DIFFERENT KINDS OF ESTIMATORS OF THE MEAN DENSITY OF RANDOM CLOSED SETS: THEORETICAL RESULTS AND NUMERICAL EXPERIMENTS

Elena Villa

Dept. of Mathematics - Università degli Studi di Milano

Toronto - May 22, 2014

Elena Villa (University of Milan)

Estimation of the mean density of RACS

Toronto, May 22, 2014 1 / 32

メロト メポト メヨト メヨト

$$\mu_{\Theta_n}(A) := \mathcal{H}^n(\Theta_n \cap A), \qquad A \in \mathcal{B}_{\mathbb{R}^d},$$

and the corresponding expected measure

$$\mathbb{E}[\mu_{\Theta_n}](A) := \mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)], \qquad A \in \mathcal{B}_{\mathbb{R}^d}.$$

Whenever $\mathbb{E}[\mu_{\Theta_n}] \ll \mathcal{H}^d$ on \mathbb{R}^d , its density, say λ_{Θ_n} is called *mean density* of Θ_n

A crucial problem is the pointwise estimation of $\lambda_{\Theta_n}(x)$.

・ロト ・ 日 ・ ・ 目 ト ・

$$\mu_{\Theta_n}(A) := \mathcal{H}^n(\Theta_n \cap A), \qquad A \in \mathcal{B}_{\mathbb{R}^d},$$

and the corresponding expected measure

$$\mathbb{E}[\mu_{\Theta_n}](A) := \mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)], \qquad A \in \mathcal{B}_{\mathbb{R}^d}.$$

Whenever $\mathbb{E}[\mu_{\Theta_n}] \ll \mathcal{H}^d$ on \mathbb{R}^d , its density, say λ_{Θ_n} is called *mean density* of Θ_n

A crucial problem is the pointwise estimation of $\lambda_{\Theta_n}(x)$.

We present here 3 different kinds of estimators of $\lambda_{\Theta_n}(x)$:

• Natural estimator $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x)$

It will follow as a natural consequence of the Besicovitch derivation theorem

・ロト ・聞ト ・ヨト ・ヨ

$$\mu_{\Theta_n}(A) := \mathcal{H}^n(\Theta_n \cap A), \qquad A \in \mathcal{B}_{\mathbb{R}^d},$$

and the corresponding expected measure

$$\mathbb{E}[\mu_{\Theta_n}](A) := \mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)], \qquad A \in \mathcal{B}_{\mathbb{R}^d}.$$

Whenever $\mathbb{E}[\mu_{\Theta_n}] \ll \mathcal{H}^d$ on \mathbb{R}^d , its density, say λ_{Θ_n} is called *mean density* of Θ_n

A crucial problem is the pointwise estimation of $\lambda_{\Theta_n}(x)$.

We present here 3 different kinds of estimators of $\lambda_{\Theta_n}(x)$:

- Natural estimator $\hat{\lambda}_{\Theta_n}^{\nu,N}(x)$ It will follow as a natural consequence of the Besicovitch derivation theorem
- Kernel estimator λ^{κ,N}_{Θ_n}(x) It will follow as a generalization to the *n*-dimensional case of the classical kernel density estimator of random vectors

イロト イポト イヨト イヨト

$$\mu_{\Theta_n}(A) := \mathcal{H}^n(\Theta_n \cap A), \qquad A \in \mathcal{B}_{\mathbb{R}^d},$$

and the corresponding expected measure

$$\mathbb{E}[\mu_{\Theta_n}](A) := \mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)], \qquad A \in \mathcal{B}_{\mathbb{R}^d}.$$

Whenever $\mathbb{E}[\mu_{\Theta_n}] \ll \mathcal{H}^d$ on \mathbb{R}^d , its density, say λ_{Θ_n} is called *mean density* of Θ_n

A crucial problem is the pointwise estimation of $\lambda_{\Theta_n}(x)$.

We present here 3 different kinds of estimators of $\lambda_{\Theta_n}(x)$:

- Natural estimator $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x)$ It will follow as a natural consequence of the Besicovitch derivation theorem
- Kernel estimator λ^{κ,N}_{Θn}(x)
 It will follow as a generalization to the *n*-dimensional case of the classical kernel density estimator of random vectors
- "Minkowski content"-based estimator λ^{μ,N}_{Θ_n}(x) It will follow by a local approximation of λ_{Θ_n} based on a stochastic version of the *n*-dimensional Minkowski content of Θ_n.

イロト イポト イヨト イヨト

We remind that...

- A compact set $S \subset \mathbb{R}^d$ is called
 - *n*-rectifiable, if there exist a compact $K \subset \mathbb{R}^n$ and a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^d$ such that S = g(K);
 - countably \mathcal{H}^n -rectifiable if there exist countably many Lipschitz maps $g_i: \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathcal{H}^n\Big(S\setminus \bigcup_{i=1}^\infty g_i(\mathbb{R}^n)\Big)=0.$$

• A random closed set $(r.c.s.)\Theta$ in \mathbb{R}^d is a measurable map

$$\Theta: (\Omega, \mathfrak{F}, \mathbb{P}) \to (\mathbb{F}, \sigma_{\mathbb{F}}),$$

where \mathbb{F} is the class of the closed subsets in \mathbb{R}^d , and $\sigma_{\mathbb{F}}$ is the σ -algebra generated by the so called *Fell topology*, or *hit-or-miss topology*.

IN WHAT FOLLOWS:

- Θ_n is a countably \mathcal{H}^n -rectifiable r.c.s. of locally finite \mathcal{H}^n -measure
- $\Theta_n^1, \ldots, \Theta_n^N$ i.i.d. random sample for Θ_n

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

We remind that...

- A compact set $S \subset \mathbb{R}^d$ is called
 - *n*-rectifiable, if there exist a compact $K \subset \mathbb{R}^n$ and a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^d$ such that S = g(K);
 - countably \mathcal{H}^{n} -rectifiable if there exist countably many Lipschitz maps $g_i: \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathcal{H}^n\Big(S\setminus \bigcup_{i=1}^\infty g_i(\mathbb{R}^n)\Big)=0.$$

• A random closed set $(r.c.s.)\Theta$ in \mathbb{R}^d is a measurable map

$$\Theta : (\Omega, \mathfrak{F}, \mathbb{P}) \rightarrow (\mathbb{F}, \sigma_{\mathbb{F}}),$$

where \mathbb{F} is the class of the closed subsets in \mathbb{R}^d , and $\sigma_{\mathbb{F}}$ is the σ -algebra generated by the so called *Fell topology*, or *hit-or-miss topology*.

