Haagerup Approximation Property and positive cones associated with a von Neumann algebra

Rui OKAYASU

joint with Reiji TOMATSU

May 29, 2014
Workshop on Operator Spaces, Locally Compact Quantum Groups and Amenability
Fields Institute

Supported by JSPS KAKENHI Grant Number 25800065.
Definition (Haagerup 1979)
A locally compact group G has the HAP if there exist positive definite functions φ_n on G such that

(a) $\varphi_n \to 1$ uniformly on compact subsets;
(b) $\varphi_n \in C_0(G)$.

Definition (Choda 1983)
A finite v.N. algebra M with a f.n. tracial state has the HAP if there exist c.c.p. normal maps τ_n on M such that

(A) $\tau_n \to \text{id}_M$ in -WOT;
(B) $\circ \tau_n \leq T \tau_n$ and $T \tau_n \in K(H)$ satisfying $T \tau_n(x) = \tau_n(x)$ for $x \in M$.
Definition (Haagerup 1979)

A locally compact group G has the HAP if
\[\exists \text{ positive definite functions } \varphi_n \text{ on } G \text{ such that} \]

(a) $\varphi_n \to 1$ uniformly on compact subsets;
(b) $\varphi_n \in C_0(G)$.

Definition (Choda 1983)

A finite v.N. algebra M with a f.n. tracial state τ has the HAP if
\[\exists \text{ c.c.p. normal maps } \Phi_n \text{ on } M \text{ such that} \]

(A) $\Phi_n \to \text{id}_M$ in σ-WOT;
(B) $\tau \circ \Phi_n \leq \tau$ and $T_n \in \mathbb{K}(H_\tau)$ satisfying
\[T_n(x\xi_\tau) = \Phi_n(x)\xi_\tau \quad \text{for } x \in M. \]
Standard form

Theorem (Haagerup 1975)

Any v.N. algebra is \(*\)-isomorphic to a v.N. algebra \(M\) on a Hilbert space \(H\) such that there exists a conjugate-linear isometric involution \(J\) on \(H\) and a self-dual positive cone \(P\) in \(H\) with the following properties:

1. \(JMJ = M'\);
2. \(J\xi = \xi\) for any \(\xi \in P\);
3. \(xJxJP \subset P\) for any \(x \in M\);
4. \(JcJ = c^*\) for any \(c \in Z(M) := M \cap M'\).

Such a quadruple \((M, H, J, P)\) is called a standard form.
Theorem (Haagerup 1975)

Any v.N. algebra is \ast-isomorphic to a v.N. algebra M on a Hilbert space H such that there exists a conjugate-linear isometric involution J on H and a self-dual positive cone P in H with the following properties:

1. $JMJ = M'$;
2. $J\xi = \xi$ for any $\xi \in P$;
3. $xJxJP \subset P$ for any $x \in M$;
4. $JcJ = c^*$ for any $c \in Z(M) := M \cap M'$.

Such a quadruple (M, H, J, P) is called a standard form.

Theorem (Ando-Haagerup 2012)

The condition (4) can be dropped.
Let φ be a f.n.s. weight on a v.N. algebra M.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{ x \in M \mid \varphi(x^*x) < \infty \}$.

H' is the completion of n' with respect to kxk^2.

$n' \rightarrow H'$ is the canonical injection.

$A' = n' \cap n^* \rangle$ is the associated left Hilbert algebra with $\langle x \rangle \cdot \langle y \rangle = \langle xy \rangle$.

φ' is the corresponding representation of M on H'.

S' is the closure of the conjugate-linear operator $T \rightarrow T'$ on H', which has the polar decomposition $S' = J'1 = 2'$.

Where J' is the modular involution and \mathcal{P}' is the modular operator.

$P' = \{ (J'x) \mid x \in A' \}$ is the self-dual positive cone.

