Adaptable colouring and colour critical graphs

Bing Zhou
Department of Mathematics
Trent University
Adapted k-colouring of graphs

Definitions. A graph G is **adaptably k-colourable** if for every k-edge colouring c', there is a k-vertex colouring c such that for every edge xy in G, not all of $c(x)$, $c(y)$, and $c'(xy)$ are the same.

The edge xy is **monochromatic** if $c(x)=c(y)=c'(xy)$.

The **adaptable chromatic number** of G, $\chi_a(G)$, is the least k such that G is adaptably k-colourable.
Adapted k-colouring as a game

- There are two players E and V.
- Player E colours the edges of a graph G first using colours in $\{1,2,\ldots,k\}$.
- Player V then colours vertices of G using the same set of colours.
- Player V wins if he can colour the vertices without creating any monochromatic edges.
- Otherwise E wins.
Adapted k-colouring as a game

- The least number of colours that player V always has a winning strategy is the adaptable chromatic number of G, $\chi_a(G)$.
Example. K_4

- Consider the graph K_4:
A 2-edge colouring of K_4.

- E colours the edges in two colours:
An adapted 2-colouring

- V colours the vertices in two colours:

There is no monochromatic edge.
A winning strategy for E with 2 colours

- E has a winning strategy with two colours:

Therefore $\chi_a(K4) > 2$.
A winning strategy of V with 3 colours

\[\chi_a(K_4) = 3. \]
Colour critical graphs

• A graph G is k-critical if $\chi(G) = k$ and $\chi(G \square e) = k - 1$ for every edge e in G.

• A k-critical graph can be coloured with $k - 1$ colours such that there is only one edge joining two vertices of the same colour.

Fact. If G is k-critical then $\chi_a(G) \leq k - 1$.

Problem. (Molloy and Thron 2012) Are there any critical graphs G with $\chi_a(G) = \chi(G) - 1$?
Construction 1

The Hajós’ construction.

\[G_1 = \begin{array}{cc}
 x_1 & \\ \\
y_1 & \\ \\
\end{array} \quad G_2 = \begin{array}{cc}
 x_2 & \\ \\
y_2 & \\ \\
\end{array} \]

The result is
Construction 1

Let G be the graph obtained by applying the Hajós’ construction to two graphs G_1 and G_2.

Fact. If both G_1 and G_2 are k-critical, then G is also k-critical.

Fact. (Huizenga 2008) If $\chi_a(G_1) \geq k$ and $\chi_a(G_2) \geq k$, then $\chi_a(G) \geq k$.

Implication. If there is a k-critical graph G with $\chi_a(G) = k + 1$ then there are infinitely many such graphs.
Construction 2

$G_1 \vee G_2$, the join of G_1 and G_2

$G_1 = \circ$

$G_2 =$

$G_1 \vee G_2 = \equiv W_5$
Construction 2

- If G_1 is a k_1-critical graph and G_2 is a k_2-critical graph, then $G_1 \lor G_2$ is a $(k_1 + k_2)$-critical graph.
- However, it can happen that

$$
\chi_a(G) < \chi_a(G_1) + \chi_a(G_2).
$$
The graph W_5

W_5 is 4-critical.

$\chi_a(W_5) \geq 3$.

Therefore, $\chi_a(W_5) = 3$.
An important property of W_5

W_5 has a proper subgraph H_4 such that

$$\chi_a(H_4) = 3.$$
The construction for \(k = 5 \). (1)

We apply Hajós’ construction to two copies of \(W_5 \).
The construction for \(k = 5 \). (2)

We apply Hajós’ construction one more time.
The construction for $k = 5$. (3)

We continue applying Hajós’ construction to get this graph F_4.

F_4 is 4-critical.
The construction for $k = 5$. (4)

F_4 contains three disjoint copies of H_4.

$G_5 = K_1 \lor F_4$.
The construction for $k = 5$. (5)

G_5 is 5-critical. Therefore $\chi_a(G_5) \leq 4$.
Claim. $\chi_a(G_5) \geq 4$.

We show that Player E has a winning strategy with 3 colours on G_5.
General case

Theorem. For every integer k such that $k \geq 4$, there is a k-critical graph G_k that contains a proper subgraph H_k such that

$$\chi a(H_k) \geq k - 1.$$
\(K4 \) again.

\[
\begin{align*}
\cdot \chi(K4) &= 4 \text{ and } \chi(K4 \square e) = 3 \text{ for every edge } e \text{ in } K4. \\
\cdot \chi_a(K4) &= 3. \\
\cdot \chi_a (K4 \square e) &= 2 \text{ for every edge } e \text{ in } K4.
\end{align*}
\]

Question. Are there any other such “double critical” graphs \(G \) with \(\chi_a = \chi(G) \square 1 \)?
The Grötzsch graph

Let G be the Grötzsch graph.

Fact. G is 4-critical.

Fact. G is triangle-free.
The Grötzsch graph

Fact. $\chi_a(G) = 3$.
Player E has a winning strategy if there are two colours.

Fact. There are triangle-free 4-critical graphs with adaptable chromatic number 3.
More questions

- Question 1: Are there triangle-free k-critical graphs with adaptable chromatic number $k-1$ for every $k \geq 5$?

- Question 2: Are there k-critical graphs with adaptable chromatic number $k-1$ and girth g for every $k \geq 4$ and $g \geq 4$?
Lower bound

\[
\chi_a(G) \geq \frac{\chi(G)}{\sqrt{n \log(\chi(G))}}
\]

where \(n \) is the number of vertices in \(G \).

Conjecture. (Greene) There is a function \(f \) such that \(\chi_a(G) \geq f(\chi(G)) \) and \(\lim_{k \to \infty} f(k) = \infty \).
Lower bound (2)

- **Theorem.** (Huizanga, 2008) There is an unbounded function f such that $\chi_a(G) \geq f(\chi(G))$ for almost every graph G.
- **Theorem.** (Molloy and Thron, 2011) There is a function h tending to infinity such that $ch_a(G) \geq h(ch(G))$.
- **Theorem.** (BZ 2013)
 \[\chi_a(G) \geq K \log \log \chi(G) \]
 where K is a positive integer.
Still more questions

• **Problem.** (Molloy, Thron) Are there any graph \(G \) such that \(\chi_a(G) \) is less than the order of \(\sqrt{\chi(G)} \)?

• **Problem.** Can the lower bound \(\log \log \chi(G) \) be improved?