A Constant Factor Approximation for Regret-Bounded Vehicle Routing

Zachary Friggstad, Chaitanya Swamy

The University of Waterloo

Flexible Network Design, Toronto
July 29, 2013
Vehicle Routing

A typical Vehicle Routing Problem (VRP): Given one or more vehicles located at some depots, find routes for them to visit some clients.

Travel distance often factors into the objective or constraints, e.g. TSP, Orienteering, Distance-Constrained VRP, Capacitated VRP, ...
Vehicle Routing

A typical Vehicle Routing Problem (VRP): Given one or more vehicles located at some depots, find routes for them to visit some clients.

Travel distance often factors into the objective or constraints, e.g. TSP, Orienteering, Distance-Constrained VRP, Capacitated VRP, ...

However, this does not differentiate between clients close to the depot and clients far from the depot.
A Client-Centric View

We consider a vehicle routing problem with a single depot node r.

For a path P starting at r and for some $v \in P$, define the regret of v along P to be

$$d_P(v) - d(r, v)$$

This is the distance along P to reach v in excess of the $r - v$ distance delay. Since the $r - v$ distance delay is inevitable, this is a natural way to measure a client's satisfaction.
A Client-Centric View

We consider a vehicle routing problem with a single depot node r.

For a path P starting at r and for some $v \in P$, define the regret of v along P to be

$$d_P(v) - d(r, v)$$

This is the distance along P to reach v in excess of the $r - v$ distance.

Since the $r - v$ distance delay is inevitable, this is a natural way to measure a client’s satisfaction.
The Regret-Bounded Vehicle Routing Problem

Input
- Locations $V \cup \{r\}$ with r being the root/depot.
- Symmetric metric distances $d(u, v)$ between locations:
 \[d(u, v) \leq d(u, w) + d(w, v). \]
- A regret bound $R \geq 0$.
The Regret-Bounded Vehicle Routing Problem

Input

• Locations \(V \cup \{r\} \) with \(r \) being the root/depot.
• Symmetric metric distances \(d(u, v) \) between locations:
 \[d(u, v) \leq d(u, w) + d(w, v). \]
• A regret bound \(R \geq 0 \).

Goal

Cover \(V \) with the fewest rooted paths (starting at \(r \)) so that no client has regret more than \(R \) on their covering path.
Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”

- Greedy Set Cover + Orienteering $\Rightarrow O(\log |V|)$-approximation.
- A 3-approximation in tree metrics.
Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”

- Greedy Set Cover + Orienteering $\Rightarrow O(\log |V|)$-approximation.
- A 3-approximation in tree metrics.

The notion of regret has been studied before. Approximations for Minimum Excess Path lead to approximations for Orienteering. [Blum et al., 2003; Nagarajan and Ravi, 2007; Chekuri, Korula, and Pál, 2008].
Previous Work

Bock, Grant, Koenemann, and Sanita, 2011 - “School Bus Problem”
- Greedy Set Cover + Orienteering $\Rightarrow O(\log |V|)$-approximation.
- A 3-approximation in tree metrics.

The notion of regret has been studied before. Approximations for Minimum Excess Path lead to approximations for Orienteering. [Blum et al., 2003; Nagarajan and Ravi, 2007; Chekuri, Korula, and Pál, 2008].

Related problem: Distance-Constrained VRP. Cover V using the fewest rooted cycles, each having distance at most $D \geq 0$.

Nagarajan and Ravi, 2008
- An $O(\min(\log D, \log |V|))$-approximation in general.
- A 2-approximation in tree metrics.
Main Result

An Integrality Gap Bound

We consider a configuration-style of LP relaxation.

Theorem

Given an LP solution with value k^ and polynomial support size, we can efficiently an integral solution which uses at most $(7 + 4\sqrt{3}) \cdot k^* + 1$ paths in polynomial time.*
Main Result

An Integrality Gap Bound

We consider a configuration-style of LP relaxation.

Theorem

Given an LP solution with value k^ and polynomial support size, we can efficiently an integral solution which uses at most $(7 + 4\sqrt{3}) \cdot k^* + 1$ paths in polynomial time.*

A Constant-Factor Approximation

Combining this with the $(2 + \epsilon)$-approximation for solving the LP yields a 28.36-approximation for Regret-Bounded VRP.
Highlights

Highlights:

• The LP is an example of the set-partitioning model for VRP.
 ○ Computationally, this approach has been observed to provide excellent lower bounds in related problems (column generation techniques help solve the LPs in practice) but few theoretical guarantees were known.