Then the quadruple $(n'_\varphi(M); H'; J'; P')$ is a standard form.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{ x \in M \mid \varphi(x^*x) < \infty \}$.
- H_φ is the completion of n_φ with respect to $\|x\|_\varphi^2 := \varphi(x^*x)$.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}$.
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- $\Lambda_{\varphi} : n_{\varphi} \to H_{\varphi}$ is the canonical injection.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{ x \in M \mid \varphi(x^*x) < \infty \}$.
- H_φ is the completion of n_φ with respect to $\|x\|_\varphi^2 := \varphi(x^*x)$.
- $\Lambda_\varphi : n_\varphi \to H_\varphi$ is the canonical injection.
- $\mathcal{A}_\varphi := \Lambda_\varphi(n_\varphi \cap n_\varphi^*)$ is the associated left Hilbert algebra with
 \[
 \Lambda_\varphi(x) \cdot \Lambda_\varphi(y) := \Lambda_\varphi(xy), \quad \Lambda_\varphi(x)^\# := \Lambda_\varphi(x^*).
 \]
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{x \in M \mid \varphi(x^*x) < \infty\}$.
- H_φ is the completion of n_φ with respect to $\|x\|_\varphi^2 := \varphi(x^*x)$.
- $\Lambda_\varphi : n_\varphi \to H_\varphi$ is the canonical injection.
- $\mathcal{A}_\varphi := \Lambda_\varphi(n_\varphi \cap n_\varphi^*)$ is the associated left Hilbert algebra with
 \[
 \Lambda_\varphi(x) \cdot \Lambda_\varphi(y) := \Lambda_\varphi(xy), \quad \Lambda_\varphi(x)^\# := \Lambda_\varphi(x^*).
 \]
- π_φ is the corresponding representation of M on H_φ.

S_φ is the closure of the conjugate-linear operator $7 \mapsto \Lambda_\varphi(7)$ on H_φ, which has the polar decomposition $S_\varphi = J_\varphi 1_{2^\varphi}$; where J_φ is the modular involution and 1_{2^φ} is the modular operator.

$P_\varphi := \{J_\varphi(\pi_\varphi(x)) \mid x \in A_\varphi\}$ is the self-dual positive cone.

Then the quadruple $(\Lambda_\varphi(M) ; H_\varphi ; J_\varphi ; P_\varphi)$ is a standard form.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{ x \in M \mid \varphi(x^*x) < \infty \}$.
- H_φ is the completion of n_φ with respect to $||x||_\varphi^2 := \varphi(x^*x)$.
- $\Lambda_\varphi : n_\varphi \to H_\varphi$ is the canonical injection.
- $\mathcal{A}_\varphi := \Lambda_\varphi(n_\varphi \cap n_\varphi^*)$ is the associated left Hilbert algebra with
 \[\Lambda_\varphi(x) \cdot \Lambda_\varphi(y) := \Lambda_\varphi(xy), \quad \Lambda_\varphi(x)^\# := \Lambda_\varphi(x^*). \]

- π_φ is the corresponding representation of M on H_φ.
- S_φ is the closure of the conjugate-linear operator $\xi \mapsto \xi^\#$ on H_φ, which has the polar decomposition
 \[S_\varphi = J_\varphi \Delta_\varphi^{1/2}, \]
 where J_φ is the modular involution and Δ_φ is the modular operator.
Let φ be a f.n.s. weight on a v.N. algebra M.

- $n_\varphi := \{x \in M \mid \varphi(x^*x) < \infty\}$.
- H_φ is the completion of n_φ with respect to $\|x\|^2_\varphi := \varphi(x^*x)$.
- $\Lambda_\varphi : n_\varphi \to H_\varphi$ is the canonical injection.
- $A_\varphi := \Lambda_\varphi(n_\varphi \cap n^{\ast}_\varphi)$ is the associated left Hilbert algebra with
 \[\Lambda_\varphi(x) \cdot \Lambda_\varphi(y) := \Lambda_\varphi(xy), \quad \Lambda_\varphi(x)^{\#} := \Lambda_\varphi(x^*). \]

- π_φ is the corresponding representation of M on H_φ.
- S_φ is the closure of the conjugate-linear operator $\xi \mapsto \xi^{\#}$ on H_φ, which has the polar decomposition
 \[S_\varphi = J_\varphi \Delta^{1/2}_\varphi, \]
 where J_φ is the modular involution and Δ_φ is the modular operator.
- $P_\varphi := \{\xi(J_\varphi \xi) \mid \xi \in A_\varphi\}$ is the self-dual positive cone.
Let \(\varphi \) be a f.n.s. weight on a v.N. algebra \(M \).

- \(n_\varphi := \{ x \in M \mid \varphi(x^*x) < \infty \} \).
- \(H_\varphi \) is the completion of \(n_\varphi \) with respect to \(\|x\|_\varphi^2 := \varphi(x^*x) \).
- \(\Lambda_\varphi : n_\varphi \to H_\varphi \) is the canonical injection.
- \(A_\varphi := \Lambda_\varphi(n_\varphi \cap n_\varphi^*) \) is the associated left Hilbert algebra with
 \[
 \Lambda_\varphi(x) \cdot \Lambda_\varphi(y) := \Lambda_\varphi(xy), \quad \Lambda_\varphi(x)^\# := \Lambda_\varphi(x^*).
 \]

- \(\pi_\varphi \) is the corresponding representation of \(M \) on \(H_\varphi \).
- \(S_\varphi \) is the closure of the conjugate-linear operator \(\xi \mapsto \xi^\# \) on \(H_\varphi \),
 which has the polar decomposition
 \[
 S_\varphi = J_\varphi \Delta_\varphi^{1/2},
 \]
 where \(J_\varphi \) is the modular involution and \(\Delta_\varphi \) is the modular operator.
- \(P_\varphi := \{ \xi(J_\varphi \xi) \mid \xi \in A_\varphi \} \) is the self-dual positive cone.

