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In this talk...

A random set Θn in Rd of locally finite Hn-measure induces a random measure

μΘn (A) := Hn(Θn ∩ A), A ∈ BRd ,

and the corresponding expected measure

E[μΘn ](A) := E[Hn(Θn ∩ A)], A ∈ BRd .

Whenever E[μΘn ] � Hd on Rd , its density, say λΘn is called mean density of Θn

A crucial problem is the pointwise estimation of λΘn (x).
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Whenever E[μΘn ] � Hd on Rd , its density, say λΘn is called mean density of Θn

A crucial problem is the pointwise estimation of λΘn (x).

We present here 3 different kinds of estimators of λΘn (x):

Natural estimator λ̂ν,N
Θn

(x)
It will follow as a natural consequence of the Besicovitch derivation theorem
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and the corresponding expected measure

E[μΘn ](A) := E[Hn(Θn ∩ A)], A ∈ BRd .

Whenever E[μΘn ] � Hd on Rd , its density, say λΘn is called mean density of Θn

A crucial problem is the pointwise estimation of λΘn (x).

We present here 3 different kinds of estimators of λΘn (x):

Natural estimator λ̂ν,N
Θn

(x)
It will follow as a natural consequence of the Besicovitch derivation theorem

Kernel estimator λ̂κ,N
Θn

(x)
It will follow as a generalization to the n-dimensional case of the classical kernel
density estimator of random vectors

“Minkowski content”-based estimator λ̂μ,N
Θn

(x)
It will follow by a local approximation of λΘn based on a stochastic version of the
n-dimensional Minkowski content of Θn.
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We remind that...

A compact set S ⊂ Rd is called
– n-rectifiable, if there exist a compact K ⊂ Rn and a Lipschitz function g : Rn → Rd

such that S = g(K);
– countably Hn-rectifiable if there exist countably many Lipschitz maps gi : Rn → Rd

such that

Hn
(
S \

∞⋃

i=1

gi (R
n)
)

= 0.

A random closed set (r .c.s.)Θ in Rd is a measurable map

Θ : (Ω,F,P) → (F, σF),

where F is the class of the closed subsets in Rd , and σF is the σ-algebra generated
by the so called Fell topology, or hit-or-miss topology.

IN WHAT FOLLOWS:

– Θn is a countably Hn-rectifiable r.c.s. of locally finite Hn-measure

– Θ1
n, . . . , Θ

N
n i.i.d. random sample for Θn
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A random closed set (r .c.s.)Θ in Rd is a measurable map

Θ : (Ω,F,P) → (F, σF),

where F is the class of the closed subsets in Rd , and σF is the σ-algebra generated
by the so called Fell topology, or hit-or-miss topology.

IN WHAT FOLLOWS:

– Θn is a countably Hn-rectifiable r.c.s. of locally finite Hn-measure

– Θ1
n, . . . , Θ

N
n i.i.d. random sample for Θn

NOTE THAT: if n = 0 and Θ0 = X random vector with pdf fX , then

E[H0(X ∩ A)] = P(X ∈ A) =

∫

A

fX (x)dx ∀A ∈ BRd

and so λX (x) = fX (x).
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The natural estimator λ̂ν,N
Θn

(x)

The Besicovitch derivation theorem implies that if

E[Hn(Θn ∩ A)] =

∫

A

λΘn (x)dx , ∀A ∈ BRd ,

then

λΘn (x) = lim
r↓0

E[Hn(Θn ∩ Br (x))]

bd r d
Hd -a.e. x ∈ Rd .
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The natural estimator λ̂ν,N
Θn

(x)

The Besicovitch derivation theorem implies that if

E[Hn(Θn ∩ A)] =

∫

A

λΘn (x)dx , ∀A ∈ BRd ,

then

λΘn (x) = lim
r↓0

E[Hn(Θn ∩ Br (x))]

bd r d
Hd -a.e. x ∈ Rd .

This suggests the following natural estimator for the mean density λΘn (x) of Θn,

λ̂ν,N
Θn

(x) :=
1

Nbd r d
N

N∑

i=1

Hn(Θi
n ∩ BrN (x)).