• New ideas to deal with regret/excess of a path and rounding configuration LPs in VRP.

• Can be viewed as a special case of Distance-Constrained VRP in a particular asymmetric metric (described soon).
An LP relaxation

Let \(C_R = \{\text{rooted paths } P : d_v(P) - d(r, v) \leq R \text{ for each } v \in P\} \).

\[
\text{minimize : } \sum_{P \in C_R} x_P \\
\text{subject to : } \sum_{P \in C_R \atop v \in P} x_P \geq 1 \quad \forall v \in V
\]

\[x \geq 0\]
An LP relaxation

Let \(C_R = \{ \text{rooted paths } P : d_v(P) - d(r, v) \leq R \text{ for each } v \in P \} \).

\[
\text{minimize : } \sum_{P \in C_R} x_P \\
\text{subject to : } \sum_{P \in C_R} x_P \geq 1 \quad \forall \ v \in V \\
\quad x \geq 0
\]

The dual separation problem is a Point-to-Point Orienteering problem. This has a \((2 + \epsilon)\)-approximation [Chekuri, Korula, and Pál, 2008].

\(\therefore\) we can solve the LP within a factor of \(2 + \epsilon\).
Preliminary Observations

Define the regret metric d^{reg} over $V \cup \{r\}$ by

$$d^{\text{reg}}(u, v) := d(r, u) + d(u, v) - d(r, v)$$

Observations:

• d^{reg} is an asymmetric metric.
• $d^{\text{reg}}(r, v) = 0$ for any $v \in V$.
• The d^{reg}-length of a rooted path P is the regret of its endpoint.
• The d-length and d^{reg}-length of any cycle are equal.
Preliminary Observations

Define the regret metric d^{reg} over $V \cup \{r\}$ by

$$d^{\text{reg}}(u, v) := d(r, u) + d(u, v) - d(r, v)$$

Observations:

- d^{reg} is an asymmetric metric.
- $d^{\text{reg}}(r, v) = 0$ for any $v \in V$.
- The d^{reg}-length of a rooted path P is the regret of its endpoint.
- The d-length and d^{reg}-length of any cycle are equal.
Preliminary Observations

In particular

Regret-Bounded VRP in \(d \equiv \) Distance-Constrained VRP in \(d^{reg} \)
Preliminary Observations

In particular

Regret-Bounded VRP in $d \equiv$ Distance-Constrained VRP in d^{reg}

Lemma

Given $\leq \alpha \cdot k^*$ paths covering V with total d^{reg}-cost $\leq \beta \cdot k^* \cdot R$, we can efficiently find a feasible Regret-Bounded VRP solution using at most $(\alpha + \beta) \cdot k^*$ paths.
Preliminary Observations

In particular

Regret-Bounded VRP in \(d \equiv \) Distance-Constrained VRP in \(d^{\text{reg}} \)

Lemma

Given \(\leq \alpha \cdot k^* \) paths covering \(V \) with total \(d^{\text{reg}} \)-cost \(\leq \beta \cdot k^* \cdot R \), we can efficiently find a feasible Regret-Bounded VRP solution using at most \((\alpha + \beta) \cdot k^* \) paths.

Proof.
Preliminary Observations

In particular

Regret-Bounded VRP in $d \equiv \text{Distance-Constrained VRP in } d^{\text{reg}}$

Lemma

Given $\leq \alpha \cdot k^* \text{ paths covering } V \text{ with total } d^{\text{reg}}\text{-cost } \leq \beta \cdot k^* \cdot R$, we can efficiently find a feasible Regret-Bounded VRP solution using at most $(\alpha + \beta) \cdot k^* \text{ paths.}$

Proof.

Break each path into paths of $d^{\text{reg}}\text{-length } \leq R$ and attach to r. \qed
In other words, it suffices to find $O(k^*)$ paths with total d^{reg}-cost $O(k^* \cdot R)$.
Preliminary Observations

In other words, it suffices to find $O(k^*)$ paths with total d^{reg}-cost $O(k^* \cdot R)$.

Side Note: We can now easily get an $O(\log |V|)$-approximation for *asymmetric* Regret-Bounded VRP using known approximations for k-Person ATSP Path.

Also: α-approximation for asymmetric Regret-Bounded VRP $\Rightarrow 2\alpha$-approximation for ATSP.
The Rounding

Suppose we have an LP solution x^* with polynomial support size and value k^*.

