an n-dim’l ellipsoid with different main axes.
 - A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, l) \in T^*T = \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(||q||)q$.
- Newtonian two center problem.
- Lagrange’s top, Kovalevskaya’s top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum \(H = \frac{l^2}{2} - \cos 2\pi \varphi, \ (\varphi, l) \in T^*T = T \times \mathbb{R}. \)
- Harmonic oscillator \(\ddot{q} = -kq \) or \(H = \frac{p^2}{2} + \frac{kq^2}{2}. \)
- Motion in a central force field \(\ddot{q} = F(\|q\|)q. \)
- Newtonian two center problem.
- Lagrange’s top, Kovalevskaya’s top, Euler top.
- Toda lattice: chain \(\cdots < x_0 < x_1 < \cdots \) with the neighbor interaction \(\sum_i \exp(x_i - x_{i+1}) \)
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an \(n \)-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum \(H = \frac{l^2}{2} - \cos 2\pi \varphi \), \((\varphi, l) \in T^*T = T \times \mathbb{R}\).
- Harmonic oscillator \(\ddot{q} = -kq \) or \(H = \frac{p^2}{2} + \frac{kq^2}{2} \).
- Motion in a central force field \(\ddot{q} = F(\|q\|)q \).
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler top.
- Toda lattice: chain \(\cdots < x_0 < x_1 < \cdots \) with the neighbor interaction \(\sum_i \exp(x_i - x_{i+1}) \)
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an \(n \)-dim'’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonial two body problem.
- Pendulum $H = \frac{l^2}{2} - \cos 2\pi \varphi$, $(\varphi, l) \in T^*T = \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(\|q\|)q$.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$.
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim'ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Integrable systems

- Newtonian two body problem.
- Pendulum $H = \frac{I^2}{2} - \cos 2\pi \varphi$, $(\varphi, I) \in T^*T = T \times \mathbb{R}$.
- Harmonic oscillator $\ddot{q} = -kq$ or $H = \frac{p^2}{2} + \frac{kq^2}{2}$.
- Motion in a central force field $\ddot{q} = F(\|q\|)q$.
- Newtonian two center problem.
- Lagrange’s top, Kovaleskaya’s top, Euler top.
- Toda lattice: chain $\cdots < x_0 < x_1 < \cdots$ with the neighbor interaction $\sum_i \exp(x_i - x_{i+1})$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim’l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.
Arnold diffusion

Arnold, 63: Let \((\varphi, I) \in T^*T^n = T^n \times \mathbb{R}^n, \ t \in T.\)

(weak form) Does there exist a real instability in many-dimensional problems of perturbation theory when the invariant tori do not divide the phase space? More precisely, for a generic perturbation \(\varepsilon H_1(\varphi, I, t)\) the Hamiltonian

\[H_\varepsilon(\varphi, I, t) = H_0(I) + \varepsilon H_1(\varphi, I, t) \]

has an orbit whose action component “travels” in action space, in particular, \(\max_t \| I(t) - I(0) \| = O(1).\)

(strong form) For any two open sets \(U, U' \subset B^n\) the Hamiltonian \(H_\varepsilon(\varphi, I, t)\) has an orbit whose action component “travels” from \(U\) to \(U'\), i.e. \(I(0) \in U\) and \(I(T) \in U'\) for some \(T > 0.\)
Arnold, 63: Let \((\varphi, I) \in T^*\mathbb{T}^n = \mathbb{T}^n \times \mathbb{R}^n, \ t \in \mathbb{T}\).

(weak form) Does there exist a real instability in many-dimensional problems of perturbation theory when the invariant tori do not divide the phase space? More precisely, for a generic perturbation \(\varepsilon H_1(\varphi, I, t)\) the Hamiltonian

\[
H_\varepsilon(\varphi, I, t) = H_0(I) + \varepsilon H_1(\varphi, I, t)
\]

has an orbit whose action component “travels” in action space, in particular, \(\max_t \| I(t) - I(0) \| = O(1)\).