Then the quadruple \((\pi_\varphi(M), H_\varphi, J_\varphi, P_\varphi) \) is a standard form.
Let \((M, H, J, P)\) and \((\mathbb{M}_n, \mathbb{M}_n, J_{\text{tr}_n}, \mathbb{M}_n^+)\) be standard forms.
Let \((M, H, J, P)\) and \((\mathbb{M}_n, \mathbb{M}_n, J_{\text{tr}_n}, \mathbb{M}_n^+)\) be standard forms.

Definition

- \([\xi_{ij}] \in \mathbb{M}_n(H)\) is \(n\)-positive if

\[
\sum_{i,j=1}^{n} x_i J x_j J \xi_{ij} \in P \quad \text{for any } x_1, \ldots, x_n \in M.
\]
Let \((M, H, J, P)\) and \((\mathbb{M}_n, \mathbb{M}_n, J_{tr}, \mathbb{M}^+_n)\) be standard forms.

Definition

- \([\xi_{ij}] \in \mathbb{M}_n(H)\) is \(n\)-positive if
 \[
 \sum_{i,j=1}^{n} x_i J x_j J \xi_{ij} \in P \quad \text{for any } x_1, \ldots, x_n \in M.
 \]

- \(P^{(n)} := \{[\xi_{ij}] \in \mathbb{M}_n(H) : n\text{-positive}\}\).
Let \((M, H, J, P)\) and \((\mathbb{M}_n, \mathbb{M}_n, J_{\text{tr}_n}, \mathbb{M}_n^+)\) be standard forms.

Definition

- \([\xi_{ij}] \in \mathbb{M}_n(H)\) is \(n\)-positive if
 \[
 \sum_{i,j=1}^{n} x_i J x_j J \xi_{ij} \in P \quad \text{for any } x_1, \ldots, x_n \in M.
 \]

- \(P^{(n)} := \{[\xi_{ij}] \in \mathbb{M}_n(H) : \text{\(n\)-positive}\}\).

Theorem (Schmitt-Wittstock 1982, Miura-Tomiyama 1984)

\((\mathbb{M}_n(M), \mathbb{M}_n(H), J \otimes J_{\text{tr}_n}, P^{(n)})\) is a standard form.
Definition

Let \((M, H, J, P)\) be a standard form. A bounded linear operator \(T: H \rightarrow H\) is completely positive \((\text{c.p.})\) if

\[(T \otimes \text{id}_n)P^{(n)} \subset P^{(n)} \quad \text{for any } n \geq 1.\]
Definition

Let \((M, H, J, P)\) be a standard form. A bounded linear operator \(T : H \to H\) is completely positive (c.p.) if

\[(T \otimes \text{id}_n)P^{(n)} \subset P^{(n)} \quad \text{for any } n \geq 1.\]

Definition (O-Tomatsu 2013)

A v.N. algebra \(M\) has the HAP if

\(\exists\) standard form \((M, H, J, P)\);

\(\exists\) c.c.p. \(T_n \in \mathcal{K}(H)\) such that \(T_n \to 1_H\) in SOT.
Definition
Let \((M, H, J, P)\) be a standard form.
A bounded linear operator \(T : H \to H\) is \textbf{completely positive (c.p.)} if
\[
(T \otimes \text{id}_n)P^{(n)} \subseteq P^{(n)} \quad \text{for any } n \geq 1.
\]

Definition (O-Tomatsu 2013)
A v.N. algebra \(M\) has the \textbf{HAP} if
\[\exists\ \text{standard form } (M, H, J, P);\]
\[\exists \text{ c.c.p. } T_n \in \mathbb{K}(H) \text{ such that } T_n \to 1_H \text{ in SOT}.\]

Remark
The HAP does not depend on the choice of \((M, H, J, P)\).
Theorem (Torpe 1981, Junge-Ruan-Xu 2005)

A v.N. algebra M is injective

$\iff \exists$ finite rank c.c.p. T_n on H such that $T_n \to 1_H$ in SOT.
Theorem (O-Tomatsu 2013)

