Maximal left ideals of operators acting on a Banach space

Niels Laustsen

Lancaster University

Fields Institute, 25 ${ }^{\text {th }}$ March 2014

Joint work with Garth Dales (Lancaster),
Tomasz Kania (Lancaster/IMPAN Warsaw),
Tomasz Kochanek (University of Silesia, Poland/IMPAN Warsaw) and
Piotr Koszmider (IMPAN Warsaw)

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

The Dales-Żelazko conjecture

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that every maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finitedimensional.

The Dales-Żelazko conjecture

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that every maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finitedimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

The Dales-Żelazko conjecture

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that every maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finitedimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

Non-commutative case: open!

The Dales-Żelazko conjecture

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that every maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finitedimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

Non-commutative case: open!

Question I. Is this conjecture true for $\mathscr{A}=\mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a Banach space E ?

A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^{c} maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c}=2^{\aleph_{0}}$.

A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^{c} maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c}=2^{\aleph_{0}}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^{c} maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c}=2^{\aleph_{0}}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence $\left(x_{n}\right)$ with $x_{n} \in E_{n}(n \in \mathbb{N})$ such that

$$
x=\sum_{n=1}^{\infty} x_{n} \text { unconditionally }
$$

A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^{c} maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c}=2^{\aleph_{0}}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence $\left(x_{n}\right)$ with $x_{n} \in E_{n}(n \in \mathbb{N})$ such that

$$
x=\sum_{n=1}^{\infty} x_{n} \text { unconditionally }
$$

that is, the net

$$
\left(\sum_{n \in N} x_{n}\right)_{N \subset \mathbb{N} \text { finite }}
$$

converges to x.

A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^{c} maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c}=2^{\aleph_{0}}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence $\left(x_{n}\right)$ with $x_{n} \in E_{n}(n \in \mathbb{N})$ such that

$$
x=\sum_{n=1}^{\infty} x_{n} \text { unconditionally }
$$

that is, the net

$$
\left(\sum_{n \in N} x_{n}\right)_{N \subset \mathbb{N} \text { finite }}
$$

converges to x.
Remark. The above theorem can be extended to non-separable Banach spaces.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one);

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};
- more generally, E contains a complemented subspace which has an unconditional Schauder basis;

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
- the Lebesgue space $L_{1}[0,1]$;

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
- the Lebesgue space $L_{1}[0,1]$;
- the space $C(K)$ of continuous functions on an infinite, compact metric space K;

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
- the Lebesgue space $L_{1}[0,1]$;
- the space $C(K)$ of continuous functions on an infinite, compact metric space K;
- the $p^{\text {th }}$ quasi-reflexive James space $J_{p}(1<p<\infty)$.

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Applications of the theorem

In each of the following cases, the Banach space E is separable and has a countable, unconditional Schauder decomposition:

- E has an unconditional Schauder basis (this means that each of the subspaces E_{n} has dimension one); examples:
- the classical sequence spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0};
- the Lebesgue spaces $L_{p}[0,1](1<p<\infty)$;
- the Lorentz sequence spaces $d_{w, p}$ and the Orlicz sequence spaces h_{M};
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
- the Lebesgue space $L_{1}[0,1]$;
- the space $C(K)$ of continuous functions on an infinite, compact metric space K;
- the $p^{\text {th }}$ quasi-reflexive James space $J_{p}(1<p<\infty)$.

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Perspective. Gowers's Dichotomy Theorem: an infinite-dimensional Banach space is either hereditarily indecomposable (in the sense that none of its closed subspaces can be decomposed into the direct sum of two closed, infinitedimensional subspaces), or it contains a subspace which has an unconditional Schauder basis.

A refinement of the question
Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$.

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection I-P, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Proof. The mapping

$$
F \mapsto\{T \in \mathscr{B}(E): F \subseteq \operatorname{ker} T\}
$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$.

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Proof. The mapping

$$
F \mapsto\{T \in \mathscr{B}(E): F \subseteq \operatorname{ker} T\}
$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$. Hence each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$ corresponds to a unique one-dimensional subspace of E,

A refinement of the question

Observation. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal which is generated by the single projection $I-P$, where P is any projection of E onto $\mathbb{C} x$. Moreover,

$$
\mathscr{M} \mathscr{L}_{x}=\mathscr{M} \mathscr{L}_{y} \Longleftrightarrow x \text { and } y \text { are proportional } \quad(x, y \in E \backslash\{0\})
$$