Here and in the following rN is called the bandwidth associated with the sample size N,
as usual in literature.
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The kernel estimator λ̂κ,N
Θn

(x)

We remind that

A measurable function k : Rd → R is said to be a multivariate kernel if it satisfies
the following conditions:

– 0 ≤ k(z) ≤ M for all z ∈ Rd , for some M > 0;
– k is radially symmetric;
–
∫
Rd k(z)dz = 1.

Given X1, . . . , XN i.i.d. random sample for X random vector with p.d.f fX , the
multivariate kernel density estimator of fX based on a chosen kernel k, and scaling
parameter rN ∈ (0, +∞), is defined by

f̂ N
X (x) :=

1

N

N∑

i=1

krN ∗ H0
|Xi

(x) =
1

Nr d
N

N∑

i=1

k

(
x − Xi

rN

)
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As a natural extension to the n-dimensional r.c.s, we define the following kernel
estimator for the mean density of Θn:

λ̂κ,N
Θn

(x) :=
1

N

N∑

i=1

krN ∗ Hn
|
Θi

n

(x) =
1

Nr d
N

N∑

i=1

∫

Θi
n

k
(x − y

rN

)
Hn(dy)
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1

Nr d
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k
(x − y

rN

)
Hn(dy)

NOTE THAT: λ̂ν,N
Θn

(x) = λ̂κ,N
Θn

(x) by choosing as kernel k(z) = 1
bd

1B1(0)(z).
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The “Minkowski content”-based estimator λ̂μ,N
Θn

(x)

We remind that

The n-dimensional Minkowski content of a closed set S ⊂ Rd is the quantity
Mn(S) so defined

Mn(S) := lim
r↓0

Hd (S⊕r )

bd−nr d−n

provided the limit exists finite, where A⊕r :={x ∈ Rd : dist(x , A) ≤ r}.
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holds for some γ > 0 and some Radon measure η in Rd , η � Hn, then

Mn(S) = Hn(S).

We say that a r.c.s.Θn admits mean local n-dimensional Minkowski content if

lim
r↓0

E[Hd(Θn⊕r ∩ A)]

bd−nrd−n
= E[Hn(Θn ∩ A)]

for all A ∈ BRd such that E[μΘn ](∂A) = 0
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We say that a r.c.s.Θn admits mean local n-dimensional Minkowski content if

lim
r↓0

∫

A

P(x ∈ Θn⊕r )

bd−nr d−n
dx = lim

r↓0

E[Hd(Θn⊕r ∩ A)]

bd−nrd−n
= E[Hn(Θn ∩ A)]=

∫

A
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for all A ∈ BRd such that E[μΘn ](∂A) = 0
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It can be proved, under suitable regularity assumptions on Θn, that [EV, Bernoulli, 2014]

λΘn (x) = lim
r↓0

P(x ∈ Θn⊕r )

bd−nr d−n
, Hd -a.e. x ∈ Rd

This suggests the following “Minkowski content”-based estimator of λΘn (x)

λ̂μ,N
Θn

(x) :=

∑N
i=1 1Θi

n∩BrN (x) 6=∅

Nbd−nr
d−n
N

=
#{i : x ∈ Θi

n⊕rN
}

Nbd−nr
d−n
N

.
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− ∼ − ∼ − ∼ − ∼ − ∼ − ∼ − ∼ − ∼ −

PROBLEM 1: regularity properties on Θn such that the 3 proposed estimators are
asymptotically unbiased and consistent.

PROBLEM 2: optimal bandwidth rN .
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Assumptions and notation

Every random closed set Θ in Rd can be represented as “particle process” (or
“germ-grain process”), and so described by a marked point process Φ = {(Xi , Si )}i∈N

in Rd with marks in a suitable mark space K so that

Θ(ω) =
⋃

(xi ,si )∈Φ(ω)

xi + Z (si ), ω ∈ Ω,

where Zi = Z (Si ), i ∈ N is a random set containing the origin.
(If Φ is a marked Poisson point process, then Θ is called Boolean model)
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in Rd with marks in a suitable mark space K so that

Θ(ω) =
⋃

(xi ,si )∈Φ(ω)

xi + Z (si ), ω ∈ Ω,

where Zi = Z (Si ), i ∈ N is a random set containing the origin.
(If Φ is a marked Poisson point process, then Θ is called Boolean model)