If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then M has the HAP $\iff p_nMp_n$ has the HAP for all n;
Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \uparrow 1_M$, then M has the HAP $\iff p_n M p_n$ has the HAP for all n;
- $\bigoplus_n M_n$ has the HAP $\iff M_n$ has the HAP for all n;
Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \uparrow 1_M$, then M has the HAP $\iff p_nMp_n$ has the HAP for all n;
- $\bigoplus_n M_n$ has the HAP $\iff M_n$ has the HAP for all n;
- $M_1 \bar{\otimes} M_2$ has the HAP $\iff M_1, M_2$ have the HAP;
Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then M has the HAP $\iff p_nMp_n$ has the HAP for all n;
- $\bigoplus_n M_n$ has the HAP $\iff M_n$ has the HAP for all n;
- $M_1 \bar{\otimes} M_2$ has the HAP $\iff M_1, M_2$ have the HAP;
- M has the HAP $\iff M'$ has the HAP.
Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group G on a v.N. algebra M. If M^G has the HAP, then M has the HAP; if G is amenable and M has the HAP, then M^G has the HAP.

Corollary (O-Tomatsu 2013)

A v.N. algebra M has the HAP if and only if so does its core $eM = M^R$.
Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group G on a v.N. algebra M.

- If $M \rtimes_{\alpha} G$ has the HAP, then M has the HAP;

Corollary (O-Tomatsu 2013)

A v.N. algebra M has the HAP if and only if so does its core $eM = M \cap R$.
Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group G on a v.N. algebra M.

- If $M \rtimes_\alpha G$ has the HAP, then M has the HAP;
- If G is amenable and M has the HAP, then $M \rtimes_\alpha G$ has the HAP.
Theorem (O-Tomatsu 2013)
Let α be an action of a locally compact group G on a v.N. algebra M.

- If $M \rtimes_{\alpha} G$ has the HAP, then M has the HAP;
- If G is amenable and M has the HAP, then $M \rtimes_{\alpha} G$ has the HAP.

Corollary (O-Tomatsu 2013)
A v.N. algebra M has the HAP if and only if so does its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$.
Theorem (O-Tomatsu 2013)

If $E : M \to N$ is a (not necessarily normal) conditional expectation and M has the HAP, then N has the HAP.
Let \(\varphi \) be a f.n. state on a \(\sigma \)-finite v.N. algebra \(M \).
Let \((H_\varphi, \xi_\varphi) \) be the GNS representation and \(\Delta_\varphi \) be the modular operator.
Let φ be a f.n. state on a σ-finite v.N. algebra M.
Let (H_φ, ξ_φ) be the GNS representation and Δ_φ be the modular operator.

Theorem (O-Tomatsu 2013)

A σ-finite v.N. algebra M has the HAP if and only if

- \exists c.p. compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- \exists c.c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(\Delta_\varphi^{1/4} x \xi_\varphi) = \Delta_\varphi^{1/4} \Phi_n(x) \xi_\varphi \quad \text{for } x \in M.$$
Let φ be a f.n. state on a σ-finite v.N. algebra M. Let (H_φ, ξ_φ) be the GNS representation and Δ_φ be the modular operator.

Theorem (O-Tomatsu 2013)

A σ-finite v.N. algebra M has the HAP if and only if

1. There exist c.p. compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
2. There exist c.c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(\Delta_\varphi^{1/4} x \xi_\varphi) = \Delta_\varphi^{1/4} \Phi_n(x) \xi_\varphi \quad \text{for } x \in M.$$

Remark

Our HAP is equivalent to the original definition when M is finite.
Definition (Caspers-Skalski 2013)

A (\(\sigma\)-finite) v.N. algebra \(M\) (with a f.n. state \(\varphi\)) has the **CS-HAP** if

- \(\exists\) compact contractions \(T_n\) on \(H_\varphi\) such that \(T_n \to 1_{H_\varphi}\) in SOT;
- \(\exists\) c.p. normal maps \(\Phi_n\) on \(M\) such that \(\varphi \circ \Phi_n \leq \varphi\) and

\[
T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi \quad \text{for} \ x \in M.
\]
Definition (Caspers-Skalski 2013)

A (σ-finite) v.N. algebra M (with a f.n. state φ) has the CS-HAP if

- ∃ compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- ∃ c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

\[T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi \quad \text{for} \ x \in M. \]

Remark

The OT-HAP is equivalent to the CS-HAP.
Proof

Let M be a v.N. algebra.
Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core $\tilde{M} := M \rtimes_\sigma \mathbb{R}$ has the HAP.
Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core $\tilde{M} := M \rtimes_{\sigma} \mathbb{R}$ has the HAP.

So we may assume that $M = N \otimes \mathcal{B}(H)$, where N is finite.
Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_\sigma \mathbb{R}$ has the HAP.