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Proof. The mapping

$$
F \mapsto\{T \in \mathscr{B}(E): F \subseteq \operatorname{ker} T\}
$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$. Hence each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$ corresponds to a unique one-dimensional subspace of E, and therefore \mathscr{L} is fixed.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{x}$ for each $x \in E \backslash\{0\}$.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$. Then

$$
T: y \mapsto\langle y, \lambda\rangle x, E \rightarrow E
$$

belongs to $\mathscr{F}(E)$,

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$. Then

$$
T: y \mapsto\langle y, \lambda\rangle x, E \rightarrow E
$$

belongs to $\mathscr{F}(E)$, but not to $\mathscr{M} \mathscr{L}_{x}$ because $T_{x}=x \neq 0$.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{x}$ for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$. Then

$$
T: y \mapsto\langle y, \lambda\rangle x, E \rightarrow E
$$

belongs to $\mathscr{F}(E)$, but not to $\mathscr{M} \mathscr{L}_{x}$ because $T_{x}=x \neq 0$.
Corollary. A positive answer to Question II implies a positive answer to Q . I:

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$. Then

$$
T: y \mapsto\langle y, \lambda\rangle x, E \rightarrow E
$$

belongs to $\mathscr{F}(E)$, but not to $\mathscr{M} \mathscr{L}_{x}$ because $T_{x}=x \neq 0$.
Corollary. A positive answer to Question II implies a positive answer to Q. I:
Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question II - the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.
Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.
Proof. Given $x \in E \backslash\{0\}$, take $\lambda \in E^{*}$ such that $\langle x, \lambda\rangle=1$. Then

$$
T: y \mapsto\langle y, \lambda\rangle x, E \rightarrow E
$$

belongs to $\mathscr{F}(E)$, but not to $\mathscr{M} \mathscr{L}_{x}$ because $T x=x \neq 0$.
Corollary. A positive answer to Question II implies a positive answer to Q . I:
Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.
Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.
The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.
The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T+\mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E) / \mathscr{K}(E)$.

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.
The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T+\mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E) / \mathscr{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.
The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T+\mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E) / \mathscr{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.
Theorem (DKKKL). Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or

The Dichotomy Theorem

Definition. An operator T on a Banach space E is inessential if $I-S T$ is a Fredholm operator, in the sense that

$$
\operatorname{dim} \operatorname{ker}(I-S T)<\infty \quad \text { and } \quad \operatorname{dim} \frac{E}{(I-S T)(E)}<\infty
$$

for each $S \in \mathscr{B}(E)$.
The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T+\mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E) / \mathscr{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.
Theorem (DKKKL). Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.

The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:
Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma)$
, where Γ is a non-empty index set

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, where Γ is a non-empty index set and H is a Hilbert space;

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
(iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
(iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.
Definition. An operator S on E is strictly singular if, for each $\varepsilon>0$, each infinite-dimensional subspace of E contains a unit vector x such that $\|S x\| \leqslant \varepsilon$.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
(iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity (examples: hereditarily indecomposable Banach spaces);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.
Definition. An operator S on E is strictly singular if, for each $\varepsilon>0$, each infinite-dimensional subspace of E contains a unit vector x such that $\|S x\| \leqslant \varepsilon$.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:
(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
(ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
(iii) $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
(iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity (examples: hereditarily indecomposable Banach spaces);
(v) $E=C(K)$, where K is a compact Hausdorff space without isolated points, and each operator on $C(K)$ is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.
Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.
Definition. An operator S on E is strictly singular if, for each $\varepsilon>0$, each infinite-dimensional subspace of E contains a unit vector x such that $\|S x\| \leqslant \varepsilon$.

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{*}$.

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{\star}$. A state on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$
\left\langle a^{\star} a, \lambda\right\rangle \geqslant 0 \quad(a \in \mathscr{A}) .
$$

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{\star}$. A state on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$
\left\langle a^{\star} a, \lambda\right\rangle \geqslant 0 \quad(a \in \mathscr{A}) .
$$

Given a state λ on \mathscr{A}, the set

$$
\mathscr{N}_{\lambda}=\left\{a \in \mathscr{A}:\left\langle a^{\star} a, \lambda\right\rangle=0\right\}
$$

is a closed left ideal of \mathscr{A}.

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{\star}$. A state on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$
\left\langle a^{\star} a, \lambda\right\rangle \geqslant 0 \quad(a \in \mathscr{A}) .
$$

Given a state λ on \mathscr{A}, the set

$$
\mathscr{N}_{\lambda}=\left\{a \in \mathscr{A}:\left\langle a^{\star} a, \lambda\right\rangle=0\right\}
$$

is a closed left ideal of \mathscr{A}. It is maximal if and only if λ is a pure state, that is, an extreme point of the weak ${ }^{*}$-compact, convex set of all states on \mathscr{A}.