(strong form) For any two open sets \(U, U' \subset \mathbb{B}^n\) the Hamiltonian \(H_\varepsilon(\varphi, I, t)\) has an orbit whose action component “travels” from \(U\) to \(U'\), i.e. \(I(0) \in U\) and \(I(T) \in U'\) for some \(T > 0\).
Arnold, 63: Let $(\varphi, I) \in T^*T^n = T^n \times \mathbb{R}^n$, $t \in T$.

- (weak form) Does there exist a real instability in many-dimensional problems of perturbation theory when the invariant tori do not divide the phase space? More precisely, for a generic perturbation $\epsilon H_1(\varphi, I, t)$ the Hamiltonian

$$H_\epsilon(\varphi, I, t) = H_0(I) + \epsilon H_1(\varphi, I, t)$$

has an orbit whose action component “travels” in action space, in particular, $\max_t \|I(t) - I(0)\| = O(1)$.

- (strong form) For any two open sets $U, U' \subset B^n$ the Hamiltonian $H_\epsilon(\varphi, I, t)$ has an orbit whose action component “travels” from U to U', i.e. $I(0) \in U$ and $I(T) \in U'$ for some $T > 0$.

V. Kaloshin (University of Maryland)
Let $H_0(l) = \frac{l^2}{2}$. Time one map $(\varphi, l) \rightarrow (\varphi + l, l) \pmod{1}$.

Let $H_\varepsilon(\varphi, l, t) = H_0(l) + \varepsilon H_1(\varphi, l, t)$. The model time one map

$$f_\varepsilon : (\varphi, l) \rightarrow (\varphi', l') = (\varphi + l', l + \varepsilon \sin 2\pi \varphi) \pmod{1}.$$
Let $H_0(I) = \frac{I^2}{2}$. Time one map $(\phi, I) \rightarrow (\phi + I, I)$ (mod 1).

Let $H_\varepsilon(\phi, I, t) = H_0(I) + \varepsilon H_1(\phi, I, t)$. The model time one map

$f_\varepsilon : (\phi, I) \rightarrow (\phi', I') = (\phi + I', I + \varepsilon \sin 2\pi \phi)$ (mod 1).
Let $H_0(I) = \frac{l^2}{2}$. Time one map $(\varphi, I) \rightarrow (\varphi + I, I)$ (mod 1).

Let $H_\epsilon(\varphi, I, t) = H_0(I) + \epsilon H_1(\varphi, I, t)$. The model time one map $f_\epsilon : (\varphi, I) \rightarrow (\varphi', I') = (\varphi + I', I + \epsilon \sin 2\pi \varphi)$ (mod 1).
KAM Theorem, obstacles to instability

Let $H_0(l)$ have non-degenerate Hessian, e.g. $H_0(l) = \sum l_j^2 / 2$.

KAM Theorem

Let $H_\varepsilon(\varphi, l, t) = H_0(l) + \varepsilon H_1(\varphi, l, t)$ be a smooth perturbation. Then with probability $1 - O(\sqrt{\varepsilon})$ has an initial condition in $\mathbb{T}^n \times B^n \times \mathbb{T}$ having a quasiperiodic orbit. Moreover, $\mathbb{T}^n \times B^n \times \mathbb{T}$ with certain neighborhood of rational lines deleted is laminated by invariant $(n + 1)$-dimensional tori, one for each diophantine ω.
KAM Theorem, obstacles to instability

Let $H_0(I)$ have non-degenerate Hessian, e.g. $H_0(I) = \sum l_j^2 / 2$.

KAM Theorem Let $H_\varepsilon(\varphi, I, t) = H_0(I) + \varepsilon H_1(\varphi, I, t)$ be a smooth perturbation. Then with probability $1 - O(\sqrt{\varepsilon})$ has an initial condition in $\mathbb{T}^n \times B^n \times \mathbb{T}$ having a quasiperiodic orbit. Moreover, $\mathbb{T}^n \times B^n \times \mathbb{T}$ with certain neighborhood of rational lines deleted is laminated by invariant $(n+1)$-dimensional tori, one for each diophantine ω.
KAM Theorem, obstacles to instability

Let $H_0(l)$ have non-degenerate Hessian, e.g. $H_0(l) = \sum l_j^2 / 2$.

