Lexicographic Labellings achieve fast algorithms for bump number, cocomp hamiltonicity and two-processor scheduling

Gara Pruesse
Vancouver Island University

Derek Corneil
Lalla Mouatadid
University of Toronto
Outline

• Introduce Bump Number
• Show relationship with 2-Proc Scheduling
• Show relationship with Min Path Cover in Cocomp Graphs
• Introduce Lexicographic Labelling
• Give Greedlex Algorithm
• Prove Greedlex is Correct
• Show how this fits into previous work
• Further work
Posets = partially ordered sets

maxima

minima

Hasse Diagram
Posets = partially ordered sets

Hasse Diagram

u covers v
u is an upper cover of v
v is a lower cover of u
u \lessdot v
Posets = partially ordered sets

Hasse Diagram

w > v
v < w
v and w are transitively related

u covers v
u is an upper cover of v
v is a lower cover of u
u < v
Posets = partially ordered sets

- Posets are a special type of partially ordered set (poset)
- Hasse Diagram:
 - A compact representation of a set of relations
 - i.e. can be $O(n)$ representation of $O(n^2)$ relations

- u covers v
- u is an upper cover of v
- v is a lower cover of u
- v and w are transitively related
Bumps in linear extensions

Gara Pruesse: Bump Number Algorithm
Bumps in linear extensions

Linear extension (showing bumps)
Bump Number Problem

Given poset P, what is the least number of bumps realized by a linear extension of P?

$$b(P) = \text{bump}\# \text{ of } P$$

Find an algorithm to compute $b(P)$ and construct a linear extension with fewest bumps
Greedily seeking min-bump l.e.

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e.

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)

Greedily selecting to avoid bumps
Greedily seeking min-bump l.e

Linear extension (showing bumps)

Greedily selecting to avoid bumps

a b c d e f g h
Greedily seeking min-bump l.e

Linear extension (showing bumps)
Greedily selecting to avoid bumps

\[a \ b \ c \ d \ e \ f \ g \ h \ i \]
There is always some greedy l.e. that achieves minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?
Greedily seeking min-bump l.e.

There is always some greedy l.e. that achieves minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?

Greedy + ? works for all posets?
There is always some greedy l.e. that achieves minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work? F&G’86

Greedy + ? works for all posets?
Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work? F&G’86

Greedy + ? works for all posets? This talk
Bump Number

- polynomial algorithms for interval order posets and for partial semiorder posets – both are based on the greedy shelling algorithms

 Fishburn and Gehrlein 1986

- polynomial algorithm for width=2 posets – not based on greedy shelling

 Zaguia 1987

- polynomial algorithm for any poset – not based on shelling

 Habib, Möhring, Steiner 1988

- linear time algorithm – based on Gabow’s linear time 2-proc scheduling algorithm

 Schäffer & Simons 1988
Greedlex Algorithm does these quickly, simply

- polynomial algorithms for interval order posets and for partial semiorder posets – both are based on the greedy shelling algorithms
 Fishburn and Gehrlein 1986

- polynomial algorithm for width=2 posets – not based on greedy shelling
 Zaguia 1987

- polynomial algorithm for any poset – not based on shelling
 Habib, Möhring, Steiner 1988

- linear time algorithm – based on Gabow’s linear time 2-proc scheduling algorithm
 Schäffer & Simons 1988
Linear Time Bump Number

relies on Gabow and Tarjan’s special case Union-Find algorithm: union and find operations known in advance

$O(n+m)$

... relies on hybrid linked-list / array data structure ... Switch to array representation of tree for subtrees that are small enough...
Algorithm, proof of correctness, and analysis

- Spread across several papers
- Proofs long and case-ridden
- Analysis complex

Question:

∃ a simple algorithm with a short proof that can be made efficient (linear time) without recourse to Special Case of Union-Find?
Algorithm, proof of correctness, and analysis

• Spread across several papers
• Proofs long and case-ridden
• Analysis complex

Question:

∃ a simple algorithm YES
with a short proof YES
that can be made efficient (linear time) without recourse to Special Case of Union-Find? I think SO.
Posets & comparability graphs
Posets & comparability graphs
Posets & **cocomparability graphs**

Gara Pruesse.... Bump Number Algorithm
When is there a Hamilton Path in the cocomparability graph?
When is there a Hamilton Path in the cocomparability graph?

When there is an ordering of the vertices so that there is an edge between successive vertices

...i.e., so that there is a non-edge in the comparability graph

...i.e., so there is no bump between successive vertices in the linear extension (assuming your restrict to orderings that obey the partial order).
Posets & cocomparability graphs

When is there a Hamilton Path in the cocomparability graph?