IN WHAT FOLLOWS:

- Θ_n is a countably \mathcal{H}^n -rectifiable r.c.s. of locally finite \mathcal{H}^n -measure - $\Theta_n^1, \ldots, \Theta_n^N$ i.i.d. random sample for Θ_n

NOTE THAT: if n = 0 and $\Theta_0 = X$ random vector with pdf f_X , then

$$\mathbb{E}[\mathcal{H}^0(X\cap A)] = \mathbb{P}(X\in A) = \int_A f_X(x) \mathrm{d} x \quad orall A\in \mathcal{B}_{\mathbb{R}^d}$$

and so $\lambda_X(x) = f_X(x)$.

(日) (四) (三) (三)

The Besicovitch derivation theorem implies that if

$$\mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)] = \int_A \lambda_{\Theta_n}(x) \mathrm{d}x, \quad \forall A \in \mathcal{B}_{\mathbb{R}^d},$$

then

$$\lambda_{\Theta_n}(x) = \lim_{r \downarrow 0} \frac{\mathbb{E}[\mathcal{H}^n(\Theta_n \cap B_r(x))]}{b_d r^d} \quad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d.$$

▲□ > ▲圖 > ▲ 国 > ▲ 国 >

The Besicovitch derivation theorem implies that if

$$\mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)] = \int_A \lambda_{\Theta_n}(x) \mathrm{d}x, \quad \forall A \in \mathcal{B}_{\mathbb{R}^d},$$

then

$$\lambda_{\Theta_n}(x) = \lim_{r \downarrow 0} \frac{\mathbb{E}[\mathcal{H}^n(\Theta_n \cap B_r(x))]}{b_d r^d} \quad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d.$$

This suggests the following natural estimator for the mean density $\lambda_{\Theta_n}(x)$ of Θ_n ,

$$\widehat{\lambda}_{\Theta_n}^{\nu,N}(x) := \frac{1}{Nb_d r_N^d} \sum_{i=1}^N \mathcal{H}^n(\Theta_n^i \cap B_{r_N}(x)).$$

Here and in the following r_N is called the **bandwidth** associated with the sample size N, as usual in literature.

(日) (四) (三) (三)

The kernel estimator $\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x)$

We remind that

- A measurable function $k : \mathbb{R}^d \to \mathbb{R}$ is said to be a multivariate kernel if it satisfies the following conditions:
 - $0 \leq k(z) \leq M$ for all $z \in \mathbb{R}^d$, for some M > 0;
 - k is radially symmetric;
 - $-\int_{\mathbb{R}^d}k(z)dz=1.$
- Given X_1, \ldots, X_N i.i.d. random sample for X random vector with p.d.f f_X , the multivariate kernel density estimator of f_X based on a chosen kernel k, and scaling parameter $r_N \in (0, +\infty)$, is defined by

$$\widehat{f}_X^N(x) := \frac{1}{N} \sum_{i=1}^N k_{r_N} * \mathcal{H}^0_{|_{X_i}}(x) = \frac{1}{N r_N^d} \sum_{i=1}^N k\left(\frac{x - X_i}{r_N}\right)$$

<ロト < 置 > < 置 > < 置 >

We remind that

- A measurable function $k : \mathbb{R}^d \to \mathbb{R}$ is said to be a multivariate kernel if it satisfies the following conditions:
 - $0 \leq k(z) \leq M$ for all $z \in \mathbb{R}^d$, for some M > 0;
 - -k is radially symmetric;
 - $-\int_{\mathbb{R}^d}k(z)dz=1.$
- Given X_1, \ldots, X_N i.i.d. random sample for X random vector with p.d.f f_X , the multivariate kernel density estimator of f_X based on a chosen kernel k, and scaling parameter $r_N \in (0, +\infty)$, is defined by

$$\widehat{f}_X^N(x) := \frac{1}{N} \sum_{i=1}^N k_{r_N} * \mathcal{H}^0_{|_{X_i}}(x) = \frac{1}{N r_N^d} \sum_{i=1}^N k\left(\frac{x - X_i}{r_N}\right)$$

As a natural extension to the *n*-dimensional r.c.s, we define the following kernel estimator for the mean density of Θ_n :

$$\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x) := \frac{1}{N} \sum_{i=1}^N k_{r_N} * \mathcal{H}_{|_{\Theta_n^i}}^n(x) = \frac{1}{N r_N^d} \sum_{i=1}^N \int_{\Theta_n^i} k\left(\frac{x-y}{r_N}\right) \mathcal{H}^n(dy)$$

イロト イポト イヨト イヨト

We remind that

- A measurable function $k : \mathbb{R}^d \to \mathbb{R}$ is said to be a multivariate kernel if it satisfies the following conditions:
 - $0 \leq k(z) \leq M$ for all $z \in \mathbb{R}^d$, for some M > 0;
 - -k is radially symmetric;
 - $-\int_{\mathbb{R}^d}k(z)dz=1.$
- Given X_1, \ldots, X_N i.i.d. random sample for X random vector with p.d.f f_X , the multivariate kernel density estimator of f_X based on a chosen kernel k, and scaling parameter $r_N \in (0, +\infty)$, is defined by

$$\widehat{f}_X^N(x) := \frac{1}{N} \sum_{i=1}^N k_{r_N} * \mathcal{H}^0_{|_{X_i}}(x) = \frac{1}{N r_N^d} \sum_{i=1}^N k\left(\frac{x - X_i}{r_N}\right)$$

As a natural extension to the *n*-dimensional r.c.s, we define the following kernel estimator for the mean density of Θ_n :

$$\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x) := \frac{1}{N} \sum_{i=1}^N k_{r_N} * \mathcal{H}_{|_{\Theta_n^i}}^n(x) = \frac{1}{Nr_N^d} \sum_{i=1}^N \int_{\Theta_n^i} k\left(\frac{x-y}{r_N}\right) \mathcal{H}^n(dy)$$
NOTE THAT: $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x) = \widehat{\lambda}_{\Theta_n}^{\kappa,N}(x)$ by choosing as kernel $k(z) = \frac{1}{b_d} \mathbf{1}_{B_1(0)}(z)$.

We remind that

• The *n*-dimensional Minkowski content of a closed set $S \subset \mathbb{R}^d$ is the quantity $\mathcal{M}^n(S)$ so defined

$$\mathcal{M}^{n}(S) := \lim_{r \downarrow 0} \frac{\mathcal{H}^{d}(S_{\oplus r})}{b_{d-n}r^{d-n}}$$

provided the limit exists finite, where $A_{\oplus r} := \{x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leq r\}$.

・ロト ・ 日 ・ ・ 目 ト ・

We remind that

• The *n*-dimensional Minkowski content of a closed set $S \subset \mathbb{R}^d$ is the quantity $\mathcal{M}^n(S)$ so defined

$$\mathcal{M}^n(S) := \lim_{r \downarrow 0} \frac{\mathcal{H}^d(S_{\oplus r})}{b_{d-n}r^{d-n}}$$

provided the limit exists finite, where $A_{\oplus r} := \{x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leq r\}$.