KAM Theorem Let $H_\epsilon(\varphi, l, t) = H_0(l) + \epsilon H_1(\varphi, l, t)$ be a smooth perturbation. Then with probability $1 - O(\sqrt{\epsilon})$ has an initial condition in $\mathbb{T}^n \times B^n \times \mathbb{T}$ having a quasiperiodic orbit. Moreover, $\mathbb{T}^n \times B^n \times \mathbb{T}$ with certain neighborhood of rational lines deleted is laminated by invariant $(n + 1)$-dimensional tori, one for each diophantine ω.

Diagram showing a torus lattice with width $\sim \sqrt{\epsilon}$.

V. Kaloshin (University of Maryland)
Arnold diffusion
November 24, 2014
In $(2n + 1)$-dimensional space there are $(n + 1)$-dimensional tori.

For $n = 1$ they confine orbits!
For $n > 1$ they do not!
In $(2n + 1)$-dimensional space there are $(n + 1)$-dimensional tori. For $n = 1$ they confine orbits! For $n > 1$ they do not!
In $(2n + 1)$-dimensional space there are $(n + 1)$-dimensional tori. For $n = 1$ they confine orbits! For $n > 1$ they do not!
Let \(H_0(l) \) be smooth and strictly convex, \(l \in B^n \).

The First Main Result For any \(\gamma > 0 \) & a generic smooth perturbation \(\varepsilon H_1(\phi, l, t) \) the Hamiltonian

\[
H_\varepsilon(\phi, l, t) = H_0(l) + \varepsilon H_1(\phi, l, t)
\]

has an orbit \((\phi_\varepsilon, l_\varepsilon, t)(t) \) which is \(\gamma \)-dense in \(\mathbb{T}^n \times B^n \times \mathbb{T} \). Namely, \(\gamma \)-neighbourhood of \(\cup_t (\phi_\varepsilon, l_\varepsilon, t)(t) \) contains \(\mathbb{T}^n \times B^n \times \mathbb{T} \).

[K-Zhang, 12] \(n=2 \) (arxiv)

In 2002 a version of this result was announced by Mather.

There is an announcement of Cheng.

[K-Zhang, 14] \(n=3 \) (my webpage)

[K-Zhang, 14] \(n > 3 \), progress (arxiv)
Let $H_0(l)$ be smooth and strictly convex, $l \in B^n$.

The First Main Result For any $\gamma > 0$ & a generic smooth perturbation $\varepsilon H_1(\phi, l, t)$ the Hamiltonian

$$H_\varepsilon(\varphi, l, t) = H_0(l) + \varepsilon H_1(\varphi, l, t)$$

has an orbit $(\varphi_\varepsilon, l_\varepsilon, t)(t)$ which is γ-dense in $\mathbb{T}^n \times B^n \times \mathbb{T}$. Namely, γ-neighbourhood of $\bigcup_t (\varphi_\varepsilon, l_\varepsilon, t)(t)$ contains $\mathbb{T}^n \times B^n \times \mathbb{T}$.

[K-Zhang, 12] $n=2$ (arxiv)

In 2002 a version of this result was announced by Mather. There is an announcement of Cheng.

[K-Zhang, 14] $n=3$ (my webpage)

[K-Zhang, 14] $n > 3$, progress (arxiv)
Let $H_0(l)$ be smooth and strictly convex, $l \in B^n$.

The First Main Result For any $\gamma > 0$ & a generic smooth perturbation $\varepsilon H_1(\phi, l, t)$ the Hamiltonian

$$H_\varepsilon(\phi, l, t) = H_0(l) + \varepsilon H_1(\phi, l, t)$$

has an orbit $(\phi_\varepsilon, l_\varepsilon, t)(t)$ which is γ-dense in $\mathbb{T}^n \times B^n \times \mathbb{T}$. Namely, γ-neighbourhood of $\cup_t (\phi_\varepsilon, l_\varepsilon, t)(t)$ contains $\mathbb{T}^n \times B^n \times \mathbb{T}$.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an announcement of Cheng.