We assume that Φ has intensity measure

Λ(d(x , s)) = f (x , s)dxQ(ds)

and second factorial moment measure

ν[2](d(x , s, y , t)) = g(x , s, y , t)dxdyQ[2](d(s, t))

It follows that λΘn (x) =

∫

K

∫

x−Z(s)

f (y , s)Hn(dy)Q(ds)
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ν[2](d(x , s, y , t)) = g(x , s, y , t)dxdyQ[2](d(s, t))

It follows that λΘn (x) =

∫

K

∫

x−Z(s)

f (y , s)Hn(dy)Q(ds)

Note that:

if Θn Boolean model: g(x , s, y , t) = f (x , s)f (y , t), and Q[2](d(s, t)) = Q(ds)Q(dt)

if Θ0 = X random point with pdf fX : Φ = (X , s), Z (s) := s ∈ Rd , and

Λ(d(y , s)) = fX (y)dyδ0(s)ds, ν[2](d(x , s, y , t)) ≡ 0
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In what follows:
α := (α1, ..., αd) multi-index of Nd

0 ; |α| := α1 + ∙ ∙ ∙ + αd ;
α! := α1! ∙ ∙ ∙αd ! yα := yα1

1 ∙ ∙ ∙ yαd
d ;

Dα
y f (y , s) :=

∂|α|f (y , s)

∂yα1
1 ∙ ∙ ∙ ∂yαd

d

; D(α)(s) := disc(Dα
y f (y , s)).

k will be a kernel with compact support

Moreover, “under regularity assumptions” will mean that some of the following
assumptions are satisfied:

(A1) for any (y , s) ∈ Rd × K, y + Z (s) is a countably Hn-rectifiable and compact subset
of Rd , such that there exists a closed set Ξ(s) ⊇ Z (s) such that∫
K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩ Br (x)) ≥ γr n ∀x ∈ Z (s), ∀r ∈ (0, 1) (1)

for some γ > 0 independent of s;

(A1) as (A1), replacing (1) with

γr n ≤ Hn(Ξ(s) ∩ Br (x)) ≤ γ̃r n ∀x ∈ Z (s), r ∈ (0, 1)

for some γ, γ̃ > 0 independent of s;

(A1) for λ̂μ,N
Θn

(x); (A1) for λ̂κ,N
Θn

(x) and λ̂ν,N
Θn

(x)
in proving asymptotical unbiasedness and consistency
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(A2) for any s ∈ K, Hn(disc(f (∙, s))) = 0 and f (∙, s) is locally bounded such that for any
compact K ⊂ Rd

sup
x∈K⊕diam(Z(s))

f (x , s) ≤ ξ̃K (s)

for some ξ̃K (s) with ∫

K

Hn(Ξ(s))ξ̃K (s)Q(ds) < ∞

(A2*) for |α = 2|, for any s ∈ K, Hn(D(α)(s)) = 0 and Dα
y f (y , s) is locally bounded such

that, for any compact C ⊂ Rd ,

sup
y∈C⊕diamZ(s)

|Dα
y f (y , s)| ≤ ξ̃

(α)
C (s)

for some ξ̃
(α)
C (s) with ∫

K

Hn(Ξ(s))ξ̃
(α)
C (s)Q(ds) < ∞

(A2) for all the 3 estimators in proving asymptotical unbiasedness and consistency;

(A2*) for λ̂κ,N
Θn

(x) and λ̂ν,N
Θn

(x) in finding the optimal bandwidth
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(A3) for any (s, y , t) ∈ K × Rd × K, Hn(disc(g(∙, s, y , t))) = 0 and g(∙, s, y , t) is locally
bounded such that for any compact K ⊂ Rd and a ∈ Rd ,

1(a−Z(t))⊕1
(y) sup

x∈K⊕diam(Z(s))

g(x , s, y , t) ≤ ξa,K (s, y , t)

for some ξa,K (s, y , t) with
∫

Rd×K2

Hn(Ξ(s))ξa,K (s, y , t)dyQ[2](ds, dt) < ∞. (2)

(A3) for any s, t ∈ K , g(∙, s, ∙, t) is locally bounded such that, for any C , C ⊂ Rd

compact sets:
sup

y∈C⊕diamZ(t)

sup
x∈C⊕diamZ(s)

g(x , s, y , t) ≤ ξC ,C (s, t)

for some ξC ,C (s, t) with

∫

K2

Hn(Ξ(s))Hn(Ξ(t))ξC ,C (s, t)Q[2](ds, dt) < ∞. (3)