So we may assume that $M = N \otimes \mathbb{B}(H)$, where N is finite.

Then M has the HAP if and only if N has the HAP.
Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_\sigma \mathbb{R}$ has the HAP.

So we may assume that $M = N \otimes \mathcal{B}(H)$, where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to the original one.
Let M be a σ-finite v.N. algebra M with a f.n. state φ.

OT-HAP

- \exists c.p. compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- \exists c.c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(\Delta^{1/4}_\varphi x \xi_\varphi) = \Delta^{1/4}_\varphi \Phi_n(x) \xi_\varphi \quad \text{for} \ x \in M.$$

CS-HAP

- \exists compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- \exists c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(x \xi_\varphi) = \Phi_n(x) \xi_\varphi \quad \text{for} \ x \in M.$$
Let M be a σ-finite v.N. algebra M with a f.n. state φ.

OT-HAP

- \exists c.p. compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- \exists c.c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(\Delta^{1/4}_{\varphi} x \xi_\varphi) = \Delta^{1/4}_{\varphi} \Phi_n(x) \xi_\varphi \quad \text{for } x \in M.$$

CS-HAP

- \exists compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;
- \exists c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

$$T_n(x \xi_\varphi) = \Phi_n(x) \xi_\varphi \quad \text{for } x \in M.$$
Let \mathcal{M} be a v.N. algebra \mathcal{M} with a f.n.s. weight φ.

\mathcal{A} is the associated left Hilbert algebra.
Araki’s positive cones

Let M be a v.N. algebra M with a f.n.s. weight φ. Recall that \mathcal{A}_φ is the associated left Hilbert algebra.
Let M be a v.N. algebra M with a f.n.s. weight φ. Recall that \mathcal{A}_φ is the associated left Hilbert algebra. Consider the following positive cone:

$$P_{\varphi}^{\#} = \{ \xi \xi^* | \xi \in \mathcal{A}_\varphi \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\#} = \{ \xi(J_\varphi \xi) | \xi \in \mathcal{A}_\varphi \}.$$
Let \mathcal{M} be a v.N. algebra \mathcal{M} with a f.n.s. weight φ. Recall that \mathcal{A}_φ is the associated left Hilbert algebra. Consider the following positive cone:

$$P^\#_\varphi = \{ \xi\xi^* \mid \xi \in \mathcal{A}_\varphi \} \quad \text{and} \quad P_\varphi = P_\varphi^\# = \{ \xi(J_\varphi \xi) \mid \xi \in \mathcal{A}_\varphi \}.$$

Definition (Araki 1974)

$$P_\varphi^\alpha := \Delta_\varphi^{\alpha} P^\#_\varphi \quad \text{for} \ 0 \leq \alpha \leq 1/2.$$
Let M be a v.N. algebra M with a f.n.s. weight φ. Recall that A_φ is the associated left Hilbert algebra. Consider the following positive cone:

$$P^\#_\varphi = \{ \xi \xi^\# | \xi \in A_\varphi \} \quad \text{and} \quad P_\varphi = P^{\downarrow}_\varphi = \{ \xi (J_\varphi \xi) | \xi \in A_\varphi \}. $$

Definition (Araki 1974)

$$P_\varphi^\alpha := \Delta_\varphi^\alpha P^\#_\varphi \quad \text{for} \quad 0 \leq \alpha \leq 1/2.$$

- $P^0_\varphi = P^\#_\varphi$ and $P^{1/4}_\varphi = P_\varphi = P^{\downarrow}_\varphi$.

Let M be a v.N. algebra M with a f.n.s. weight φ. Recall that A_φ is the associated left Hilbert algebra. Consider the following positive cone:

$$P^\#_\varphi = \{ \xi \xi^\# \mid \xi \in A_\varphi \} \quad \text{and} \quad P_\varphi = P^\dagger_\varphi = \{ \xi (J_\varphi \xi) \mid \xi \in A_\varphi \}.$$

Definition (Araki 1974)

$$P^\alpha_\varphi := \Delta^\alpha_\varphi P^\#_\varphi \quad \text{for} \ 0 \leq \alpha \leq 1/2.$$

- $P^0_\varphi = P^\#_\varphi$ and $P^{1/4}_\varphi = P_\varphi = P^\dagger_\varphi$;

- $J_\varphi P^\alpha_\varphi = P^{1/2-\alpha}_\varphi$.