Of course, it is possible to trace the graph in ways that are not obedient to the partial order

\[a \quad d \quad e \quad i \quad h \quad g \quad c \quad b \]

 Exists Ham Path \iff \exists cocomp order that is a HamPath \iff \text{bump}# = 0

 Exists k-path cover in cocomp graph \iff \text{bump}# \leq k
When is there a \textit{k-path cover} in the cocomparability graph?

Cocomp graph G \rightleftharpoons many posets

Cocomp graph $G +$ cocomp ordering \rightleftharpoons one poset

Solve bump on the poset \rightleftharpoons Solve min-path-cover on cocomp graph
Solve MPC on cocomp graph \rightleftharpoons Solve bump on the unique underlying poset using a cocomp order
Hamiltonicity of Cocomp Graphs

Keil 1985
• Ham’n cycle in Interval graphs alg
Deogun Steiner 1990
• Poly-time Ham’n Cycle
Deogun Kratsch Steiner 1997
• 1-tough cocomp graphs are hamiltonian –
Damaschke Deogun Kratsch Steiner 1991
• Hamilton Path in cocomps using bump number algorithm
Corneil Dalton Habib 2013
• Min Path Cover Alg (certified) in Cocomp Graphs

Gara Pruesse.... Bump Number Algorithm
Recap:

- Definition of Bump Number
- Relationship (equivalency, up to data representation) to the Minimum Path Cover/Hamiltonicity of Cocomp Graphs
- Is related to Two-Processor Scheduling

- Introduce Lexicographic Labelling
- Give the Greedlex Algorithm solving Bump
- Prove Greedlex is correct
 - State the Lex-Yanking Lemma
 - Show that the Lex-Yanking Lemma implies Greedlex is Correct
 - Prove the Lex-Yanking Lemma

- How this work fits into previous results
Greedy bump#

Greedy Approach

d a ... oops
Greedy bump#

Greedy Approach

d a ...

a d b c h e f ...

Gara Pruesse.... Bump Number Algorithm
Greedy Approach

d a ... oops

a d b c h e f ... oops

a d c b f e h g
How can a bump be unavoidable

Now all minima $e f g$ are upper covers of c
How can a bump be unavoidable

Gara Pruesse.... Bump Number Algorithm
Lexicographic Labelling

- Give minima arbitrary lex#
Lexicographic Labelling

- Give minima arbitrary lex#

- Assign lex# so that $\text{lex}(u) < \text{lex}(v)$ whenever $\{\text{lex}(u') : u' \text{ covers } u\} < \text{lex}$ $\{\text{lex}(v') : v' \text{ covers } v\}$
Lexicographic Labelling

- Give minima arbitrary lex#
- Assign lex# so that $\text{lex}(u) < \text{lex}(v)$ whenever $\{\text{lex}(u') : u' \text{ covers } u\} < \text{lexico} \{\text{lex}(v') : v' \text{ covers } v\}$
Lexicographic Labelling

- Give minima arbitrary lex#

- Assign lex# so that
 \[\text{lex}(u) < \text{lex}(v) \quad \text{whenever} \]
 \[\{\text{lex}(u') : u' \text{ covers } u\} <_{\text{lexico}} \]
 \[\{\text{lex}(v') : v' \text{ covers } v\} \]
Lexicographic Labelling

- Give minima arbitrary lex#
- Assign lex# so that $\text{lex}(u) < \text{lex}(v)$ whenever $\{\text{lex}(u') : u' \text{ covers } u\} <_{\text{lexico}} \{\text{lex}(v') : v' \text{ covers } v\}$
Lexicographic Labelling

- Give minima arbitrary lex#

- Assign lex# so that
 \[\text{lex}(u) < \text{lex}(v) \]
 whenever
 \[\{\text{lex}(u') : u' \text{ covers } u\} <_{\text{lexico}} \{\text{lex}(v') : v' \text{ covers } v\} \]
Lexicographic Labelling

- Give minima arbitrary lex#
- Assign lex# so that $\text{lex}(u) < \text{lex}(v)$ whenever $\{\text{lex}(u') : u' \text{ covers } u\} < \text{lexico} \{\text{lex}(v') : v' \text{ covers } v\}$
Lexicographic Labelling

- Give minima arbitrary lex#
- Assign lex# so that
 \[\text{lex}(u) < \text{lex}(v) \] whenever
 \[\{\text{lex}(u') : u' \text{ covers } u\} < \text{lexico} \]
 \[\{\text{lex}(v') : v' \text{ covers } v\} \]
Lexicographic Labelling