(A3) for λ̂μ,N
Θn

(x); (A3) for λ̂κ,N
Θn

(x) and λ̂ν,N
Θn

(x)
in proving asymptotical unbiasedness and consistency

Elena Villa (University of Milan) Estimation of the mean density of RACS Toronto, May 22, 2014 11 / 32



Statistical properties and optimal bandwidths of the proposed estimators

Under regularity assumptions on Θ, the 3 proposed estimators of λΘn (x) are
asymptotically unbiased and weakly consistent for Hd a.e. x ∈ Rd .

In order to find the optimal bandwidth of the 3 proposed estimators, we proceed
along the same lines as what is commonly done for the kernel density estimator f̂ N

X (x) of
the pdf fX (x) of a random variable X ; that is

ro,AMSE
N (x) := arg min

rN

AMSE (λ̂N
Θn

(x)),

where

MSE (λ̂N
Θn

(x)) :=E[(λ̂N
Θn

(x) − λΘn (x))2] = Bias(λ̂N
Θn

(x))2 + Var(λ̂N
Θn

(x))

is the mean square error of λ̂N
Θn

(x), and AMSE is the asymptotic MSE, obtained by
Taylor series expansion of Bias and Variance.
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Under regularity assumptions on Θn we obtain

for λ̂κ,N
Θn

[Camerlenghi F, Capasso V, EV, J. Multivariate Anal., 2014]

ro,AMSE
N (x) = 4+d−n

√
(d − n)CVar (x)

4NC 2
Bias(x)

, Hd -a.e. x ∈ Rd

with

CBias(x) :=
∑

|α|=2

1

α!

∫

Rd

k(z)zαdz

∫

K

∫

x−Z(s)

Dα
y f (y , s)Hn(dy)Q(ds)

CVar (x) :=

∫

K

∫

Rd

∫

x−Z(s)

∫

π
x,s
y

k(z)k(z + w)f (y , s)Hn(dw)Hn(dy)dzQ(ds)

where πx,s
y ∈ Gn is the approximate tangent space to x − Z (s) at y ∈ x − Z (s).
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Under regularity assumptions on Θn we obtain

for λ̂κ,N
Θn

[Camerlenghi F, Capasso V, EV, J. Multivariate Anal., 2014]

ro,AMSE
N (x) = 4+d−n

√
(d − n)CVar (x)

4NC 2
Bias(x)

, Hd -a.e. x ∈ Rd

with

CBias(x) :=
∑

|α|=2

1

α!

∫

Rd

k(z)zαdz

∫

K

∫

x−Z(s)

Dα
y f (y , s)Hn(dy)Q(ds)

CVar (x) :=

∫

K

∫

Rd

∫

x−Z(s)

∫

π
x,s
y

k(z)k(z + w)f (y , s)Hn(dw)Hn(dy)dzQ(ds)

where πx,s
y ∈ Gn is the approximate tangent space to x − Z (s) at y ∈ x − Z (s).

for λ̂ν,N
Θn

the same as above with k(z) = 1
bd

1B1(0)(z)
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for λ̂μ,N
Θn

, if ∀s ∈ K, reach(Z (s)) > R for some R > 0, [Camerlenghi F, EV, work in

progress, 2014]

ro,AMSE
N (x) =






( (d − n)λΘn (x)

2Nbd−n(A1(x) −A2(x))2

) 1
d−n+2

if d − n > 1

( λΘd−1(x)

4N
(
A1(x) −A3(x)

)2

) 1
3

if d − n = 1

with

A1(x) :=
bd−n+1

bd−n

∫

K

∫

Z(s)

f (x − y , s)Φn−1(Z (s); dy)Q(ds)

A2(x) :=
d − n

d − n + 1

∑

|α|=1

∫

K

∫

N(Z(s))

Dα
x f (x − y , s)uαμn(Z (s); d(y , u))Q(ds)