Let M be a v.N. algebra M with a f.n.s. weight φ. Recall that A_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$P_{\varphi}^\# = \{ \xi\xi^\# | \xi \in A_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^h = \{ \xi(J_{\varphi}\xi) | \xi \in A_{\varphi} \}.$$

Definition (Araki 1974)

$$P_{\varphi}^\alpha := \Delta_{\varphi}^\alpha P_{\varphi}^\# \quad \text{for} \ 0 \leq \alpha \leq 1/2.$$

- $P_{\varphi}^0 = P_{\varphi}^\#$ and $P_{\varphi}^{1/4} = P_{\varphi} = P_{\varphi}^h$;
- $J_{\varphi}P_{\varphi}^\alpha = P_{\varphi}^{1/2-\alpha}$;
- $P_{\varphi}^{1/2-\alpha} = \{ \eta \in H_{\varphi} : \langle \eta, \xi \rangle \geq 0 \ \text{for} \ \xi \in P_{\varphi}^\alpha \}$.

Araki’s positive cones
Let $0 \leq \alpha \leq 1/2$. Let M be a v.N. algebra with a f.n.s weight φ.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the α-HAP if

- there exist contractions $T_n \in \mathbb{K}(H_\varphi)$ such that $T_n \to 1_{H_\varphi}$ in SOT;
- T_n is completely positive with respect to P_φ^α.

Remark. It can be proved that the α-HAP does not depend on the choice of φ.
Let $0 \leq \alpha \leq 1/2$. Let M be a v.N. algebra with a f.n.s weight φ.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the α-HAP if there exist contractiions $T_n \in \mathbb{K}(H_{\varphi})$ such that:

- $T_n \to 1_{H_{\varphi}}$ in SOT;
- T_n is completely positive with respect to P_{φ}^α.

Remark

It can be proved that the α-HAP does not depend on the choice of φ.
Let M be a von Neumann algebra.

Theorem (O-Tomatsu 2014)

The following are equivalent:

1. M has the OT-HAP, i.e., $1/4$-HAP;
2. M has the CS-HAP;
3. M has the 0-HAP;
4. M has the α-HAP for some/all α;
5. For any f.n.s. weight ϕ, \exists c.c.p. normal maps Φ_n on M such that
 - $\phi \circ \Phi_n \leq \phi$;
 - $\Phi_n \to \text{id}_M$ in σ-WOT;
 - for any $0 \leq \alpha \leq 1/2$, the associated c.c.p. operators T_n^α are compact and $T_n^\alpha \to 1_{H_\phi}$, where
 $$T_n^\alpha(\Delta_\phi \Lambda_\phi(x)) = \Delta_\phi \Lambda_\phi(\Phi_n(x)) \quad \text{for } x \in n_\phi.$$
Proof of $(1) \implies (2)$

We may assume that M is σ-finite with a f.n. state φ.
Proof of (1) \(\implies\) (2)

We may assume that \(M\) is \(\sigma\)-finite with a f.n. state \(\varphi\). Take c.c.p. normal maps \(\Phi_n\) on \(M\) such that

\[
T_n(\Delta^{1/4}_\varphi x\xi_\varphi) := \Delta^{1/4}_\varphi \Phi_n(x)\xi_\varphi.
\]
Proof of \((1) \implies (2)\)

We may assume that \(M\) is \(\sigma\)-finite with a f.n. state \(\varphi\).
Take c.c.p. normal maps \(\Phi_n\) on \(M\) such that
\[
T_n(\Delta_{\varphi}^{1/4} x \xi_{\varphi}) := \Delta_{\varphi}^{1/4} \Phi_n(x) \xi_{\varphi}.
\]

Then \(T_n^0 = \Delta_{\varphi}^{-1/4} T_n \Delta_{\varphi}^{1/4} \in \mathcal{B}(H)\) satisfies \(T_n^0(x \xi_{\varphi}) = \Phi_n(x) \xi_{\varphi}\),
Proof of (1) \Rightarrow (2)

We may assume that M is σ-finite with a f.n. state φ. Take c.c.p. normal maps Φ_n on M such that

$$T_n(\Delta^{1/4}_\varphi x\xi_\varphi) := \Delta^{1/4}_\varphi \Phi_n(x)\xi_\varphi.$$

Then $T_0^n = \Delta^{-1/4}_\varphi T_n \Delta^{1/4}_\varphi \in \mathcal{B}(H)$ satisfies $T_0^n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$, but $T_0^n \in \mathbb{K}(H_\varphi)$?
Proof of (1) \(\implies\) (2)

We may assume that \(M\) is \(\sigma\)-finite with a f.n. state \(\varphi\).
Take c.c.p. normal maps \(\Phi_n\) on \(M\) such that
\[
T_n(\Delta^{1/4}_\varphi x \xi_\varphi) := \Delta^{1/4}_\varphi \Phi_n(x) \xi_\varphi.
\]

Then \(T^0_n = \Delta^{-1/4}_\varphi T_n \Delta^{1/4}_\varphi \in \mathcal{B}(H)\) satisfies \(T^0_n(x \xi_\varphi) = \Phi_n(x) \xi_\varphi\),
but \(T^0_n \notin \mathcal{K}(H_\varphi)\)?