Recall $k^* \leq (2 + \epsilon) \cdot OPT$.
The Rounding

Suppose we have an LP solution x^* with polynomial support size and value k^*.

Recall $k^* \leq (2 + \epsilon) \cdot OPT$.

Easy case: The union of all directed edges used by $\text{supp}(x^*)$ is acyclic.
View x^* as a path decomposition of a flow f.

Notice f has d^{reg}-cost at most $k^* \cdot R$ and satisfies

- $f(\delta^{\text{out}}(r)) \leq \lceil k^* \rceil$
- $f(\delta^{\text{in}}(v)) \geq 1$ for each $v \in V$
View x^* as a path decomposition of a flow f.

Notice f has d^{reg}-cost at most $k^* \cdot R$ and satisfies

- $f(\delta^{\text{out}}(r)) \leq \lceil k^* \rceil$
- $f(\delta^{\text{in}}(v)) \geq 1$ for each $v \in V$

Integrality of flows + $\text{supp}(f)$ being acyclic \Rightarrow Can efficiently find $\leq \lceil k^* \rceil$ paths with total regret at most $k^* \cdot R$ which cover V.
View x^* as a path decomposition of a flow f.

Notice f has d^{reg}-cost at most $k^* \cdot R$ and satisfies

- $f(\delta^{\text{out}}(r)) \leq \lceil k^* \rceil$
- $f(\delta^{\text{in}}(v)) \geq 1$ for each $v \in V$

Integrality of flows + $\text{supp}(f)$ being acyclic \Rightarrow Can efficiently find $\leq \lceil k^* \rceil$ paths with total regret at most $k^* \cdot R$ which cover V.

Use the previous lemma to turn these into at most $2 \cdot k^* + 1$ paths covering V with maximum regret $\leq R$.
The Rounding

Things are not so simple if the flow described by x^* contains cycles!

High-Level Approach

1) Shortcut the paths $P \in \text{supp}(x^*)$ past some clients to make their union acyclic.

2) If a client v is removed from more than a $\frac{1}{2}$-fraction of their covering paths, then they are discarded them outright. We will also ensuring there is a cheap way to reintegrate them later.

3) Double the resulting acyclic flow and then round as before.
The Rounding

For a rooted path P, we define red and blue edges.

The cost of the red edges is at most $\frac{3}{2} \cdot d^{\text{reg}}(P)$ [Blum et al., 2003].

Deleting the blue edges naturally breaks P into red intervals (some intervals may be singletons).
The Rounding

We now identify a forest F and discard all but one particularly chosen node from each component.

Define a cut requirement function $f : 2^V \rightarrow \{0, 1\}$ by:

- $f(S) = 1$ if every $v \in S$ has $\geq \frac{1}{2}$ of its red intervals crossing S.
- $f(S) = 0$ otherwise.
The Rounding

Note:

- \(f \) is downward monotone: \(f(S) \geq f(T) \) for every \(\emptyset \subset S \subset T \).
- Every cut \(S \) with \(f(S) = 1 \) is crossed by a \(\frac{1}{2} \)-fraction of red edges:
 \[
 \sum_{e \in \delta(S)} \sum_{P: e \text{ is red on } P} x_P^* \geq \frac{1}{2}
 \]
- The total fractional \(d \)-cost of the red edges is at most \(\frac{3}{2} \cdot k^* \cdot R \).
The Rounding

Note:

• f is downward monotone: $f(S) \geq f(T)$ for every $\emptyset \subsetneq S \subseteq T$.

• Every cut S with $f(S) = 1$ is crossed by a $\frac{1}{2}$-fraction of red edges:

$$\sum_{e \in \delta(S)} \sum_{P : e \text{ is red on } P} x^*_P \geq \frac{1}{2}$$

• The total fractional d-cost of the red edges is at most $\frac{3}{2} \cdot k^* \cdot R$.

Thus, there is a forest F with d-cost at most $6 \cdot k^* \cdot R$ satisfying $f(C) = 0$ for each component C [Goemans and Williamson, 1994].
The Rounding

Note:

• \(f \) is downward monotone: \(f(S) \geq f(T) \) for every \(\emptyset \subseteq S \subseteq T \).
• Every cut \(S \) with \(f(S) = 1 \) is crossed by a \(\frac{1}{2} \)-fraction of red edges:

\[
\sum_{e \in \delta(S)} \sum_{P: e \text{ is red on } P} x^*_P \geq \frac{1}{2}
\]

• The total fractional \(d \)-cost of the red edges is at most \(\frac{3}{2} \cdot k^* \cdot R \).