New: $O(n+m)$ algorithm for lex-labelling

(Sethi 1976 algorithm also achieves linear time)
Greedy + Lex = Greedlex
1. Lex label all v in $V(P)$
2. Shell P, always removing
 (a) a non-cover of last-shelled u, if exists
 (b) the highest lex-labelled v allowed by (a)

This always yields the min-bump l.e.!
Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make one bad selection, how many *added bumps* can that introduce?
Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make one bad selection, how many added bumps can that introduce?
Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make one bad selection, how many added bumps can that introduce?
Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make one bad selection, how many added bumps can that introduce?
Lex-Yanking Lemma

\[b \ xxx\ldots x \ a \ xx\ldots x \] has \(k \) bumps and \(a \) is min

\[\exists \ \text{l.e. } \ a \ x'x'x'\ldots b\ldots x' \] with \(k \) or fewer bumps

(Balloon size indicates relative Lex value)
Recap:

- **Definition of Bump Number**
- **Relationship (equivalency, up to data representation) to the Minimum Path Cover/Hamiltonicity of Cocomp Graphs**
- **Is related to Two-Processor Scheduling**

- **Introduce Lexicographic Labelling**
- **Give the Greedlex Algorithm solving Bump**
- **Prove Greedlex is correct**
 - State the **Lex-Yanking Lemma**
 - Show that the **Lex-Yanking Lemma** implies Greedlex is Correct
 - Prove the **Lex-Yanking Lemma**

- **How this work fits into previous results**
The LexYanking Lemma implies Greedlex works:
The LexYanking Lemma implies Greedlex works:
First, let us note that the LexYanking Lemma implies Greedlex works:
First, let us note that the LexYanking Lemma implies Greedlex works:
First, let us note that the LexYanking Lemma implies Greedlex works:
First, let us note that the LexYanking Lemma implies Greedlex works:
First, let us note that the LexYanking Lemma implies Greedlex works:

LexYanking Lemma → the Greedlex Algorithm will always yield min-bump i.e.
Proof of LexYanking Lemma

\[b x x x a x x x \] has \(k \) bumps, \(\text{lex}(a) \geq \text{lex}(b) \), \(a \) is minimal

\[a x'x'x' b x'x'x' \] has \(\leq k \) bumps

If \(\text{lex}(a) \geq \text{lex}(b) \) and \(b \) has a private neighbour...
Proof of LexYanking Lemma

\[b \ x \ x \ x \ a \ x \ x \ x \] has \(k \) bumps, \(\text{lex}(a) \geq \text{lex}(b) \), \(a \) is minimal

\[a \ x'x'x' \ b \ x'x'x' \] has \(\leq k \) bumps

If \(\text{lex}(a) \geq \text{lex}(b) \) and \(b \) has a private cover (not covering \(a \))...

Then \(a \) has a private cover with \(\text{lex}\# \) at least as large.
Proof of LexYanking Lemma

By induction on $n = |V(P)|$. Base cases $n=0,1$ are trivial.

Let P be a poset on $n>1$ elements, and suppose LexYanking Lemma holds for all smaller posets. (Then also Greedlex works on smaller posets.)

$b \ xxx \ a \ xxxx \quad a \ l.e. \ with \ k \ bumps, \ lex(a) \geq lex(b), \ a \ and \ b \ min$
Proof of LexYanking Lemma

b xxx a xxxx a l.e. with k bumps, lex(a) ≥ lex(b), a and b min

The poset \{b\} is smaller, so by Ind. Hyp., LexYanking holds, and Greedlex produces a min-bump suffix to follow b

All these elements have lex# > lex(a)
Proof of LexYanking Lemma

The poset \{b\} is smaller, so by Ind. Hyp., LexYanking holds, and Greedlex produces a min-bump \textit{suffix} to follow \(b \).

All these elements have \(\text{lex#} > \text{lex}(a) \geq \text{lex}(b) \).
Proof of LexYanking Lemma

The poset \{b\} is smaller, so by Ind. Hyp., LexYanking holds, and Greedlex produces a min-bump suffix to follow b.

All these elements have lex# > lex(a) ≥ lex(b).
Hence all are incomparable with b.
They are also incomparable with a.

Swap: a yyy b yyyy
Proof of LexYanking Lemma

\(b \text{ xxx } a \text{ xxxx}\) a i.e. with \(k\) bumps, \(\text{lex}(a) \geq \text{lex}(b)\), \(a\) and \(b\) min

The poset \(\{b\}\) is smaller, so by Ind. Hyp., LexYanking holds, and Greedlex produces a min-bump suffix to follow \(b\)

\[
\begin{align*}
\text{b yyy a yyyyy} \\
\text{All these elements have } \text{lex}# > \text{lex}(a) \geq \text{lex}(b) \\
\text{Hence all are incomparable with } b \\
\text{They are also incomparable with } a \\
\text{Swap: a yyy b yyyyy} \\
\text{May have introduced a bump}
\end{align*}
\]
Proof of LexYanking Lemma

Suppose a bump was introduced after the b, and there was no such bump when a was in the same spot.
Proof of LexYanking Lemma

Suppose a bump was introduced after the b, and there was no such bump when a was in the same spot.