Let \(g_\beta(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)\) for \(\beta > 0\).
Proof of (1) \implies (2)

We may assume that M is σ-finite with a f.n. state φ. Take c.c.p. normal maps Φ_n on M such that

$$T_n(\Delta_{\varphi}^{1/4} x \xi_{\varphi}) := \Delta_{\varphi}^{1/4} \Phi_n(x) \xi_{\varphi}.$$

Then $T_n^0 = \Delta_{\varphi}^{-1/4} T_n \Delta_{\varphi}^{1/4} \in \mathcal{B}(H)$ satisfies $T_n^0(x \xi_{\varphi}) = \Phi_n(x) \xi_{\varphi}$, but $T_n^0 \in \mathcal{K}(H_{\varphi})$?

Let $g_{\beta}(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$. Define

$$U_{\beta} := \int_{\mathbb{R}} g_{\beta}(t) \Delta_{\varphi}^{it} dt \quad \text{and} \quad \Phi_{n,\beta,\gamma} := \sigma_{g_{\beta}} \circ \Phi_n \circ \sigma_{g_{\gamma}}.$$
We may assume that M is σ-finite with a f.n. state φ. Take c.c.p. normal maps Φ_n on M such that

$$T_n(\Delta^{1/4}_\varphi x\xi_\varphi) := \Delta^{1/4}_\varphi \Phi_n(x)\xi_\varphi.$$

Then $T_n^0 = \Delta^{-1/4}_\varphi T_n \Delta^{1/4}_\varphi \in \mathbb{B}(H)$ satisfies $T_n^0(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$, but $T_n^0 \in \mathbb{K}(H_\varphi)$?

Let $g_\beta(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$. Define

$$U_\beta := \int_{\mathbb{R}} g_\beta(t)\Delta^{it}_\varphi dt \quad \text{and} \quad \Phi_{n, \beta, \gamma} := \sigma^{\varphi}_{g_\beta} \circ \Phi_n \circ \sigma^{\varphi}_{g_\gamma}.$$

Then $T_{n, \beta, \gamma}^0 (x\xi_\varphi) := \Phi_{n, \beta, \gamma}(x)\xi_\varphi$ such that

$$T_{n, \beta, \gamma}^0 = (U_\beta \Delta^{-1/4}_\varphi) T_n(\Delta^{1/4}_\varphi U_\gamma) \in \mathbb{K}(H_\varphi),$$

because $U_\beta \Delta^{-1/4}_\varphi, \Delta^{1/4}_\varphi U_\gamma \in \mathbb{B}(H_\varphi)$.

Independency on the choice of positive cones

Let M be a von Neumann algebra.

Theorem (O-Tomatsu 2014)

The following are equivalent:

1. M has the OT-HAP, i.e., 1/4-HAP;
2. M has the CS-HAP;
3. M has the 0-HAP;
4. M has the α-HAP for some/all α;
5. For any f.n.s. weight φ, \exists c.c.p. normal maps Φ_n on M such that
 - $\varphi \circ \Phi_n \leq \varphi$;
 - $\Phi_n \to \text{id}_M$ in σ-WOT;
 - for any $0 \leq \alpha \leq 1/2$, the associated c.c.p. operators T_n^α are compact and $T_n^\alpha \to 1_{H_\varphi}$, where

$$T_n^\alpha(\Delta_\varphi \Lambda_\varphi(x)) = \Delta_\varphi \Lambda_\varphi(\Phi_n(x)) \quad \text{for} \ x \in n_\varphi.$$
Proof of $\text{(3) } \implies \text{(4)}$

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0, 1/4]$ and $T \in \mathcal{B}(H\varphi)$ be completely positive with respect to P^α_φ. Then for $\beta \in [\alpha, 1/2 - \alpha],$

- $\Delta^{\beta - \alpha}_\varphi T \Delta^{\alpha - \beta}_\varphi$ can be extended to a bounded operator on $H\varphi$ with the norm $||T||$, which is completely positive with respect to P^β_φ.
- If T is compact, then so does $\Delta^{\beta - \alpha}_\varphi T \Delta^{\alpha - \beta}_\varphi$.
Proof of (3) \implies (4)

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0, 1/4]$ and $T \in \mathcal{B}(H_\varphi)$ be completely positive with respect to P^α_φ. Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- $\Delta^\beta_{\varphi} T \Delta^{\alpha-\beta}_{\varphi}$ can be extended to a bounded operator on H_φ with the norm $\|\|T\|$, which is completely positive with respect to P^β_φ.
- If T is compact, then so does $\Delta^\beta_{\varphi} T \Delta^{\alpha-\beta}_{\varphi}$.

