Connes-amenability of $B(G)$

Volker Runde

University of Alberta

The Fields Institute, April 15, 2014
Amenable, locally compact groups

Definition

Let G be a locally compact group. A mean on $L^\infty(G)$ is a functional $M \in L^\infty(G)^*$ such that $\langle 1, M \rangle = \|M\| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^\infty(G)$ that is left invariant, i.e.,

$$\langle L_x \phi, M \rangle = \langle \phi, M \rangle \quad (x \in G, \phi \in L^\infty(G)),$$

where

$$(L_x \phi)(y) := \phi(xy) \quad (y \in G).$$
Some amenable and non-amenable groups

Examples

1. Compact groups are amenable: $M = \text{Haar measure}$.
2. Abelian groups are amenable: use Markov–Kakutani to get M.
3. If G is amenable and $H < G$, then H is amenable.
4. If G is is amenable and $N \triangleleft G$, then G/N is amenable.
5. If G and $N \triangleleft G$ are such that N and G/N are amenable, then G is amenable.
6. F_2, the free group in two generators, is not amenable.
7. If G contains F_2 as a closed subgroup, then G is not amenable.
Banach \mathcal{A}-bimodules and derivations

Definition

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. A bounded linear map $D : \mathcal{A} \to E$ is called a **derivation** if

$$D(ab) := a \cdot Db + (Da) \cdot b \quad (a, b \in \mathcal{A}).$$

If there is $x \in E$ such that

$$Da = a \cdot x - x \cdot a \quad (a \in \mathcal{A}),$$

we call D an **inner derivation**.
Remark

If E is a Banach \mathcal{A}-bimodule, then so is E^*:

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle \quad (a \in \mathcal{A}, \phi \in E^*, x \in E)$$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle \quad (a \in \mathcal{A}, \phi \in E^*, x \in E).$$

We call E^* a dual Banach \mathcal{A}-bimodule.

Definition (B. E. Johnson, 1972)

\mathcal{A} is called amenable if, for every dual Banach \mathcal{A}-bimodule E, every derivation $D : \mathcal{A} \to E$, is inner.
Approximate and virtual diagonals, I

Definition (B. E. Johnson, 1972)

1. An approximate diagonal for \mathcal{A} is a bounded net $(d_\alpha)_\alpha$ in the projective tensor product $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that

$$a \cdot d_\alpha - d_\alpha \cdot a \to 0 \quad (a \in \mathcal{A})$$

and

$$a \Delta d_\alpha \to a \quad (a \in \mathcal{A})$$

with $\Delta : \mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A}$ denoting multiplication.

2. A virtual diagonal for \mathcal{A} is an element $D \in (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$ such that

$$a \cdot D = D \cdot a \quad \text{and} \quad a \cdot \Delta^{**} D = a \quad (a \in \mathcal{A}).$$
Theorem (B. E. Johnson, 1972)

The following are equivalent for a Banach algebra \mathcal{A}:

1. \mathcal{A} has an approximate diagonal;
2. \mathcal{A} has a virtual diagonal;
3. \mathcal{A} is amenable.
The meaning of amenability, I

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

1. $L^1(G)$, the group algebra of G, is amenable;
2. G is amenable.

Grand theme

Let C be a class of Banach algebras. Characterize the amenable members of C!
The meaning of amenability, II

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear.

The following are equivalent for a locally compact group G:

1. $M(G)$, the measure algebra of G, is amenable;
2. G is amenable and discrete.
The meaning of amenability, III

<table>
<thead>
<tr>
<th>Connes-amenability of $B(G)$</th>
<th>Volker Runde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amenability...</td>
<td>for locally compact groups</td>
</tr>
<tr>
<td>...and for Banach algebras</td>
<td>Dual Banach algebras</td>
</tr>
<tr>
<td>Connes-amenability</td>
<td>Connes-amenability</td>
</tr>
<tr>
<td>Diagonal-type elements</td>
<td>Normal, virtual diagonals</td>
</tr>
<tr>
<td>C^w_σ-diagonals</td>
<td>The Fourier–Stieltjes algebra</td>
</tr>
</tbody>
</table>

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent for a locally compact group G:

1. $A(G)$, the Fourier algebra of G, is amenable;
2. G is almost abelian, i.e., has an abelian subgroup of finite index.

Corollary

The following are equivalent for a locally compact group G:

1. $B(G)$, the Fourier–Stieltjes algebra of G, is amenable;
2. G is almost abelian and compact.
Dual Banach algebras

Definition

A dual Banach algebra is a pair \((A, A^*)\) of Banach spaces such that:

1. \(A = (A^*)^*\);
2. \(A\) is a Banach algebra, and multiplication in \(A\) is separately \(\sigma(A, A^*)\) continuous.