[K-Zhang, 14] n=3 (my webpage)

[K-Zhang, 14] $n > 3$, progress (arxiv)
Let $H_0(I)$ be smooth and strictly convex, $I \in B^n$.

The First Main Result For any $\gamma > 0$ & a generic smooth perturbation $\varepsilon H_1(\phi, I, t)$ the Hamiltonian

$$H_\varepsilon(\phi, I, t) = H_0(I) + \varepsilon H_1(\phi, I, t)$$

has an orbit $(\phi_\varepsilon, l_\varepsilon, t)(t)$ which is γ-dense in $\mathbb{T}^n \times B^n \times \mathbb{T}$. Namely, γ-neighbourhood of $\bigcup_t (\phi_\varepsilon, l_\varepsilon, t)(t)$ contains $\mathbb{T}^n \times B^n \times \mathbb{T}$.

[K-Zhang, 12] $n=2$ (arxiv)
In 2002 a version of this result was announced by Mather.
There is an announcement of Cheng.

[K-Zhang, 14] $n>3$, progress (arxiv)
Let $H_0(l)$ be smooth and strictly convex, $l \in B^n$.

The First Main Result For any $\gamma > 0$ & a generic smooth perturbation $\varepsilon H_1(\phi, l, t)$ the Hamiltonian

$$H_\varepsilon(\varphi, l, t) = H_0(l) + \varepsilon H_1(\varphi, l, t)$$

has an orbit $(\varphi_\varepsilon, l_\varepsilon, t)(t)$ which is γ-dense in $\mathbb{T}^n \times B^n \times \mathbb{T}$. Namely, γ-neighbourhood of $\bigcup_t (\varphi_\varepsilon, l_\varepsilon, t)(t)$ contains $\mathbb{T}^n \times B^n \times \mathbb{T}$.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an announcement of Cheng.

[K-Zhang, 14] n=3 (my webpage)
[K-Zhang, 14] $n > 3$, progress (arxiv)
Let $H_0(l)$ be smooth and strictly convex, $l \in B^n$.

The First Main Result For any $\gamma > 0$ & a generic smooth perturbation $\varepsilon H_1(\phi, l, t)$ the Hamiltonian

$$H_\varepsilon(\varphi, I, t) = H_0(l) + \varepsilon H_1(\varphi, I, t)$$

has an orbit $(\varphi_\varepsilon, I_\varepsilon, t)(t)$ which is γ-dense in $\mathbb{T}^n \times B^n \times \mathbb{T}$. Namely, γ-neighbourhood of $\bigcup_t (\varphi_\varepsilon, I_\varepsilon, t)(t)$ contains $\mathbb{T}^n \times B^n \times \mathbb{T}$.

[K-Zhang, 12] n=2 (arxiv)

In 2002 a version of this result was announced by Mather. There is an announcement of Cheng.

[K-Zhang, 14] n=3 (my webpage)

[K-Zhang, 14] $n > 3$, progress (arxiv)
A weak form of quasiergodic hypothesis

Let $H_0(I)$ be smooth and strictly convex, $I \in B^2$.

The Second Main Result [Guardia-K] For any $\gamma > 0$ & a dense set of perturbations εH_1 the Hamiltonian $H_\varepsilon(\varphi, I, t) = H_0(I) + \varepsilon H_1(\varphi, I, t)$ has an orbit $(\varphi_\varepsilon, l_\varepsilon, t)(t)$ accumulating to all KAM tori and, therefore,

$$\frac{\text{Leb} \left\{ \bigcup_t (\varphi_\varepsilon, l_\varepsilon, t)(t) \right\}}{\text{Leb}\{\mathbb{T}^2 \times B^2 \times \mathbb{T}\}} > 1 - \gamma.$$

A weak form of Quasiergodict hypothesis: there exists an orbit dense in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
A weak form of quasiergodic hypothesis

Let $H_0(l)$ be smooth and strictly convex, $l \in B^2$.