Thus, there is a forest \(F \) with \(d \)-cost at most \(6 \cdot k^* \cdot R \) satisfying \(f(C) = 0 \) for each component \(C \) [Goemans and Williamson, 1994].

Each component \(C \) has a node \(v \) where at least a \(\frac{1}{2} \)-fraction of \(v \)'s red intervals are contained in \(C \).

Let \(W \subseteq V \) consist of one such node from each component.
Forest \Rightarrow Cycles

Standard TSP trick: convert each component of the forest to a cycle.

(White = W)
Forest \Rightarrow Cycles

Standard TSP trick: convert each component of the forest to a cycle.

(White = W)

Since d- and d^{reg}-costs are equal for cycles, then the total d^{reg}-cost of these cycles is at most $12 \cdot k^* \cdot R$.
Shortcutting the Paths

For each $P \in \text{supp}(x^*)$:

1) Mark each node in $V - W$ for removal (the black nodes).
Shortcutting the Paths

2) If a red interval contains more than one W-node, then mark them all for removal.

The dashed contours indicate components of the forest F including these grey nodes.
Shortcutting the Paths

2) If a red interval contains more than one W-node, then mark them all for removal.

The dashed contours indicate components of the forest F including these grey nodes.

Important: Each witness node $v \in W$ is marked for removal this way in at most a $\frac{1}{2}$-fraction of its covering paths.
3) Now shortcut P past all marked nodes.
3) Now shortcut P past all marked nodes.

After doing so for all $P \in \text{supp}(x^*)$:

- The fractional number of paths k^* does not change.
- The d^{reg}-cost of each path does not increase.
- Each $v \in W$ lies on at least a $\frac{1}{2}$-fraction of the new paths.
- The union of the new paths is acyclic!
Wrap Up

Now we can round the acyclic flow described by $2x^*$ to get at most $\lceil 2k^* \rceil$ paths spanning W with total d^{reg}-cost at most $2 \cdot k^* \cdot R$.

Finally, applying the lemma finds at most $16 \cdot k^* + 1$ paths of maximum d^{reg}-cost spanning V: an $O(1)$-approximate solution!
Wrap Up

Now we can round the acyclic flow described by $2x^*$ to get at most $\lceil 2k^* \rceil$ paths spanning W with total d^{reg}-cost at most $2 \cdot k^* \cdot R$.

Incorporating the cycles via their witness nodes and shortcutting finds $\lceil 2k^* \rceil$ paths spanning V with total d^{reg}-cost at most $14 \cdot k^* \cdot R$.
Wrap Up

Now we can round the acyclic flow described by $2x^*$ to get at most $\lceil 2k^* \rceil$ paths spanning W with total d^{reg}-cost at most $2 \cdot k^* \cdot R$.

Incorporating the cycles via their witness nodes and shortcutting finds $\lceil 2k^* \rceil$ paths spanning V with total d^{reg}-cost at most $14 \cdot k^* \cdot R$.

Finally, applying the lemma finds at most $16 \cdot k^* + 1$ paths of maximum d^{reg}-cost R spanning V: an $O(1)$-approximate solution!
Extensions

Optimizations:

• Choose a different cutoff than $\frac{1}{2}$ in the definition of the cut requirement function.

• Tweaks to the definition of the cut requirement function and how we shortcut the paths to get the acyclic collection.
Extensions

Optimizations:

- Choose a different cutoff than $\frac{1}{2}$ in the definition of the cut requirement function.
- Tweaks to the definition of the cut requirement function and how we shortcut the paths to get the acyclic collection.

Consider the variant where we have k vehicles and we want to minimize the maximum client regret.

- An $O(k^2)$-approximation.
- An $\Omega(k)$ “integrality gap” lower bound for the feasibility LP based on configurations.
Extensions

Optimizations:

• Choose a different cutoff than $\frac{1}{2}$ in the definition of the cut requirement function.
• Tweaks to the definition of the cut requirement function and how we shortcut the paths to get the acyclic collection.

Consider the variant where we have k vehicles and we want to minimize the maximum client regret.

• An $O(k^2)$-approximation.
• An $\Omega(k)$ “integrality gap” lower bound for the feasibility LP based on configurations.

Thank You!