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{\star}$. A state on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$
\left\langle a^{\star} a, \lambda\right\rangle \geqslant 0 \quad(a \in \mathscr{A}) .
$$

Given a state λ on \mathscr{A}, the set

$$
\mathscr{N}_{\lambda}=\left\{a \in \mathscr{A}:\left\langle a^{\star} a, \lambda\right\rangle=0\right\}
$$

is a closed left ideal of \mathscr{A}. It is maximal if and only if λ is a pure state, that is, an extreme point of the weak*-compact, convex set of all states on \mathscr{A}.

Suppose that $\mathscr{A}=\mathscr{B}(H)$ for some Hilbert space H, and let $x \in H$ be a unit vector. Then $\mathscr{N}_{\lambda}=\mathscr{M} \mathscr{L}_{x}$ if and only if λ is the vector state induced by x, that is,

$$
\langle T, \lambda\rangle=(T x \mid x) \quad(T \in \mathscr{B}(H)),
$$

where $(\cdot \mid \cdot)$ denotes the inner product on H.

The Hilbert-space case

Let \mathscr{A} be a unital C^{*}-algebra, with involution $a \mapsto a^{\star}$. A state on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$
\left\langle a^{\star} a, \lambda\right\rangle \geqslant 0 \quad(a \in \mathscr{A}) .
$$

Given a state λ on \mathscr{A}, the set

$$
\mathscr{N}_{\lambda}=\left\{a \in \mathscr{A}:\left\langle a^{\star} a, \lambda\right\rangle=0\right\}
$$

is a closed left ideal of \mathscr{A}. It is maximal if and only if λ is a pure state, that is, an extreme point of the weak ${ }^{*}$-compact, convex set of all states on \mathscr{A}.

Suppose that $\mathscr{A}=\mathscr{B}(H)$ for some Hilbert space H, and let $x \in H$ be a unit vector. Then $\mathscr{N}_{\lambda}=\mathscr{M} \mathscr{L}_{x}$ if and only if λ is the vector state induced by x, that is,

$$
\langle T, \lambda\rangle=(T x \mid x) \quad(T \in \mathscr{B}(H)),
$$

where $(\cdot \mid \cdot)$ denotes the inner product on H.
The Dichotomy Theorem for Hilbert spaces follows from these facts because each pure state λ on $\mathscr{B}(H)$ is either a vector state, or $\mathscr{K}(H) \subseteq$ ker λ, in which case $\mathscr{K}(H) \subseteq \mathscr{N}_{\lambda}$.

A negative answer to Question II: Argyros-Haydon's Banach space

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ which has the following three properties:
(i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;

A negative answer to Question II: Argyros-Haydon's Banach space

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ which has the following three properties:
(i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;
(ii) $X_{\text {Ан }}$ has a Schauder basis;

A negative answer to Question II: Argyros-Haydon's Banach space

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{A H}$ which has the following three properties:
(i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;
(ii) $X_{\text {Ан }}$ has a Schauder basis;
(iii) the dual space of X_{AH} is isomorphic to ℓ_{1}.

A negative answer to Question II: the example

$$
\text { Let } E=X_{\mathrm{AH}} \oplus \ell_{\infty} \text {. }
$$

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal.

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

A negative answer to Question II: the example

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

More precisely, \mathscr{K}_{1} is generated as a left ideal by the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V U^{*} \kappa & W
\end{array}\right),
$$

where $\kappa: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *}$ is the canonical embedding, while $U: \ell_{1} \rightarrow X_{\mathrm{AH}}^{*}$, $V: \ell_{1}^{*}=\ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}-1)$ and $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N})$ are isomorphisms.

How about Question I?

Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.
Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

How about Question I?

Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.
Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$
\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{2,2} \text { is strictly singular }\right\}
$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

How about Question I?

Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.
Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$
\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{2,2} \text { is strictly singular }\right\}
$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.
In particular, the answer to Question I is positive for E.

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?
(Recall: in the example, above, $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.)

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?
(Recall: in the example, above, $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.)
Answer: yes!