The Second Main Result [Guardia-K] For any $\gamma > 0$ & a dense set of perturbations ϵH_1 the Hamiltonian $H_\epsilon(\varphi, l, t) = H_0(l) + \epsilon H_1(\varphi, l, t)$ has an orbit $(\varphi_\epsilon, l_\epsilon, t)(t)$ accumulating to all KAM tori and, therefore,

$$\frac{\text{Leb} \left\{ \bigcup_t (\varphi_\epsilon, l_\epsilon, t)(t) \right\}}{\text{Leb}\{\mathbb{T}^2 \times B^2 \times \mathbb{T}\}} > 1 - \gamma.$$

A weak form of Quasiergodicit hypothesis: there exists an orbit dense in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
A weak form of quasiergodic hypothesis

Let $H_0(I)$ be smooth and strictly convex, $I \in B^2$.

The Second Main Result [Guardia-K] For any $\gamma > 0$ & a dense set of perturbations εH_1 the Hamiltonian $H_\varepsilon(\varphi, l, t) = H_0(I) + \varepsilon H_1(\varphi, l, t)$ has an orbit $(\varphi_\varepsilon, l_\varepsilon, t)(t)$ accumulating to all KAM tori and, therefore,

$$\frac{\text{Leb} \left\{ \bigcup_t (\varphi_\varepsilon, l_\varepsilon, t)(t) \right\}}{\text{Leb} \{ \mathbb{T}^2 \times B^2 \times \mathbb{T} \}} > 1 - \gamma.$$

A weak form of Quasiergodict hypothesis: there exists an orbit dense in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
Let $H_0(I)$ be smooth and strictly convex, $I \in B^2$.

The Second Main Result [Guardia-K] For any $\gamma > 0$ & a dense set of perturbations εH_1 the Hamiltonian $H_\varepsilon(\varphi, I, t) = H_0(I) + \varepsilon H_1(\varphi, I, t)$ has an orbit $(\varphi_\varepsilon, I_\varepsilon, t)(t)$ accumulating to all KAM tori and, therefore,

$$\frac{\text{Leb} \left\{ \bigcup_t (\varphi_\varepsilon, I_\varepsilon, t)(t) \right\}}{\text{Leb}\{\mathbb{T}^2 \times B^2 \times \mathbb{T}\}} > 1 - \gamma.$$

A weak form of Quasiergodict hypothesis: there exists an orbit dense in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
Instabilities in the Asteroid Belt
Instabilities in the Asteroid Belt

J. Wisdom, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps
Fejoz-Guardia-K-Roldan (to appear in J of the EMS)

Unstable orbits exist in the 3 : 1 Kirkwood gap.

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 18 / 22
Instabilities in the Asteroid Belt

J. Wisdom,83, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps

Fejoz-Guardia-K-Roldan (to appear in J of the EMS)
Unstable orbits exist in the 3 : 1 Kirkwood gap.

Moser: Is the Solar System Stable?
The Math Intelligencer, 78
Instabilities in the Asteroid Belt

Unstable orbits exist in the 3:1 Kirkwood gap.

Moser: Is the Solar System Stable?
The Math Intelligencer, 78

J. Wisdom, 83, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps

Fejoz-Guardia-K-Roldan (to appear in J of the EMS)

Unstable orbits exist in the 3:1 Kirkwood gap.
Diffusion conjecture Let

\[H_\varepsilon = \frac{p^2}{2} + \left(\frac{p^2}{2} + \cos q \right) + \varepsilon H_1(\varphi, l, q, p, t), \quad \varphi, q, t \in \mathbb{T}, \quad l, p \in \mathbb{R}, \]

where \(H_1 \) is a generic perturbation. Let \(\text{Leb}_\varepsilon \) be the norm Lebesgue measure on the \(\sqrt{\varepsilon} \)-ball around 0. Then \(I(\frac{-t \cdot \ln \varepsilon}{\varepsilon^2}) \) converges to a diffusion process wrt \(\text{Leb}_{\sqrt{\varepsilon}} \).
Diffusion conjecture