• If $S \subset \mathbb{R}^d$ is countably \mathcal{H}^n -rectifiable and compact, and

$$\eta(B_r(x)) \geq \gamma r^n \quad \forall x \in S, \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$, then

 $\mathcal{M}^n(S) = \mathcal{H}^n(S).$

We remind that

• The *n*-dimensional Minkowski content of a closed set $S \subset \mathbb{R}^d$ is the quantity $\mathcal{M}^n(S)$ so defined

$$\mathcal{M}^n(S) := \lim_{r \downarrow 0} \frac{\mathcal{H}^d(S_{\oplus r})}{b_{d-n}r^{d-n}}$$

provided the limit exists finite, where $A_{\oplus r} := \{x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leq r\}$.

• If $S \subset \mathbb{R}^d$ is countably \mathcal{H}^n -rectifiable and compact, and

$$\eta(B_r(x)) \geq \gamma r^n \quad \forall x \in S, \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$, then

 $\mathcal{M}^n(S) = \mathcal{H}^n(S).$

• We say that a r.c.s. Θ_n admits mean local *n*-dimensional Minkowski content if

$$\lim_{r\downarrow 0} \frac{\mathbb{E}[\mathcal{H}^d(\Theta_{n_{\oplus r}} \cap A)]}{b_{d-n}r^{d-n}} = \mathbb{E}[\mathcal{H}^n(\Theta_n \cap A)]$$

for all $A\in \mathcal{B}_{\mathbb{R}^d}$ such that $\mathbb{E}[\mu_{\Theta_n}](\partial A)=0$

・ロト ・ 四ト ・ 回ト ・ 回

We remind that

• The *n*-dimensional Minkowski content of a closed set $S \subset \mathbb{R}^d$ is the quantity $\mathcal{M}^n(S)$ so defined

$$\mathcal{M}^n(S) := \lim_{r \downarrow 0} \frac{\mathcal{H}^d(S_{\oplus r})}{b_{d-n}r^{d-n}}$$

provided the limit exists finite, where $A_{\oplus r} := \{x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leq r\}$.

• If $S \subset \mathbb{R}^d$ is countably \mathcal{H}^n -rectifiable and compact, and

$$\eta(B_r(x)) \geq \gamma r^n \quad \forall x \in S, \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$, then

 $\mathcal{M}^n(S) = \mathcal{H}^n(S).$

• We say that a r.c.s. Θ_n admits mean local *n*-dimensional Minkowski content if

$$\lim_{r\downarrow 0}\int_{A}\frac{\mathbb{P}(x\in \Theta_{n\oplus r})}{b_{d-n}r^{d-n}}\mathrm{d}x = \lim_{r\downarrow 0}\frac{\mathbb{E}[\mathcal{H}^{d}(\Theta_{n\oplus r}\cap A)]}{b_{d-n}r^{d-n}} = \mathbb{E}[\mathcal{H}^{n}(\Theta_{n}\cap A)] = \int_{A}\lambda_{\Theta_{n}}(x)\mathrm{d}x$$

for all $A\in \mathcal{B}_{\mathbb{R}^d}$ such that $\mathbb{E}[\mu_{\Theta_n}](\partial A)=0$

・ロト ・ 四ト ・ 回ト ・ 回

It can be proved, under suitable regularity assumptions on Θ_n , that [EV, Bernoulli, 2014]

$$\lambda_{\Theta_n}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{n_{\oplus r}})}{b_{d-n}r^{d-n}}, \qquad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d$$

This suggests the following "Minkowski content"-based estimator of $\lambda_{\Theta_n}(x)$

$$\widehat{\lambda}_{\Theta_n}^{\mu,N}(x) := \frac{\sum_{i=1}^N \mathbf{1}_{\Theta_n^i \cap B_{r_N(x)} \neq \emptyset}}{Nb_{d-n}r_N^{d-n}} = \frac{\#\{i \, : \, x \in \Theta_{n \oplus r_N}^i\}}{Nb_{d-n}r_N^{d-n}}$$

・ロト ・ 日 ト ・ 日 ト ・ 日

It can be proved, under suitable regularity assumptions on Θ_n , that [EV, Bernoulli, 2014]

$$\lambda_{\Theta_n}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{n_{\oplus r}})}{b_{d-n}r^{d-n}}, \qquad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d$$

This suggests the following "Minkowski content"-based estimator of $\lambda_{\Theta_n}(x)$

$$\widehat{\lambda}_{\Theta_n}^{\mu,N}(x) := \frac{\sum_{i=1}^N \mathbf{1}_{\Theta_n^i \cap B_{r_N(x)} \neq \emptyset}}{Nb_{d-n}r_N^{d-n}} = \frac{\#\{i \, : \, x \in \Theta_{n \oplus r_N}^i\}}{Nb_{d-n}r_N^{d-n}}$$

NOTE THAT: if $\Theta_0 = X$ random point in \mathbb{R}^d , then

$$\widehat{\lambda}_X^{\nu,N}(x) = \widehat{\lambda}_X^{\mu,N}(x) = \frac{\#\{i \, : \, X_i \in B_{r_N}(x)\}}{Nr_N^d}$$

・ロト ・日子・ ・ ヨト

It can be proved, under suitable regularity assumptions on Θ_n , that [EV, Bernoulli, 2014]

$$\lambda_{\Theta_n}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{n_{\oplus r}})}{b_{d-n}r^{d-n}}, \qquad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d$$

This suggests the following "Minkowski content"-based estimator of $\lambda_{\Theta_n}(x)$

$$\widehat{\lambda}_{\Theta_n}^{\mu,N}(x) := \frac{\sum_{i=1}^N \mathbf{1}_{\Theta_n^i \cap B_{r_N(x)} \neq \emptyset}}{Nb_{d-n}r_N^{d-n}} = \frac{\#\{i \, : \, x \in \Theta_{n \oplus r_N}^i\}}{Nb_{d-n}r_N^{d-n}}$$

NOTE THAT: if $\Theta_0 = X$ random point in \mathbb{R}^d , then $\widehat{\lambda}_X^{\nu,N}(x) = \widehat{\lambda}_X^{\mu,N}(x) = \frac{\#\{i : X_i \in B_{r_N}(x)\}}{Nr_N^d}$

PROBLEM 1: regularity properties on Θ_n such that the 3 proposed estimators are asymptotically unbiased and consistent.

PROBLEM 2: optimal bandwidth r_N.