A3(x) :=

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)H
d−1(dy2)H

d−1(dy1)Q[2](d(s1, s2))

where Φn(Z (s), ∙ ) is the n-dimensional curvature measure of Z (s) and μn(Z (s), ∙ ) is
the n-dimensional support measure of Z (s).
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Particular cases

d = 1, n = 0, Θ0 = X random variable with pdf fX ∈ C 2

We reobtain the well known results for kernel density estimates of fX

ro,AMSE
N (x) =






5

√√
√
√
√
√

fX (x)

∫
k(z)2dz

N
(
f ′′
X (x)

∫

R
z2k(z)dz

)2 , for λ̂κ,N
X

5

√
9fX (x)

2N(f
′′

X (x))2
, for λ̂ν,N

X (x) = λ̂μ,N
X (x)
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Particular cases

d = 1, n = 0, Θ0 = X random variable with pdf fX ∈ C 2

We reobtain the well known results for kernel density estimates of fX

ro,AMSE
N (x) =






5

√√
√
√
√
√

fX (x)

∫
k(z)2dz

N
(
f ′′
X (x)

∫

R
z2k(z)dz

)2 , for λ̂κ,N
X

5

√
9fX (x)

2N(f
′′

X (x))2
, for λ̂ν,N

X (x) = λ̂μ,N
X (x)

Θ0 = Ψ point process in Rd with intensity λΨ ∈ C 2

If N = 1, λ̂ν,N
Ψ (x) coincides with the well-known classic and widely used

Berman-Diggle estimator

λ̂κ,N
Ψ (x) =

Ψ(Br (x))

bd r d
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Θn stationary
Φ with intensity measure Λ(d(x , s)) = cdxQ(ds).
It follows that:

– λΘn (x) ≡ cE[Hn(Z )] Hd -a.e. x ∈ Rd ,

– λ̂κ,N
Θn

and λ̂ν,N
Θn

are unbiased for any bandwidth r > 0, and any sample size N;

– λ̂κ,N
Θn

and λ̂ν,N
Θn

are strongly consistent for Hd -a.e. x ∈ Rd , as N → ∞.

– if Θn Boolean model with E[(Hn(Z ))2] < ∞, then

ro,MSE =






+∞ for λ̂κ,N
Θn

and λ̂ν,N
Θn

3

√
cE[Hn(Z )]

N
(
πcE[Φn−1(Z )] − 2(cE[Hn(Z )])2

)2 for λ̂κ,N
Θn

if d − n = 1

d−n+2

√
(d − n)bd−ncE[Hn(Z )]

2N
(
cbd−n+1E[Φn−1(Z )]

)2 for λ̂κ,N
Θn

if d − n > 1
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Summarizing:

kernel estimator kernel density estimatorΘ0=X
−−−−→

λ̂κ,N
Θn

(x) =
1

Nr d
N

N∑

i=1

∫

Θi
n

k
(x − y

rN

)
Hn(dy) f̂ N

X (x) =
1

Nr d
N

N∑

i=1

k
(x − Xi

rN

)

| |
| k(z) = 1

bd
1B1(0)(z) | k(z) = 1

bd
1B1(0)(z)

↓ ↓

natural estimator

λ̂ν,N
Θn

(x) =
1

Nbd r d
N

N∑

i=1

Hn(Θi
n ∩ BrN (x))

“Minkowski content”-based estimator

λ̂μ,N
Θn

(x) =
#{i : x ∈ Θi

n⊕rN
}

Nbd−nr
d−n
N






Θ0=X
−−−−→

naive estimator

f̂ N
X (x) =

#{i : Xi ∈ BrN (x)}
Nr d

N
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Some numerical experiments

Θ1 = inhomogeneous Boolean model of segments of the type [0, l ] × {0} in R2,
with random length l ∼ U(0, 0.2) in the compact window W = [0, 1]2, where the
underlying Poisson point process has intensity f (x1, x2) = 700x2

1 .