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?
(Recall: in the example, above, $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.)
Answer: yes!
Theorem (Kania-L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:
(i) each operator from Y into $X_{\text {AH }}$ has the form $\alpha J+K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \rightarrow X_{\text {AH }}$ denotes the inclusion;

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?
(Recall: in the example, above, $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.)
Answer: yes!
Theorem (Kania-L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:
(i) each operator from Y into $X_{\text {AH }}$ has the form $\alpha J+K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \rightarrow X_{\text {AH }}$ denotes the inclusion;
(ii) Y has a Schauder basis;

A separable example

Question: Is there a separable Banach space E such that $\mathscr{B}(E)$ contains a finitely-generated, non-fixed, maximal left ideal?
(Recall: in the example, above, $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.)
Answer: yes!
Theorem (Kania-L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:
(i) each operator from Y into $X_{A H}$ has the form $\alpha J+K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \rightarrow X_{\text {AH }}$ denotes the inclusion;
(ii) Y has a Schauder basis;
(iii) the dual space of Y is isomorphic to ℓ_{1}.

A separable example (continued)

Let $E=X_{\text {AH }} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$
T=\left(\begin{array}{cc}
\alpha_{1,1} I_{X_{\mathbf{A H}}}+K_{1,1} & \alpha_{1,2} J+K_{1,2} \\
K_{2,1} & \alpha_{2,2} I_{Y}+K_{2,2}
\end{array}\right),
$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

A separable example (continued)

Let $E=X_{\text {AH }} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$
T=\left(\begin{array}{cc}
\alpha_{1,1} I_{X_{\mathbf{A H}}}+K_{1,1} & \alpha_{1,2} J+K_{1,2} \\
K_{2,1} & \alpha_{2,2} I_{Y}+K_{2,2}
\end{array}\right),
$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.
Theorem (Kania-L).
(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{1}=\left\{T \in \mathscr{B}(E): \alpha_{2,2}=0\right\} \quad \text { and } \quad \mathscr{M}_{2}=\left\{T \in \mathscr{B}(E): \alpha_{1,1}=0\right\} ;
$$

A separable example (continued)

Let $E=X_{\text {AH }} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$
T=\left(\begin{array}{cc}
\alpha_{1,1} I_{X_{\Delta H}}+K_{1,1} & \alpha_{1,2} J+K_{1,2} \\
K_{2,1} & \alpha_{2,2} I_{Y}+K_{2,2}
\end{array}\right),
$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.
Theorem (Kania-L).
(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{1}=\left\{T \in \mathscr{B}(E): \alpha_{2,2}=0\right\} \quad \text { and } \quad \mathscr{M}_{2}=\left\{T \in \mathscr{B}(E): \alpha_{1,1}=0\right\} ;
$$

(ii) \mathscr{M}_{1} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\mathrm{AH}}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

A separable example (continued)

Let $E=X_{\text {AH }} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$
T=\left(\begin{array}{cc}
\alpha_{1,1} I_{X_{\Delta H}}+K_{1,1} & \alpha_{1,2} J+K_{1,2} \\
K_{2,1} & \alpha_{2,2} I_{Y}+K_{2,2}
\end{array}\right),
$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.
Theorem (Kania-L).
(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{1}=\left\{T \in \mathscr{B}(E): \alpha_{2,2}=0\right\} \quad \text { and } \quad \mathscr{M}_{2}=\left\{T \in \mathscr{B}(E): \alpha_{1,1}=0\right\} ;
$$

(ii) \mathscr{M}_{1} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\mathrm{AH}}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

but \mathscr{M}_{1} is not generated as a left ideal by a single operator on E;

A separable example (continued)

Let $E=X_{\text {AH }} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$
T=\left(\begin{array}{cc}
\alpha_{1,1} I_{X_{\Delta H}}+K_{1,1} & \alpha_{1,2} J+K_{1,2} \\
K_{2,1} & \alpha_{2,2} I_{Y}+K_{2,2}
\end{array}\right),
$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.
Theorem (Kania-L).
(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{1}=\left\{T \in \mathscr{B}(E): \alpha_{2,2}=0\right\} \quad \text { and } \quad \mathscr{M}_{2}=\left\{T \in \mathscr{B}(E): \alpha_{1,1}=0\right\} ;
$$

(ii) \mathscr{M}_{1} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\mathrm{AH}}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

but \mathscr{M}_{1} is not generated as a left ideal by a single operator on E;
(iii) \mathscr{M}_{2} is not finitely generated as a left ideal.

Open problems

- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal right ideals of $\mathscr{B}(E)$?
- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal right ideals of $\mathscr{B}(E)$?

Key references

- H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen, Maximal left ideals of the Banach algebra of bounded operators on a Banach space, Studia Math. 218 (2013), 245-286.
- H. G. Dales and W. Żelazko, Generators of maximal left ideals in Banach algebras, Studia Math. 212 (2012), 173-193.
- T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded operators acting on a Banach space, in preparation.