(日) (周) (日) (日) (日)

Assumptions and notation

Every random closed set Θ in \mathbb{R}^d can be represented as "particle process" (or "germ-grain process"), and so described by a marked point process $\Phi = \{(X_i, S_i)\}_{i \in \mathbb{N}}$ in \mathbb{R}^d with marks in a suitable mark space K so that

$$\Theta(\omega) = \bigcup_{(x_i,s_i)\in\Phi(\omega)} x_i + Z(s_i), \qquad \omega \in \Omega,$$

where $Z_i = Z(S_i)$, $i \in \mathbb{N}$ is a random set containing the origin. (If Φ is a marked **Poisson point process**, then Θ is called **Boolean model**)

Assumptions and notation

Every random closed set Θ in \mathbb{R}^d can be represented as "particle process" (or "germ-grain process"), and so described by a marked point process $\Phi = \{(X_i, S_i)\}_{i \in \mathbb{N}}$ in \mathbb{R}^d with marks in a suitable mark space K so that

$$\Theta(\omega) = \bigcup_{(x_i,s_i)\in\Phi(\omega)} x_i + Z(s_i), \qquad \omega \in \Omega,$$

where $Z_i = Z(S_i)$, $i \in \mathbb{N}$ is a random set containing the origin. (If Φ is a marked **Poisson point process**, then Θ is called **Boolean model**)

We assume that Φ has intensity measure

$$\Lambda(\mathrm{d}(x,s))=f(x,s)\mathrm{d} x Q(\mathrm{d} s)$$

and second factorial moment measure

$$\begin{split} \nu_{[2]}(\mathrm{d}(x,s,y,t)) &= g(x,s,y,t) \mathrm{d}x \mathrm{d}y Q_{[2]}(\mathrm{d}(s,t)) \\ \text{It follows that } \lambda_{\Theta_n}(x) &= \int_{\mathsf{K}} \int_{x-Z(s)} f(y,s) \mathcal{H}^n(\mathrm{d}y) Q(\mathrm{d}s) \end{split}$$

イロト イポト イラト イラ

Assumptions and notation

Every random closed set Θ in \mathbb{R}^d can be represented as "particle process" (or "germ-grain process"), and so described by a marked point process $\Phi = \{(X_i, S_i)\}_{i \in \mathbb{N}}$ in \mathbb{R}^d with marks in a suitable mark space K so that

$$\Theta(\omega) = \bigcup_{(x_i,s_i)\in \Phi(\omega)} x_i + Z(s_i), \qquad \omega \in \Omega,$$

where $Z_i = Z(S_i)$, $i \in \mathbb{N}$ is a random set containing the origin. (If Φ is a marked **Poisson point process**, then Θ is called **Boolean model**)

We assume that Φ has intensity measure

$$\Lambda(\mathrm{d}(x,s)) = f(x,s)\mathrm{d}xQ(\mathrm{d}s)$$

and second factorial moment measure

$$\begin{split} \nu_{[2]}(\mathrm{d}(x,s,y,t)) &= g(x,s,y,t) \mathrm{d}x \mathrm{d}y Q_{[2]}(\mathrm{d}(s,t)) \\ \text{It follows that } \lambda_{\Theta_n}(x) &= \int_{\mathsf{K}} \int_{x-Z(s)} f(y,s) \mathcal{H}^n(\mathrm{d}y) Q(\mathrm{d}s) \end{split}$$

Note that:

- if Θ_n Boolean model: g(x, s, y, t) = f(x, s)f(y, t), and $Q_{[2]}(d(s, t)) = Q(ds)Q(dt)$
- if $\Theta_0 = X$ random point with pdf $f_X : \Phi = (X, s), Z(s) := s \in \mathbb{R}^d$, and

$$\Lambda(\mathrm{d}(y,s)) = f_X(y)\mathrm{d}y\delta_0(s)\mathrm{d}s, \qquad \nu_{[2]}(\mathrm{d}(x,s,y,t)) \equiv 0$$

In what follows:

$$\begin{aligned} &\alpha := (\alpha_1, ..., \alpha_d) \quad \text{multi-index of } \mathbb{N}_0^d; & |\alpha| := \alpha_1 + \dots + \alpha_d; \\ &\alpha! := \alpha_1! \dots \alpha_d! & y^{\alpha} := y_1^{\alpha_1} \dots y_d^{\alpha_d}; \\ &D_y^{\alpha} f(y, s) := \frac{\partial^{|\alpha|} f(y, s)}{\partial y_1^{\alpha_1} \dots \partial y_d^{\alpha_d}}; & \mathcal{D}^{(\alpha)}(s) := \operatorname{disc}(D_y^{\alpha} f(y, s)). \end{aligned}$$

k will be a kernel with compact support

Moreover, "under regularity assumptions" will mean that **some of the following** assumptions are satisfied:

(A1) for any $(y, s) \in \mathbb{R}^d \times K$, y + Z(s) is a countably \mathcal{H}^n -rectifiable and compact subset of \mathbb{R}^d , such that there exists a closed set $\Xi(s) \supseteq Z(s)$ such that $\int_K \mathcal{H}^n(\Xi(s))Q(\mathrm{d} s) < \infty$ and

$$\mathcal{H}^{n}(\Xi(s) \cap B_{r}(x)) \geq \gamma r^{n} \quad \forall x \in Z(s), \ \forall r \in (0,1)$$
(1)

for some $\gamma > 0$ independent of *s*;

 $(\overline{A1})$ as (A1), replacing (1) with

$$\gamma r^n \leq \mathcal{H}^n(\Xi(s) \cap B_r(x)) \leq \widetilde{\gamma} r^n \quad \forall x \in Z(s), \ r \in (0,1)$$

for some $\gamma, \widetilde{\gamma} > 0$ independent of *s*;

(A1) for $\widehat{\lambda}_{\Theta_n}^{\mu,N}(x)$; (A1) for $\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x)$ and $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x)$ in proving asymptotical unbiasedness and consistency

Elena Villa (University of Milan)

Estimation of the mean density of RACS

(A2) for any $s \in K$, $\mathcal{H}^n(\operatorname{disc}(f(\cdot, s))) = 0$ and $f(\cdot, s)$ is locally bounded such that for any compact $K \subset \mathbb{R}^d$

$$\sup_{x\in K_{\oplus \operatorname{diam}(Z(s))}} f(x,s) \leq \xi_{K}(s)$$

for some $\widetilde{\xi}_{\mathcal{K}}(s)$ with

$$\int_{\mathbf{K}}\mathcal{H}^{n}(\Xi(s))\widetilde{\xi}_{K}(s)Q(\mathrm{d} s)<\infty$$