λΘ1(x1, x2) =
175

3
(0.2)3 −

700

3
(0.2)2x1 + 70x2

1
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Natural estimator and “Minkowski content”-based estimator at point x = (0.5, 0.5)
as function of the bandwidth expressed in pixels (1pixel = 0.0029), for N = 10 and
N = 100
λΘ1(0.5, 0.5) = 13.30
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Natural estimator and “Minkowski content”-based estimator at point x = (0.5, 0.5)
as function of the bandwidth expressed in pixels (1pixel = 0.0029), for N = 10 and
N = 100
λΘ1(0.5, 0.5) = 13.30
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‘Minkowski content”-based estimator
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λΘ1(0.5, 0.5) = 13.30 theoretical value

|λ̂ν,N
Θ1

(0.5, 0.5) − λΘ1(0.5, 0.5)| = 0.2973 for N = 10, ro,AMSE
10 ≈ 77pixel(0.2973)

|λ̂ν,N
Θ1

(0.5, 0.5) − λΘ1(0.5, 0.5)| = 0.0614 for N = 100, ro,AMSE
100 ≈ 49pixel(0.1425)

|λ̂μ,N
Θ1

(0.5, 0.5) − λΘ1(0.5, 0.5)| = 1.8556 for N = 10, ro,AMSE
10 ≈ 9pixel(0.0271)

|λ̂μ,N
Θ1

(0.5, 0.5) − λΘ1(0.5, 0.5)| = 0.70 for N = 100, ro,AMSE
100 ≈ 4pixel(0.0126)
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Θ1 = homogeneous Boolean model of segments of the type [0, l ] × {0} in R2,
with random length l ∼ U(0, 0.2) in the compact window W = [0, 1]2, where the
underlying Poisson point process has intensity f (x1, x2) = 300.

λΘ1(x1, x2) = 30
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Natural estimator and “Minkowski content”-based estimator at point x = (0.5, 0.5)
as function of the bandwidth expressed in pixel (1pixel = 0.0029), for N = 10 and
N = 100
λΘ1(x) ≡ 30; we choose x = (0.5, 0.5).

Elena Villa (University of Milan) Estimation of the mean density of RACS Toronto, May 22, 2014 23 / 32



Natural estimator and “Minkowski content”-based estimator at point x = (0.5, 0.5)
as function of the bandwidth expressed in pixel (1pixel = 0.0029), for N = 10 and
N = 100
λΘ1(x) ≡ 30; we choose x = (0.5, 0.5).

Natural estimator
ro,AMSE
N = +∞

N = 10 N = 100
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“Minkowski content”-based estimator

N = 10 N = 100
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λΘ1 ≡ 30 theoretical value

|λ̂ν,N
Θ1

− λΘ1 | = 1.2647 with r = 105pixel for N = 10, ro,AMSE
10 = +∞

|λ̂ν,N
Θ1

− λΘ1 | = 0.4082 with r = 105pixel for N = 100, ro,AMSE
100 = +∞

|λ̂μ,N
Θ1

− λΘ1 | = 6.13 for N = 10, ro,AMSE
10 ≈ 5pixel(0.016)

|λ̂μ,N
Θ1

− λΘ1 | = 1.50 for N = 100, ro,AMSE
100 ≈ 3pixel(0.0074)
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Θ0 = Ψ inhomogeneous Poisson point process with intensity f (x1, x2) = x2
1 + x2

2

in the compact window W = [−2, 2]2.

Ψ1, . . . , ΨN i.i.d. random sample for Ψ

kernel estimator

λ̂κ,N
Ψ (x) =

1

Nr2
N

N∑

i=1

∑

yj∈Ψi

k
( x − yj

rN

)

with kernel of Epanechnikov :

k(t) =

{
2
π

(1 − x2
1 − x2

2 ), if (x1, x2) ∈ B1(0)
0, otherwise

natural estimator

λ̂ν,N
Ψ (x) =

1

Nπr2
N

N∑

i=1

H0(Ψi ∩ BrN (x)) =
1

Nπr2
N

N∑

i=1

∑

yj∈Ψi

1BrN
(x)(yj )

“Minkowski content”-based estimator

λ̂μ,N
Ψ (x) =

#{i : x ∈ Ψi
⊕rN

}

Nπr2
N

=
1

Nπr2
N

N∑

i=1

1{Ψi (BrN
(x))>0}
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Epanechnikov-kernel estimator, Natural estimator and “Minkowski content”-based
estimator in W = [−2, 2]2 with grid step size=0.2, for N = 1000 and N = 10000

Elena Villa (University of Milan) Estimation of the mean density of RACS Toronto, May 22, 2014 27 / 32



Epanechnikov-kernel estimator, Natural estimator and “Minkowski content”-based
estimator in W = [−2, 2]2 with grid step size=0.2, for N = 1000 and N = 10000