Let

\[H_\varepsilon = \frac{l^2}{2} + \left(\frac{p^2}{2} + \cos q \right) + \varepsilon H_1(\varphi, l, q, p, t), \quad \varphi, q, t \in \mathbb{T}, \ l, p \in \mathbb{R}, \]

where \(H_1 \) is a generic perturbation. Let \(\text{Leb}_\varepsilon \) be the norm Lebesgue measure on the \(\sqrt{\varepsilon} \)-ball around 0. Then \(I(\frac{-t \cdot \ln \varepsilon}{\varepsilon^2}) \) converges to a diffusion process wrt \(\text{Leb}_{\sqrt{\varepsilon}} \).

Chirikov, ... , Guzzo
Model Problem Let

\[f_0 : (\varphi, I) \rightarrow (\varphi + I + \varepsilon \cos \varphi, I + \varepsilon \cos \varphi), \]
\[f_1 : (\varphi, I) \rightarrow (\varphi + I + \varepsilon \sin \varphi, I + \varepsilon \sin \varphi), \]

be a pair of standard maps.

Consider random composition of these maps

\[f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1} (\varphi_0, I_0) = (\varphi_n, I_n). \]

Theorem (joint work with O. Castejon) For \(n \sim \varepsilon^{-2} \) such compositions satisfy the Central Limit Theorem, i.e.

\[I_n - I_0 \rightarrow \mathcal{N}(0, \sigma), \]

where \(\mathcal{N}(0, \sigma) \) is a normal random variable with some variance \(\sigma > 0 \).
Model Problem Let

\[f_0 : (\varphi, I) \rightarrow (\varphi + I + \epsilon \cos \varphi, I + \epsilon \cos \varphi), \]

\[f_1 : (\varphi, I) \rightarrow (\varphi + I + \epsilon \sin \varphi, I + \epsilon \sin \varphi), \]

be a pair of standard maps.

Consider random composition of these maps

\[f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1} (\varphi_0, I_0) = (\varphi_n, I_n). \]

Theorem (joint work with O. Castejon) For \(n \sim \varepsilon^{-2} \) such compositions satisfy the Central Limit Theorem, i.e.

\[I_n - I_0 \rightarrow \mathcal{N}(0, \sigma), \]

where \(\mathcal{N}(0, \sigma) \) is a normal random variable with some variance \(\sigma > 0 \).
Model Problem Let

\[f_0 : (\varphi, I) \rightarrow (\varphi + I + \varepsilon \cos \varphi, I + \varepsilon \cos \varphi), \]

\[f_1 : (\varphi, I) \rightarrow (\varphi + I + \varepsilon \sin \varphi, I + \varepsilon \sin \varphi), \]

be a pair of standard maps.

Consider random composition of these maps

\[f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1} (\varphi_0, I_0) = (\varphi_n, I_n). \]

Theorem (joint work with O. Castejon) For \(n \sim \varepsilon^{-2} \) such compositions satisfy the Central Limit Theorem, i.e.

\[I_n - I_0 \rightarrow \mathcal{N}(0, \sigma), \]

where \(\mathcal{N}(0, \sigma) \) is a normal random variable with some variance \(\sigma > 0 \).
Model Problem Let

\[f_0 : (\varphi, l) \rightarrow (\varphi + l + \varepsilon \cos \varphi, l + \varepsilon \cos \varphi), \]

\[f_1 : (\varphi, l) \rightarrow (\varphi + l + \varepsilon \sin \varphi, l + \varepsilon \sin \varphi), \]

be a pair of standard maps.