(A2*) for $|\alpha = 2|$, for any $s \in K$, $\mathcal{H}^n(\mathcal{D}^{(\alpha)}(s)) = 0$ and $D_y^{\alpha}f(y,s)$ is locally bounded such that, for any compact $C \subset \mathbb{R}^d$,

$$\sup_{y \in C_{\oplus \operatorname{diam} Z(s)}} |D_y^{\alpha} f(y, s)| \leq \widetilde{\xi}_C^{(\alpha)}(s)$$

for some $\widetilde{\xi}_{\mathcal{C}}^{(lpha)}(s)$ with

$$\int_{\mathsf{K}} \mathcal{H}^n(\Xi(s)) \widetilde{\xi}^{(\alpha)}_{\mathcal{C}}(s) \mathcal{Q}(\mathrm{d} s) < \infty$$

(A2) for all the 3 estimators in proving asymptotical unbiasedness and consistency; (A2*) for $\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x)$ and $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x)$ in finding the optimal bandwidth (A3) for any $(s, y, t) \in \mathbf{K} \times \mathbb{R}^d \times \mathbf{K}$, $\mathcal{H}^n(\operatorname{disc}(g(\cdot, s, y, t))) = 0$ and $g(\cdot, s, y, t)$ is locally bounded such that for any compact $K \subset \mathbb{R}^d$ and $a \in \mathbb{R}^d$,

$$\mathbf{1}_{(\mathsf{a}-Z(t))\oplus 1}(y)\sup_{x\in K_{\oplus \operatorname{diam}(Z(s))}}g(x,s,y,t)\leq \xi_{\mathsf{a},K}(s,y,t)$$

for some $\xi_{a,K}(s, y, t)$ with

$$\int_{\mathbb{R}^d \times \mathbf{K}^2} \mathcal{H}^n(\Xi(s))\xi_{s,K}(s,y,t) \mathrm{d} y \mathcal{Q}_{[2]}(\mathrm{d} s,\mathrm{d} t) < \infty. \tag{2}$$

 $(\overline{A3})$ for any $s, t \in K$, $g(\cdot, s, \cdot, t)$ is locally bounded such that, for any $C, \overline{C} \subset \mathbb{R}^d$ compact sets:

$$\sup_{y\in\overline{C}_{\oplus \operatorname{diam} Z(t)}} \sup_{x\in C_{\oplus \operatorname{diam} Z(s)}} g(x,s,y,t) \leq \xi_{C,\overline{C}}(s,t)$$

for some $\xi_{C,\overline{C}}(s,t)$ with

$$\int_{\mathbf{K}^2} \mathcal{H}^n(\Xi(s)) \mathcal{H}^n(\Xi(t)) \xi_{C,\overline{C}}(s,t) Q_{[2]}(\mathrm{d} s,\mathrm{d} t) < \infty.$$
(3)

(A3) for $\widehat{\lambda}_{\Theta_n}^{\mu,N}(x)$; (A3) for $\widehat{\lambda}_{\Theta_n}^{\kappa,N}(x)$ and $\widehat{\lambda}_{\Theta_n}^{\nu,N}(x)$ in proving asymptotical unbiasedness and consistency

Elena Villa (University of Milan)

Estimation of the mean density of RACS

・ロト ・ 日 ト ・ ヨ ト ・

Under regularity assumptions on Θ , the 3 proposed estimators of $\lambda_{\Theta_n}(x)$ are asymptotically unbiased and weakly consistent for \mathcal{H}^d a.e. $x \in \mathbb{R}^d$.

In order to find the optimal bandwidth of the 3 proposed estimators, we proceed along the same lines as what is commonly done for the kernel density estimator $\hat{f}_X^N(x)$ of the pdf $f_X(x)$ of a random variable X; that is

$$r_N^{\mathrm{o,AMSE}}(x) := \underset{r_N}{\operatorname{arg\,min}} AMSE(\widehat{\lambda}_{\Theta_n}^N(x)),$$

where

$$MSE(\widehat{\lambda}_{\Theta_n}^N(x)) := \mathbb{E}[(\widehat{\lambda}_{\Theta_n}^N(x) - \lambda_{\Theta_n}(x))^2] = Bias(\widehat{\lambda}_{\Theta_n}^N(x))^2 + Var(\widehat{\lambda}_{\Theta_n}^N(x))$$

is the mean square error of $\hat{\lambda}_{\Theta_n}^N(x)$, and *AMSE* is the asymptotic MSE, obtained by Taylor series expansion of Bias and Variance.

イロト イポト イヨト イヨー

Under regularity assumptions on Θ_n we obtain

• for $\widehat{\lambda}_{\Theta_n}^{\kappa,N}$ [Camerlenghi F, Capasso V, EV, J. Multivariate Anal., 2014]

$$r_N^{\mathrm{o},\mathrm{AMSE}}(x) = \sqrt[4+d-n]{rac{(d-n)C_{Var}(x)}{4NC_{Bias}^2(x)}}, \quad \mathcal{H}^d ext{-a.e.}\ x\in\mathbb{R}^d$$

with

$$\begin{split} C_{Bias}(x) &:= \sum_{|\alpha|=2} \frac{1}{\alpha!} \int_{\mathbb{R}^d} k(z) z^{\alpha} \mathrm{d}z \int_{\mathsf{K}} \int_{x-Z(s)} D_y^{\alpha} f(y,s) \mathcal{H}^n(\mathrm{d}y) Q(\mathrm{d}s) \\ C_{Var}(x) &:= \int_{\mathsf{K}} \int_{\mathbb{R}^d} \int_{x-Z(s)} \int_{\pi_y^{x,s}} k(z) k(z+w) f(y,s) \mathcal{H}^n(\mathrm{d}w) \mathcal{H}^n(\mathrm{d}y) \mathrm{d}z Q(\mathrm{d}s) \end{split}$$

where $\pi_y^{x,s} \in \mathbf{G}_n$ is the approximate tangent space to x - Z(s) at $y \in x - Z(s)$.

・ロト ・聞ト ・ヨト ・ヨ

Under regularity assumptions on Θ_n we obtain

• for $\widehat{\lambda}_{\Theta_n}^{\kappa,N}$ [Camerlenghi F, Capasso V, EV, J. Multivariate Anal., 2014]

$$r_{N}^{\text{o},\text{AMSE}}(x) = \sqrt[4+d-n]{\frac{(d-n)C_{Var}(x)}{4NC_{Bias}^{2}(x)}}, \quad \mathcal{H}^{d}\text{-a.e.} x \in \mathbb{R}^{d}$$

with

$$\begin{split} C_{Bias}(x) &:= \sum_{|\alpha|=2} \frac{1}{\alpha!} \int_{\mathbb{R}^d} k(z) z^{\alpha} \mathrm{d}z \int_{\mathbf{K}} \int_{x-Z(s)} D_y^{\alpha} f(y,s) \mathcal{H}^n(\mathrm{d}y) Q(\mathrm{d}s) \\ C_{Var}(x) &:= \int_{\mathbf{K}} \int_{\mathbb{R}^d} \int_{x-Z(s)} \int_{\pi_y^{x,s}} k(z) k(z+w) f(y,s) \mathcal{H}^n(\mathrm{d}w) \mathcal{H}^n(\mathrm{d}y) \mathrm{d}z Q(\mathrm{d}s) \end{split}$$

where $\pi_y^{x,s} \in \mathbf{G}_n$ is the approximate tangent space to x - Z(s) at $y \in x - Z(s)$.