Then y_1 is a private cover of b (with respect to a).
Proof of LexYanking Lemma

Suppose a bump was introduced after the \(b \), and there was no such bump when \(a \) was in the same spot.

Then \(y_1 \) is a private cover of \(b \) (with respect to \(a \)).

Then \(a \) has some private cover \(c \) (w.r.t. \(b \)), with \(\text{lex}(c) \geq \text{lex}(y_1) \).
Proof of LexYanking Lemma

Suppose a bump was introduced after the *b*, and there was no such bump when *a* was in the same spot.

Then *y₁* is a private neighbour of *b* (with respect to *a*).

Then *a* has some private neighbour *c* (w.r.t. *b*), with \(\text{lex}(c) \geq \text{lex}(y₁) \).

Then *c* can be yanked forward in the suffix, by the Ind. Hyp., without increasing bumps.
Proof of LexYanking Lemma

Suppose a bump was introduced after the b, and there was no such bump when a was in the same spot.

Then y1 is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with \(\text{lex}(c) \geq \text{lex}(y_1) \).

Then c can be yanked forward in the suffix, by the Ind. Hyp., without increasing bumps and destroying the bump after b. [if c is not a min, take c’s descendent].
Where does this work fit in?

2PS FKN

O(n^4)

2PS Coffman-Graham

O(n^2)

2PS Gabow

poly

MPC for Interval Graphs AR or K

Bump HMS

poly

Cocomp HamPath CorneilDaltonHabib

Linear in Transitive Closure

Cocomp HamPath DDKS

poly

Bump Schaffer Simons

Gara Pruesse.... Bump Number Algorithm
Where does this work fit in?

- 2PS FKN
- O(n^4)
- MPC for Interval Graphs AR or K

- 2PS Gabow
- O(n^2)
- Bump PCM

- 2PS Gabow
- poly
- Bump HMS

- Gabow Tarjan Union-Find
- linear

- Cocomp HamPath
- CorneilDaltonHabib
- Linear in Transitive Closure

- Cocomp HamPath
- DDKS
- poly

- Bump Schaffer Simons
- linear
Further Work

Completed:
• Solve 2-Proc Sched using Greedlex
• Greedlex can work on either transitive closure or transitive reduction
• Greedlex can generate all min-bump linear extensions (all MinPath Covers in Cocomp graphs)

Open:
• Terminal elements in the poset…. (see Garth Isaak’s work on Path Partitions)
• What about representations that are in between transitive closure and reduction?
• What about AT-free graphs?
 — Contains the cocomp graphs
Thank You!

Me:
Gara Pruesse
Vancouver Island University
Coauthors:
Derek Corneil
Lalla Mouatadid
University of Toronto
2-Processor Schedules

Want to schedule these unit-length jobs on two identical processor so that no job is executed before all of its lower covers have completed execution.
Want to schedule these unit-length jobs on two identical processors so that no job is executed before all of its lower covers have completed execution.
2-Processor Schedules

Want to schedule these unit-length jobs on two identical processors so that no job is executed before all of its lower covers have completed execution.
Coffman-Graham Lexicographic Labelling

- Give t minima arbitrary lex#’s 1...t arbitrarily

- Assign lex#s $t+1$...n so that $\text{lex}(u) < \text{lex}(v)$ whenever $\{\text{lex}(u') : u' \text{covers } u\} <_{\text{lexico}} \{\text{lex}(v') : v' \text{ covers } v\}$, breaking ties arbitrarily
Coffman-Graham Lexicographic Labelling

- **Give t minima arbitrary lex#’s 1...t arbitrarily**

- **Assign lex#s t+1...n so that**
 \[\text{lex}(u) < \text{lex}(v) \quad \text{whenever} \]
 \[\{\text{lex}(u’) : u’ \text{ covers } u\} <_{\text{lexico}} \{\text{lex}(v’) : v’ \text{ covers } v\}, \text{ breaking ties arbitrarily} \]

(Sethi, 1986) $O(n+m)$ algorithm for C-G lex labelling
Lexicographic Labelling and 2PS

- Coffman and Graham ‘72 used it for 2-proc scheduling $O(n^2)$

- Sethi ‘76 also used it for a 2PS; lex labelling takes $O(n + m)$ though the remainder of the 2PS alg takes $O(n \alpha(n) + m))$