Proof For simplicity, assume that $\alpha = 0$.

Proof of (3) \Rightarrow (4)

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0, 1/4]$ and $T \in \mathcal{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^α. Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- $\Delta_{\varphi}^{\beta-\alpha} T \Delta_{\varphi}^{\alpha-\beta}$ can be extended to a bounded operator on H_{φ} with the norm $\|T\|$, which is completely positive with respect to P_{φ}^β.
- If T is compact, then so does $\Delta_{\varphi}^{\beta-\alpha} T \Delta_{\varphi}^{\alpha-\beta}$.

Proof

For simplicity, assume that $\alpha = 0$.

Now suppose that T is bounded (or compact) at the endpoint 0.
Proof of (3) \implies (4)

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0, 1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^α. Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- $\Delta_{\varphi}^{\beta-\alpha} T \Delta_{\varphi}^{\alpha-\beta}$ can be extended to a bounded operator on H_{φ} with the norm $\| |T| \|$, which is completely positive with respect to P_{φ}^β.
- If T is compact, then so does $\Delta_{\varphi}^{\beta-\alpha} T \Delta_{\varphi}^{\alpha-\beta}$.

Proof For simplicity, assume that $\alpha = 0$.

Now suppose that T is bounded (or compact) at the endpoint 0.

Then $J_{\varphi} T J_{\varphi}$ is also bounded (or compact) at the other endpoint $1/2$.

Rui OKAYASU (OKU)
HAP and positive cones
May. 25. 2014 20 / 22
Lemma (O-Tomatsu 2014)

Let $\alpha \in [0, 1/4]$ and $T \in \mathcal{B}(H_\varphi)$ be completely positive with respect to P_φ^α. Then for $\beta \in [\alpha, 1/2 - \alpha],$

- $\Delta_\varphi^{\beta-\alpha} T \Delta_\varphi^{\alpha-\beta}$ can be extended to a bounded operator on H_φ with the norm $||T||$, which is completely positive with respect to P_φ^β.
- If T is compact, then so does $\Delta_\varphi^{\beta-\alpha} T \Delta_\varphi^{\alpha-\beta}$.

Proof For simplicity, assume that $\alpha = 0$.

Now suppose that T is bounded (or compact) at the endpoint 0.

Then $J_\varphi T J_\varphi$ is also bounded (or compact) at the other endpoint $1/2$.

Apply the three lines Theorem.
Let $1 < p < \infty$ and $L^p(M)$ be Haagerup’s non-commutative L^p-space.
Let $1 < p < \infty$ and $L^p(M)$ be Haagerup’s non-commutative L^p-space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.
Let $1 < p < \infty$ and $L^p(M)$ be Haagerup’s non-commutative L^p-space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p-HAP if there exist compact contractiions T_n on $L^p(M)$ such that

- $T_n \to 1_{L^p(M)}$ in SOT;
- T_n is completely positive.
Let $1 < p < \infty$ and $L^p(M)$ be Haagerup’s non-commutative L^p-space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p-HAP if

- \exists compact contractiions T_n on $L^p(M)$ such that
 - $T_n \to 1_{L^p(M)}$ in SOT;
 - T_n is completely positive.

Note that $(M, L^2(M), *, L^2(M)^+)$ is a standard form.
Let $1 < p < \infty$ and $L^p(M)$ be Haagerup’s non-commutative L^p-space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p-HAP if

- \exists compact contractions T_n on $L^p(M)$ such that
 - $T_n \to 1_{L^p(M)}$ in SOT;
 - T_n is completely positive.

Note that $(M, L^2(M), *, L^2(M)^+)$ is a standard form.

Theorem (O-Tomatsu 2014)

A v.N. algebra M has the HAP, i.e., L^2-HAP

$\iff M$ has the L^p-HAP for some/all $1 < p < \infty$.

References

- M. Caspers and A. Skalski;
 The Haagerup property for arbitrary von Neumann algebras.

- M. Caspers and A. Skalski;
 The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms.

- M. Caspers, A. Skalski, R. Okayasu and R. Tomatsu;
 Generalisations of the Haagerup approximation property to arbitrary von Neumann algebras.

- R. Okayasu and R. Tomatsu;
 Haagerup approximation property for arbitrary von Neumann algebras.

- R. Okayasu and R. Tomatsu;
 Haagerup approximation property and positive cones associated with a von Neumann algebra.
 Preprint. arXiv:1403.3971