Consider random composition of these maps

\[f_{\omega_n} \circ f_{\omega_{n-1}} \circ \cdots \circ f_{\omega_1}(\varphi_0, l_0) = (\varphi_n, l_n). \]

Theorem (joint work with O. Castejon) For \(n \sim \varepsilon^{-2} \) such compositions satisfy the Central Limit Theorem, i.e.

\[l_n - l_0 \rightarrow \mathcal{N}(0, \sigma), \]

where \(\mathcal{N}(0, \sigma) \) is a normal random variable with some variance \(\sigma > 0 \).
(Mañe 90s) periodic orbit$_1 \rightsquigarrow$ periodic orbit$_2 \rightsquigarrow$ periodic orbit$_3 \ldots$

(Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus$_1 \rightsquigarrow$ whiskered KAM torus$_2 \rightsquigarrow$ whiskered KAM torus$_3 \rightsquigarrow$ \ldots

(Mather, Bernard, Cheng 90-00s) Cantor torus$_1 \rightsquigarrow$ Cantor torus$_2 \rightsquigarrow$ Cantor torus$_3 \rightsquigarrow$ \ldots

Find invariant sets inside Normally Hyperbolic Invariant Cylinders w. transverse invariant manifolds
Diffusion mechanism

- (Mañé 90s) periodic orbit\textsubscript{1} \leadsto periodic orbit\textsubscript{2} \leadsto periodic orbit\textsubscript{3} \ldots
- (Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus\textsubscript{1} \leadsto whiskered KAM torus\textsubscript{2} \leadsto whiskered KAM torus\textsubscript{3} \leadsto \ldots
- (Mather, Bernard, Cheng 90-00s) Cantor torus\textsubscript{1} \leadsto Cantor torus\textsubscript{2} \leadsto Cantor torus\textsubscript{3} \leadsto \ldots
- Find invariant sets inside Normally Hyperbolic Invariant Cylinders w. transverse invariant manifolds
Diffusion mechanism

- (Mañé 90s) periodic orbit$_1$ \leadsto periodic orbit$_2$ \leadsto periodic orbit$_3$ \ldots
- (Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus$_1$ \leadsto whiskered KAM torus$_2$ \leadsto whiskered KAM torus$_3$ \leadsto \ldots
- (Mather, Bernard, Cheng 90-00s) Cantor torus$_1$ \leadsto Cantor torus$_2$ \leadsto Cantor torus$_3$ \leadsto \ldots
- Find invariant sets inside Normally Hyperbolic Invariant Cylinders w. transverse invariant manifolds
Diffusion mechanism

- (Mañé 90s) periodic orbit\(_1\) \(\leadsto\) periodic orbit\(_2\) \(\leadsto\) periodic orbit\(_3\) \ldots
- (Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus\(_1\) \(\leadsto\) whiskered KAM torus\(_2\) \(\leadsto\) whiskered KAM torus\(_3\) \(\leadsto\) \ldots
- (Mather, Bernard, Cheng 90-00s) Cantor torus\(_1\) \(\leadsto\) Cantor torus\(_2\) \(\leadsto\) Cantor torus\(_3\) \(\leadsto\) \ldots
- Find invariant sets inside Normally Hyperbolic Invariant Cylinders w. transverse invariant manifolds
Diffusion mechanism

- (Mañé 90s) periodic orbit$_1 \leadsto$ periodic orbit$_2 \leadsto$ periodic orbit$_3 \ldots$
- (Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus$_1 \leadsto$ whiskered KAM torus$_2 \leadsto$ whiskered KAM torus$_3 \leadsto \ldots$
- (Mather, Bernard, Cheng 90-00s) Cantor torus$_1 \leadsto$ Cantor torus$_2 \leadsto$ Cantor torus$_3 \leadsto \ldots$
- Find invariant sets inside Normally Hyperbolic Invariant Cylinders w. transverse invariant manifolds
Preprints contributing to the talk

- V. Kaloshin, K. Zhang, Arnold diffusion for three and a half degrees of freedom, April 2014, 25pp.;
- V. Kaloshin, K. Zhang, Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion, October 2014, 75pp.;