• for $\widehat{\lambda}_{\Theta_{-}}^{\nu,N}$

the same as above with $k(z) = \frac{1}{b_d} \mathbf{1}_{B_1(0)}(z)$

(日) (四) (三) (三)

for λ^{μ,N}_{Θ_n}, if ∀s ∈ K, reach(Z(s)) > R for some R > 0, [Camerlenghi F, EV, work in progress, 2014]

$$r_{N}^{o,AMSE}(x) = \begin{cases} \left(\frac{(d-n)\lambda_{\Theta_{n}}(x)}{2Nb_{d-n}(\mathcal{A}_{1}(x) - \mathcal{A}_{2}(x))^{2}}\right)^{\frac{1}{d-n+2}} & \text{if } d-n > 1\\ \left(\frac{\lambda_{\Theta_{d-1}}(x)}{4N(\mathcal{A}_{1}(x) - \mathcal{A}_{3}(x))^{2}}\right)^{\frac{1}{3}} & \text{if } d-n = 1 \end{cases}$$

with

$$\begin{aligned} \mathcal{A}_{1}(x) &:= \frac{b_{d-n+1}}{b_{d-n}} \int_{\mathsf{K}} \int_{\mathcal{Z}(s)} f(x-y,s) \Phi_{n-1}(\mathcal{Z}(s); \mathrm{d}y) \mathcal{Q}(\mathrm{d}s) \\ \mathcal{A}_{2}(x) &:= \frac{d-n}{d-n+1} \sum_{|\alpha|=1} \int_{\mathsf{K}} \int_{\mathcal{N}(\mathcal{Z}(s))} D_{x}^{\alpha} f(x-y,s) u^{\alpha} \mu_{n}(\mathcal{Z}(s); \mathrm{d}(y,u)) \mathcal{Q}(\mathrm{d}s) \\ \mathcal{A}_{3}(x) &:= \int_{\mathsf{K}^{2}} \int_{(x-\mathcal{Z}(s_{1}))} \int_{(x-\mathcal{Z}(s_{2}))} g(y_{1},s_{1},y_{2},s_{2}) \mathcal{H}^{d-1}(\mathrm{d}y_{2}) \mathcal{H}^{d-1}(\mathrm{d}y_{1}) \mathcal{Q}_{2}(\mathrm{d}(s_{1},s_{2})) \end{aligned}$$

where $\Phi_n(Z(s), \cdot)$ is the *n*-dimensional curvature measure of Z(s) and $\mu_n(Z(s), \cdot)$ is the *n*-dimensional support measure of Z(s).

(日) (四) (三) (三)

• d = 1, n = 0, $\Theta_0 = X$ random variable with pdf $f_X \in C^2$ We reobtain the well known results for kernel density estimates of f_X

$$r_{N}^{o,AMSE}(x) = \begin{cases} \sqrt[5]{\frac{f_{X}(x)\int k(z)^{2}dz}{N(f_{X}''(x)\int_{\mathbb{R}}z^{2}k(z)dz)^{2}}}, & \text{for } \widehat{\lambda}_{X}^{\kappa,N} \\ \sqrt[5]{\frac{9f_{X}(x)}{2N(f_{X}''(x))^{2}}}, & \text{for } \widehat{\lambda}_{X}^{\nu,N}(x) = \widehat{\lambda}_{X}^{\mu,N}(x) \end{cases}$$

イロト イポト イヨト イヨン

• d = 1, n = 0, $\Theta_0 = X$ random variable with pdf $f_X \in C^2$ We reobtain the well known results for kernel density estimates of f_X

$$r_{N}^{o,\text{AMSE}}(x) = \begin{cases} \sqrt[5]{\frac{f_{X}(x)\int k(z)^{2} \mathrm{d}z}{N\left(f_{X}''(x)\int_{\mathbb{R}} z^{2}k(z)dz\right)^{2}}}, & \text{for } \widehat{\lambda}_{X}^{\kappa,N} \\ \sqrt[5]{\frac{9f_{X}(x)}{2N(f_{X}''(x))^{2}}}, & \text{for } \widehat{\lambda}_{X}^{\nu,N}(x) = \widehat{\lambda}_{X}^{\mu,N}(x) \end{cases}$$

• $\Theta_0 = \Psi$ point process in \mathbb{R}^d with intensity $\lambda_{\Psi} \in C^2$ If N = 1, $\hat{\lambda}_{\Psi}^{\nu,N}(x)$ coincides with the well-known classic and widely used Berman-Diggle estimator

$$\widehat{\lambda}_{\Psi}^{\kappa,N}(x) = \frac{\Psi(B_r(x))}{b_d r^d}$$

イロト イポト イヨト イヨン

• Θ_n stationary

 Φ with intensity measure $\Lambda(d(x, s)) = c dx Q(ds)$. It follows that:

- $\lambda_{\Theta_n}(x) \equiv c\mathbb{E}[\mathcal{H}^n(Z)] \quad \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d,$
- $\widehat{\lambda}_{\Theta_n}^{\kappa,N}$ and $\widehat{\lambda}_{\Theta_n}^{\nu,N}$ are unbiased for any bandwidth r > 0, and any sample size N;
- $\widehat{\lambda}_{\Theta_n}^{\kappa,N}$ and $\widehat{\lambda}_{\Theta_n}^{\nu,N}$ are strongly consistent for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$, as $N \to \infty$.
- if Θ_n Boolean model with $\mathbb{E}[(\mathcal{H}^n(Z))^2] < \infty$, then

$$r^{\text{o},\text{MSE}} = \begin{cases} +\infty & \text{for } \widehat{\lambda}_{\Theta_n}^{\kappa,N} \text{ and } \widehat{\lambda}_{\Theta_n}^{\nu,N} \\ \sqrt[3]{\frac{c\mathbb{E}[\mathcal{H}^n(Z)]}{N(\pi c\mathbb{E}[\Phi_{n-1}(Z)] - 2(c\mathbb{E}[\mathcal{H}^n(Z)])^2)^2}} & \text{for } \widehat{\lambda}_{\Theta_n}^{\kappa,N} \text{ if } d-n = 1 \\ \\ \frac{d^{-n+2}}{\sqrt{\frac{(d-n)b_{d-n}c\mathbb{E}[\mathcal{H}^n(Z)]}{2N(cb_{d-n+1}\mathbb{E}[\Phi_{n-1}(Z)])^2}}} & \text{for } \widehat{\lambda}_{\Theta_n}^{\kappa,N} \text{ if } d-n > 1 \end{cases}$$