Epanechnikov-kernel estimator

N = 1000 N = 10000
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Natural estimator

N = 1000 N = 10000
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“Minkowski content”-based estimator

N = 1000 N = 10000
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λΨ(1.8, 1.8) = 6.48 theoretical value

|λ̂κ,N
Θ1

(1.8, 1.8) − λΨ(1.8, 1.8)| = 0.0878 for N = 1000, ro,AMSE
1000 ≈ 166pixel(0.4809)

|λ̂κ,N
Ψ (1.8, 1.8) − λΨ(1.8, 1.8)| = 0.0434 for N = 10000, ro,AMSE

10000 ≈ 113pixel(0.3277)

|λ̂ν,N
Ψ (1.8, 1.8) − λΨ(1.8, 1.8)| = 0.0336 for N = 1000, ro,AMSE

1000 ≈ 138pixel(0.4005)

|λ̂ν,N
Ψ (1.8, 1.8) − λΨ(1.8, 1.8)| = 0.0379 for N = 10000, ro,AMSE

10000 ≈ 94pixel(0.2728)

|λ̂μ,N
Ψ (1.8, 1.8) − λΨ(1.8, 1.8)| = 0.2371 for N = 1000, ro,AMSE

1000 ≈ 27pixel(0.0789)

|λ̂μ,N
Ψ (1.8, 1.8) − λΨ(1.8, 1.8)| = 0.2291 for N = 10000, ro,AMSE

10000 ≈ 18pixel(0.0537)

max
x∈W

|λ̂κ,N
Ψ (x) − λΨ(x)| = 0.2938 for N = 1000

max
x∈W

|λ̂κ,N
Ψ (x) − λΨ(x)| = 0.1618 for N = 10000

max
x∈W

|λ̂ν,N
Ψ (x) − λΨ(x)| = 0.3247 for N = 1000

max
x∈W

|λ̂ν,N
Ψ (x) − λΨ(x)| = 0.1698 for N = 10000

max
x∈W

|λ̂μ,N
Ψ (x) − λΨ(x)| = 1.8202 for N = 1000

max
x∈W

|λ̂μ,N
Ψ (x) − λΨ(x)| = 0.7601 for N = 10000
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Concluding Remarks

Kernel estimators:

pro: they extend in a natural way the corresponding kernel estimators for random
objects of dimension n = 0 (random variables - univariate and multivariate, point
processes) to random closed sets of any integer Hausdorff dimension n < d , in Rd ;
cons: practical applicability; non-trivial computation of integrals is required
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Concluding Remarks

Kernel estimators:

pro: they extend in a natural way the corresponding kernel estimators for random
objects of dimension n = 0 (random variables - univariate and multivariate, point
processes) to random closed sets of any integer Hausdorff dimension n < d , in Rd ;
cons: practical applicability; non-trivial computation of integrals is required

Natural estimators:
pro: direct derivation from the Besicovitch Theorem;
generalization of the notion of histogram estimators for the case Θ0 = X random
variable;
more stable with respect to the choice of the bandwidth, than the “Minkowski
content”-based estimators
cons: include the nontrivial evaluation of Hn(Θi

n ∩ BrN (x)) for any element Θi
n of the

sample; for segment processes (n = 1) it seems more feasible, but for other sets of
dimension n ≥ 1 it results of higher computational complexity.
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Concluding Remarks

Kernel estimators:

pro: they extend in a natural way the corresponding kernel estimators for random
objects of dimension n = 0 (random variables - univariate and multivariate, point
processes) to random closed sets of any integer Hausdorff dimension n < d , in Rd ;
cons: practical applicability; non-trivial computation of integrals is required

Natural estimators:
pro: direct derivation from the Besicovitch Theorem;
generalization of the notion of histogram estimators for the case Θ0 = X random
variable;
more stable with respect to the choice of the bandwidth, than the “Minkowski
content”-based estimators
cons: include the nontrivial evaluation of Hn(Θi

n ∩ BrN (x)) for any element Θi
n of the

sample; for segment processes (n = 1) it seems more feasible, but for other sets of
dimension n ≥ 1 it results of higher computational complexity.

“Minkowski content”-based estimators:
pro: easy computational evaluation;
cons: quite sensitive to the choice of the bandwidth;
low rate of convergence
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