Examples

1. Every von Neumann algebra;
2. \((M(G), C_0(G))\) for every locally compact group \(G\);
3. \((M(S), C(S))\) for every compact, semitopological semigroup \(S\);
4. \((B(G), C^*(G))\) for every locally compact group \(G\).
Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathcal{M} be a von Neumann algebra, and let E be a dual Banach \mathcal{M}-bimodule. Then E is called normal if the module actions

$$\mathcal{M} \times E \to E, \quad (a, x) \mapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases}$$

are separately weak*-weak* continuous. If E is normal, we call a derivation $D : \mathcal{M} \to E$ normal if it is weak*-weak* continuous.

A von Neumann algebra \mathcal{M} is Connes-amenable if, for every normal Banach \mathcal{M}-bimodule E, every normal derivation $D : \mathcal{M} \to E$ is inner.
Injectivity, semidiscreteness, and hyperfiniteness

Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called

1. **injective** if there is a norm one projection $E : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$ (this property is independent of the representation of \mathcal{M} on \mathcal{H});

2. **semidiscrete** if there is a net $(S_\lambda)_\lambda$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_\lambda a \xrightarrow{\text{weak}^*} a \quad (a \in \mathcal{M});$$

3. **hyperfinite** if there is a directed family $(\mathcal{M}_\lambda)_\lambda$ of finite-dimensional $*$-subalgebras of \mathcal{M} such that $\bigcup_\lambda \mathcal{M}_\lambda$ is weak* dense in \mathcal{M}.
Theorem (A. Connes, et al.)

The following are equivalent:

1. \mathcal{M} is Connes-amenable;
2. \mathcal{M} is injective;
3. \mathcal{M} is semidiscrete;
4. \mathcal{M} is hyperfinite.

The notions of normality and Connes-amenability make sense for every dual Banach algebra...
Normal, virtual diagonals, I

Notation

For a dual Banach algebra \mathcal{A}, let $\mathcal{L}^2_\sigma(\mathcal{A}, \mathbb{C})$ denote the separately weak* continuous bilinear functionals on \mathcal{A}.

Observations

1. $\mathcal{L}^2_\sigma(\mathcal{A}, \mathbb{C})$ is a closed submodule of $(\mathcal{A} \hat{\otimes} \mathcal{A})^*$.

2. $\Delta^* \mathcal{A}^* \subset \mathcal{L}^2_\sigma(\mathcal{A}, \mathbb{C})$, so that $\Delta^{**} : (\mathcal{A} \hat{\otimes} \mathcal{A})^{**} \rightarrow \mathcal{A}^{**}$ drops to a bimodule homomorphism $\Delta_\sigma : \mathcal{L}^2_\sigma(\mathcal{A}, \mathbb{C})^* \rightarrow \mathcal{A}$.
Connes-amenability of $B(G)$

Volker Runde

Amenability...
...for locally compact groups
...and for Banach algebras

Dual Banach algebras

Connes-amenability

Diagonal-type elements

Normal, virtual diagonals C^*_σ-diagonals

The Fourier–Stieltjes algebra

Normal, virtual diagonals, II

Definition (E. G. Effros, 1988; for von Neumann algebras)

Let \mathcal{A} be a dual Banach algebra. Then $D \in B^2_\sigma(\mathcal{A}, \mathbb{C})^*$ is called a **normal, virtual diagonal** for \mathcal{A} if

$$a \cdot D = D \cdot a \quad (a \in \mathcal{A})$$

and

$$a\Delta_\sigma D = a \quad (a \in \mathcal{A}).$$

Proposition

Suppose that \mathcal{A} has a normal, virtual diagonal. Then \mathcal{A} is **Connes-amenable**.
Normal, virtual diagonals and Connes-amenability

Question

Is the converse true?

Theorem (E. G. Effros, 1988)

A von Neumann algebra \mathcal{M} is Connes-amenable if and only if \mathcal{M} has a normal virtual diagonal.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

1. G is amenable;
2. $M(G)$ is Connes-amenable;
3. $M(G)$ has a normal virtual diagonal.
Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called \textbf{weakly almost periodic} if $\{L_x f : x \in G\}$ is relatively weakly compact in $C_b(G)$. We set

$$\mathcal{WAP}(G) := \{f \in C_b(G) : f \text{ is weakly almost periodic}\}.$$

Remark

$\mathcal{WAP}(G)$ is a commutative C^*-algebra. Its character space $\hat{\mathcal{WAP}}$ is a compact, semitopological semigroup containing G as a dense subsemigroup. This turns $\mathcal{WAP}(G)^* \cong M(\hat{\mathcal{WAP}})$ into a dual Banach algebra.
Connes-amenability without a normal, virtual diagonal

Proposition

The following are equivalent:

1. G is amenable;
2. $\mathcal{WAP}(G)^*$ is Connes-amenable.

Theorem (VR, 2006 & 2013)

Suppose that G is a [SIN]-group. Then the following are equivalent:

1. $\mathcal{WAP}(G)^*$ has a normal virtual diagonal;
2. G is compact.*
\(C^w_\sigma \)-elements, I

Definition

Let \(\mathcal{A} \) be a dual Banach algebra, and let \(E \) be a Banach \(\mathcal{A} \)-bimodule. We call \(x \in E \) a \(C^w_\sigma \)-element if the maps

\[
\mathcal{A} \to E, \quad a \mapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases}
\]

are weak\(^*\)-weakly continuous.