イロト イポト イヨト イヨト

Summarizing:

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Some numerical experiments

• Θ_1 = inhomogeneous Boolean model of segments of the type $[0, I] \times \{0\}$ in \mathbb{R}^2 , with random length $I \sim U(0, 0.2)$ in the compact window $W = [0, 1]^2$, where the underlying Poisson point process has intensity $f(x_1, x_2) = 700x_1^2$.

$$\lambda_{\Theta_1}(x_1, x_2) = \frac{175}{3}(0.2)^3 - \frac{700}{3}(0.2)^2 x_1 + 70 x_1^2$$

<<p>(日)

Natural estimator and "Minkowski content"-based estimator at point x = (0.5, 0.5) as function of the bandwidth expressed in pixels (1pixel = 0.0029), for N = 10 and N = 100 $\lambda_{\Theta_1}(0.5, 0.5) = 13.30$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Natural estimator and "Minkowski content"-based estimator at point x = (0.5, 0.5) as function of the bandwidth expressed in pixels (1pixel = 0.0029), for N = 10 and N = 100 $\lambda_{\Theta_1}(0.5, 0.5) = 13.30$

Natural estimator

Elena Villa (University of Milan)

'Minkowski content"-based estimator

N = 10

N = 100

Image: A math the second se

Toronto, May 22, 2014 20 / 32

 $\lambda_{\Theta_1}(0.5, 0.5) = 13.30$

theoretical value

 $\begin{aligned} |\widehat{\lambda}_{\Theta_{1}}^{\nu,N}(0.5,0.5) - \lambda_{\Theta_{1}}(0.5,0.5)| &= 0.2973 \quad \text{for } N = 10, \ r_{10}^{\text{o,AMSE}} \approx 77 \text{pixel}(0.2973) \\ |\widehat{\lambda}_{\Theta_{1}}^{\nu,N}(0.5,0.5) - \lambda_{\Theta_{1}}(0.5,0.5)| &= 0.0614 \quad \text{for } N = 100, \ r_{100}^{\text{o,AMSE}} \approx 49 \text{pixel}(0.1425) \end{aligned}$

$$egin{aligned} &|\widehat{\lambda}^{\mu,N}_{\Theta_1}(0.5,0.5) - \lambda_{\Theta_1}(0.5,0.5)| = 1.8556 \ &|\widehat{\lambda}^{\mu,N}_{\Theta_1}(0.5,0.5) - \lambda_{\Theta_1}(0.5,0.5)| = 0.70 \end{aligned}$$

for N = 10, $r_{10}^{o,AMSE} \approx 9 pixel(0.0271)$ for N = 100, $r_{100}^{o,AMSE} \approx 4 pixel(0.0126)$

Image: A match a ma

• Θ_1 = homogeneous Boolean model of segments of the type $[0, I] \times \{0\}$ in \mathbb{R}^2 , with random length $I \sim U(0, 0.2)$ in the compact window $W = [0, 1]^2$, where the underlying Poisson point process has intensity $f(x_1, x_2) = 300$.

$$\lambda_{\Theta_1}(x_1, x_2) = 30$$

・ロト ・聞ト ・ヨト ・ヨト

Natural estimator and "Minkowski content"-based estimator at point x = (0.5, 0.5) as function of the bandwidth expressed in pixel (1pixel = 0.0029), for N = 10 and N = 100

 $\lambda_{\Theta_1}(x) \equiv 30$; we choose x = (0.5, 0.5).

(日) (四) (三) (三)

Natural estimator and "Minkowski content"-based estimator at point x = (0.5, 0.5) as function of the bandwidth expressed in pixel (1pixel = 0.0029), for N = 10 and N = 100

 $\lambda_{\Theta_1}(x) \equiv 30$; we choose x = (0.5, 0.5).

Elena Villa (University of Milan)

Estimation of the mean density of RACS

Toronto, May 22, 2014 23 / 32

"Minkowski content"-based estimator

N = 10

N = 100

A B > 4
 B > 4
 B

 $\lambda_{\Theta_1}\equiv$ 30 theoretical value

$$|\hat{\lambda}_{\Theta_1}^{\nu,N} - \lambda_{\Theta_1}| = 1.2647$$
 with $r = 105$ pixel $|\hat{\lambda}_{\Theta_1}^{\nu,N} - \lambda_{\Theta_1}| = 0.4082$ with $r = 105$ pixel

for
$$N = 10$$
, $r_{10}^{o,AMSE} = +\infty$
for $N = 100$, $r_{100}^{o,AMSE} = +\infty$

$$\begin{split} |\widehat{\lambda}_{\Theta_1}^{\mu,N} - \lambda_{\Theta_1}| &= 6.13 \\ |\widehat{\lambda}_{\Theta_1}^{\mu,N} - \lambda_{\Theta_1}| &= 1.50 \end{split} \qquad \begin{array}{l} \text{for } \textit{N} = \textit{10, } \textit{r}_{10}^{\text{o},\text{AMSE}} \approx \textit{5pixel}(0.016) \\ \text{for } \textit{N} = \textit{100, } \textit{r}_{100}^{\text{o},\text{AMSE}} \approx \textit{3pixel}(0.0074) \end{split}$$

~

3

▲□▶ ▲圖▶ ▲温▶ ▲温≯

 Θ₀ = Ψ inhomogeneous Poisson point process with intensity f(x₁, x₂) = x₁² + x₂² in the compact window W = [-2, 2]².

 Ψ^1,\ldots,Ψ^N i.i.d. random sample for Ψ

kernel estimator

$$\widehat{\lambda}_{\Psi}^{\kappa,N}(x) = \frac{1}{Nr_N^2} \sum_{i=1}^N \sum_{y_j \in \Psi^i} k\left(\frac{x - y_j}{r_N}\right)$$

with kernel of Epanechnikov:

$$k(t) = \begin{cases} \frac{2}{\pi}(1 - x_1^2 - x_2^2), & \text{if } (x_1, x_2) \in B_1(0) \\ 0, & \text{otherwise} \end{cases}$$

natural estimator

$$\widehat{\lambda}_{\Psi}^{\nu,N}(x) = \frac{1}{N\pi r_N^2} \sum_{i=1}^N \mathcal{H}^0(\Psi^i \cap B_{r_N}(x)) = \frac{1}{N\pi r_N^2} \sum_{i=1}^N \sum_{y_j \in \Psi^i} \mathbf{1}_{B_{r_N}(x)}(y_j)$$