Notation

\[
C^w_\sigma(E) := \{ x \in E : x \text{ is a } C^w_\sigma \text{-element} \}.
\]
C^w_σ-elements, II

Observations

1. $C^w_\sigma(E)$ is a closed submodule of E.
2. $C^w_\sigma(E)^*$ is normal.
3. E^* is normal if and only if $E = C^w_\sigma(E)$.
4. If $\theta : E \to F$ is a bounded, \mathcal{A}-bimodule homomorphism, then $\theta(C^w_\sigma(E)) \subset C^w_\sigma(F)$.
5. As $\mathcal{A}^*_\sigma \subset C^w_\sigma(\mathcal{A}^*)$, we have $\Delta^*\mathcal{A}^*_\sigma \subset C^w_\sigma((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$, and so $\Delta^{**} : (\mathcal{A} \hat{\otimes} \mathcal{A})^{**} \to \mathcal{A}^{**}$ drops to a bimodule homomorphism $\Delta^w_\sigma : C^w_\sigma((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \to \mathcal{A}$.
\(C_\sigma^w \)-diagonals and Connes-amenability

Definition (VR, 2004)

Let \(\mathcal{A} \) be a dual Banach algebra. Then \(D \in C_\sigma^w((\mathcal{A} \hat{\otimes} \mathcal{A})^*)^* \) is called a \(C_\sigma^w \)-diagonal for \(\mathcal{A} \) if

\[
a \cdot D = D \cdot a \quad (a \in \mathcal{A})
\]

and

\[
a \Delta_{\sigma}^w D = a \quad (a \in \mathcal{A}).
\]

Theorem (VR, 2004)

For a dual Banach algebra \(\mathcal{A} \), the following are equivalent:

1. \(\mathcal{A} \) is Connes-amenable;
2. \(\mathcal{A} \) has a \(C_\sigma^w \)-diagonal.
From $C^*(G \times G)$ into $C^*_\sigma(B(G)\hat{\otimes}B(G))^*$.

Lemma

Let \mathcal{A} be a dual Banach algebra. Then the canonical map from $\mathcal{A}_*\hat{\otimes}\mathcal{A}_*$ into $(\mathcal{A}\hat{\otimes}\mathcal{A})^*$ is an isometric \mathcal{A}-bimodule homomorphism with range in $C^*_\sigma((\mathcal{A}\hat{\otimes}\mathcal{A})^*)$.

Corollary

Let G be a locally compact group. Then there is a canonical contractive $B(G)$-bimodule homomorphism from $C^*(G \times G)$ into $C^*_\sigma(B(G)\hat{\otimes}B(G))^*)$.
... and from $C^w_\sigma(B(G)\hat{\otimes} B(G))^*)^*$ into $B(G_d \times G_d)$
Proposition

Let G be a locally compact group such that $B(G)$ is Connes-amenable, and let $D \in C^{w}_{\sigma}((B(G)\hat{\otimes}B(G))^{*})^{*}$ be a C^{w}_{σ}-diagonal for $B(G)$. Then $\Theta(D) \in B(G_{d} \times G_{d})$ is the indicator function of the diagonal of $G \times G$, i.e., of

$$\{(x, x) : x \in G\}.$$
Theorem (VR & F. Uygul, 2013)

The following are equivalent for a locally compact group G:

1. $B(G)$ is Connes-amenable;
2. $B(G)$ has a C^w_σ-diagonal;
3. $B(G)$ has a normal, virtual diagonal;
4. G is almost abelian.
Proof.

We shall prove (ii) \implies (iv).
For $f \in B(G)$, define $\tilde{f} \in B(G)$ by

$$\tilde{f}(x) := f(x^{-1}).$$

Let

$$\vee: B(G) \to B(G), \quad f \mapsto \tilde{f}.$$

Easy:

$$(\text{id} \otimes \vee)^*: (B(G)\hat{\otimes}B(G))^* \to (B(G)\hat{\otimes}B(G))^*$$

maps $C^w_\sigma((B(G)\hat{\otimes}B(G))^*)$ into itself.
Proof (continued).

Let \(D \in \mathcal{C}_\sigma^w ((B(G) \hat{\otimes} B(G))^*)^* \) be a \(\mathcal{C}_\sigma^w \)-diagonal for \(B(G) \), and set
\[
\chi := \theta((\text{id} \otimes \vee)^{**}(D)) \in B(G_d \times G_d).
\]
Then \(\chi \) is the indicator function of the anti-diagonal of \(G \times G \), i.e.,
\[
\{(x, x^{-1}) : x \in G\}.
\]
This means that \(\vee : B(G) \rightarrow B(G) \) is completely bounded, which is possible only if \(C^*(G) \) is subhomogeneous, i.e., \(G \) is almost abelian.