"Minkowski content"-based estimator

$$\widehat{\lambda}_{\Psi}^{\mu,N}(x) = \frac{\#\{i : x \in \Psi_{\oplus r_N}^i\}}{N\pi r_N^2} = \frac{1}{N\pi r_N^2} \sum_{i=1}^N \mathbf{1}_{\{\Psi^i(B_{r_N}(x)) > 0\}}$$

イロト イポト イヨト イヨン

Epanechnikov-kernel estimator, Natural estimator and **"Minkowski content"-based estimator** in $W = [-2, 2]^2$ with grid step size=0.2, for N = 1000 and N = 10000

(日) (四) (三) (三)

Epanechnikov-kernel estimator, Natural estimator and "Minkowski content"-based estimator in $W = [-2, 2]^2$ with grid step size=0.2, for N = 1000 and N = 10000

Epanechnikov-kernel estimator

N = 1000

N = 10000

Image: A matrix and a matrix

Natural estimator

N = 1000

N = 10000

・ロト ・ 日 ・ ・ 日 ・ ・

"Minkowski content"-based estimator

N = 1000

N = 10000

・ロト ・ 日 ・ ・ 正 ト ・

$\lambda_\Psi(1.8,1.8)=6.48$	theoretical value
$egin{aligned} & \widehat{\lambda}_{\Theta_1}^{\kappa,N}(1.8,1.8)-\lambda_\Psi(1.8,1.8) =0.0878\ & \widehat{\lambda}_\Psi^{\kappa,N}(1.8,1.8)-\lambda_\Psi(1.8,1.8) =0.0434 \end{aligned}$	for $N = 1000$, $r_{1000}^{o,AMSE} \approx 166 pixel(0.4809)$ for $N = 10000$, $r_{10000}^{o,AMSE} \approx 113 pixel(0.3277)$
$egin{aligned} & \widehat{\lambda}^{ u, extsf{N}}_{\Psi}(1.8,1.8)-\lambda_{\Psi}(1.8,1.8) =0.0336\ & \widehat{\lambda}^{ u, extsf{N}}_{\Psi}(1.8,1.8)-\lambda_{\Psi}(1.8,1.8) =0.0379 \end{aligned}$	for $N = 1000$, $r_{1000}^{o,AMSE} \approx 138 pixel(0.4005)$ for $N = 10000$, $r_{1000}^{o,AMSE} \approx 94 pixel(0.2728)$
$egin{aligned} & \widehat{\lambda}^{\mu,N}_{\Psi}(1.8,1.8)-\lambda_{\Psi}(1.8,1.8) =0.2371\ & \widehat{\lambda}^{\mu,N}_{\Psi}(1.8,1.8)-\lambda_{\Psi}(1.8,1.8) =0.2291 \end{aligned}$	for $N = 1000$, $r_{1000}^{o,AMSE} \approx 27 pixel(0.0789)$ for $N = 10000$, $r_{10000}^{o,AMSE} \approx 18 pixel(0.0537)$
$egin{aligned} &\max_{x\in W} \widehat{\lambda}^{\kappa,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 0.2938 \ &\max_{x\in W} \widehat{\lambda}^{\kappa,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 0.1618 \end{aligned}$	for $N = 1000$ for $N = 10000$
$egin{aligned} &\max_{x\in W} \widehat{\lambda}^{ u,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 0.3247 \ &\max_{x\in W} \widehat{\lambda}^{ u,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 0.1698 \end{aligned}$	for $N = 1000$ for $N = 10000$
$egin{aligned} &\max_{x\in W} \widehat{\lambda}^{\mu,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 1.8202 \ &\max_{x\in W} \widehat{\lambda}^{\mu,N}_{\Psi}(x) - \lambda_{\Psi}(x) = 0.7601 \end{aligned}$	for $N = 1000$ for $N = 10000$

★ロト ★課 と ★注 と ★注 と 一注

Kernel estimators:

- pro: they extend in a natural way the corresponding kernel estimators for random objects of dimension n = 0 (random variables - univariate and multivariate, point processes) to random closed sets of any integer Hausdorff dimension n < d, in R^d;
- cons: practical applicability; non-trivial computation of integrals is required

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kernel estimators:

- pro: they extend in a natural way the corresponding kernel estimators for random objects of dimension n = 0 (random variables - univariate and multivariate, point processes) to random closed sets of any integer Hausdorff dimension n < d, in R^d;
- cons: practical applicability; non-trivial computation of integrals is required

Natural estimators:

• pro: direct derivation from the Besicovitch Theorem;

generalization of the notion of histogram estimators for the case $\Theta_0 = X$ random variable;

more stable with respect to the choice of the bandwidth, than the "Minkowski content"-based estimators

cons: include the nontrivial evaluation of Hⁿ(Θⁱ_n ∩ B_{r_N}(x)) for any element Θⁱ_n of the sample; for segment processes (n = 1) it seems more feasible, but for other sets of dimension n ≥ 1 it results of higher computational complexity.

・ロト ・ 理ト ・ ヨト ・ ヨト

Kernel estimators:

- pro: they extend in a natural way the corresponding kernel estimators for random objects of dimension n = 0 (random variables - univariate and multivariate, point processes) to random closed sets of any integer Hausdorff dimension n < d, in R^d;
- cons: practical applicability; non-trivial computation of integrals is required

Natural estimators:

- pro: direct derivation from the Besicovitch Theorem;
 - generalization of the notion of histogram estimators for the case $\Theta_0 = X$ random variable;

more stable with respect to the choice of the bandwidth, than the "Minkowski content"-based estimators

cons: include the nontrivial evaluation of Hⁿ(Θⁱ_n ∩ B_{r_N}(x)) for any element Θⁱ_n of the sample; for segment processes (n = 1) it seems more feasible, but for other sets of dimension n ≥ 1 it results of higher computational complexity.

• "Minkowski content"-based estimators:

- pro: easy computational evaluation;
- **cons:** quite sensitive to the choice of the bandwidth; low rate of convergence

・ロト ・ 理ト ・ ヨト ・ ヨト

- AMBROSIO L., CAPASSO V., VILLA E. (2009). On the approximation of mean densities of random closed sets, *Bernoulli*, 15, 1222–1242
- CAMERLENGHI F., CAPASSO V., VILLA E. (2014). On the estimation of the mean density of random closed sets. J. Multivariate Anal., 125, 65–88
- Camerlenghi F., Capasso V., Villa E.: (2014). Numerical experiments for the estimation of mean densities of random sets. In: *Proceedings of the ECS11. Image Anal. Stereol.* (to appear)
- VILLA E. (2010). Mean densities and spherical contact distribution function of inhomogeneous Boolean models, *Stoch. An. Appl.*, **28**, 480–504.
- VILLA E. On the local approximation of mean densities of random closed sets, *Bernoulli*, 20, 1–27 (2014)

...and references therein

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・