Maximal left ideals of operators acting on a Banach space

Niels Laustsen

Lancaster University

Fields Institute, 25th March 2014

Joint work with Garth Dales (Lancaster), Tomasz Kania (Lancaster/IMPAN Warsaw), Tomasz Kochanek (University of Silesia, Poland/IMPAN Warsaw) and Piotr Koszmider (IMPAN Warsaw)

1

Terminology

 Banach algebra: a complete normed algebra, usually unital, always having complex scalars;

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- ▶ *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - ▶ closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - ▶ closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;

- Banach algebra: a complete normed algebra, usually unital, always having complex scalars;
- ▶ *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - ▶ closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- ▶ finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

Non-commutative case: open!

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this conjecture for \mathscr{A} commutative.

Non-commutative case: open!

Question I. Is this conjecture true for $\mathscr{A} = \mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a Banach space E?

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains $2^{\mathfrak{c}}$ maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c} = 2^{\aleph_0}$. **Theorem** (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains $2^{\mathfrak{c}}$ maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c} = 2^{\aleph_0}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains 2^c maximal left ideals, but only c finitely-generated, maximal left ideals, where $c = 2^{\aleph_0}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $(E_n)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence (x_n) with $x_n \in E_n$ $(n \in \mathbb{N})$ such that

$$x = \sum_{n=1}^{\infty} x_n \quad \text{unconditionally,}$$

4

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains $2^{\mathfrak{c}}$ maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c} = 2^{\aleph_0}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $(E_n)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence (x_n) with $x_n \in E_n$ $(n \in \mathbb{N})$ such that

$$x = \sum_{n=1}^{\infty} x_n \quad \text{unconditionally,}$$

that is, the net

$$\left(\sum_{n\in N} x_n\right)_{N\subset\mathbb{N} \text{ finite}}$$

4

converges to x.

Theorem (DKKKL). Let E be a separable Banach space with a countable, unconditional Schauder decomposition. Then $\mathscr{B}(E)$ contains $2^{\mathfrak{c}}$ maximal left ideals, but only \mathfrak{c} finitely-generated, maximal left ideals, where $\mathfrak{c} = 2^{\aleph_0}$. Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach space E is a sequence $(E_n)_{n \in \mathbb{N}}$ of non-zero, closed subspaces of E such that, for each $x \in E$, there is a unique sequence (x_n) with $x_n \in E_n$ $(n \in \mathbb{N})$ such that

$$x = \sum_{n=1}^{\infty} x_n \quad \text{unconditionally,}$$

that is, the net

$$\left(\sum_{n\in N} x_n\right)_{N\subset\mathbb{N} \text{ finite}}$$

converges to x.

Remark. The above theorem can be extended to non-separable Banach spaces.

 E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one);

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leqslant p < \infty)$ and c_0 ;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1 ;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;
- more generally, E contains a complemented subspace which has an unconditional Schauder basis;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
 - the Lebesgue space $L_1[0,1]$;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
 - the Lebesgue space $L_1[0,1]$;
 - the space C(K) of continuous functions on an infinite, compact metric space K;

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
 - the Lebesgue space $L_1[0,1]$;
 - the space C(K) of continuous functions on an infinite, compact metric space K;
 - the p^{th} quasi-reflexive James space J_p (1 .

- E has an unconditional Schauder basis (this means that each of the subspaces E_n has dimension one); examples:
 - the classical sequence spaces ℓ_p $(1 \leq p < \infty)$ and c_0 ;
 - the Lebesgue spaces $L_p[0,1]$ (1
 - ▶ the Lorentz sequence spaces $d_{w,p}$ and the Orlicz sequence spaces h_M ;
- more generally, E contains a complemented subspace which has an unconditional Schauder basis; examples:
 - the Lebesgue space $L_1[0,1]$;
 - the space C(K) of continuous functions on an infinite, compact metric space K;
 - the p^{th} quasi-reflexive James space J_p (1 .

Hence not all maximal left ideals of $\mathscr{B}(E)$ are finitely generated in each of the above cases.

Perspective. Gowers's Dichotomy Theorem: an infinite-dimensional Banach space is either hereditarily indecomposable (in the sense that none of its closed subspaces can be decomposed into the direct sum of two closed, infinite-dimensional subspaces), or it contains a subspace which has an unconditional Schauder basis.

A refinement of the question

Observation. Let *E* be a Banach space. For each $x \in E \setminus \{0\}$,

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

A refinement of the question

Observation. Let *E* be a Banach space. For each $x \in E \setminus \{0\}$,

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

6

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

6

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Proof. The mapping

$$F \mapsto \{T \in \mathscr{B}(E) : F \subseteq \ker T\}$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$.

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathcal{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Proof. The mapping

$$F \mapsto \{T \in \mathscr{B}(E) : F \subseteq \ker T\}$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$. Hence each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$ corresponds to a unique one-dimensional subspace of E,

 $\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal which is generated by the single projection I - P, where P is any projection of E onto $\mathbb{C}x$. Moreover,

 $\mathscr{ML}_x = \mathscr{ML}_y \iff x \text{ and } y \text{ are proportional } (x, y \in E \setminus \{0\}).$

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathcal{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Proof. The mapping

$$F \mapsto \{T \in \mathscr{B}(E) : F \subseteq \ker T\}$$

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals of $\mathscr{B}(E)$. Hence each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$ corresponds to a unique one-dimensional subspace of E, and therefore \mathscr{L} is fixed.

Question II — the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ
Question II — the infinite-dimensional case

Let E be an infinite-dimensional Banach space. Then

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$.

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$. Then

$$T: y \mapsto \langle y, \lambda \rangle x, \ E \to E,$$

belongs to $\mathscr{F}(E)$,

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$. Then

$$T: y \mapsto \langle y, \lambda \rangle x, \ E \to E,$$

belongs to $\mathscr{F}(E)$, but not to \mathscr{ML}_x because $Tx = x \neq 0$.

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$. Then

$$T: y \mapsto \langle y, \lambda \rangle x, \ E \to E,$$

belongs to $\mathscr{F}(E)$, but not to \mathscr{ML}_x because $Tx = x \neq 0$.

Corollary. A positive answer to Question II implies a positive answer to Q. I:

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$. Then

$$T: y \mapsto \langle y, \lambda \rangle x, \ E \to E,$$

belongs to $\mathscr{F}(E)$, but not to \mathscr{ML}_x because $Tx = x \neq 0$.

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

 \Box

 $\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Proof. Given $x \in E \setminus \{0\}$, take $\lambda \in E^*$ such that $\langle x, \lambda \rangle = 1$. Then

$$T: y \mapsto \langle y, \lambda \rangle x, \ E \to E,$$

belongs to $\mathscr{F}(E)$, but not to \mathscr{ML}_x because $Tx = x \neq 0$.

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

 \Box

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

8

for each $S \in \mathscr{B}(E)$.

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

8

for each $S \in \mathscr{B}(E)$.

The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

for each $S \in \mathscr{B}(E)$.

The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T + \mathcal{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathcal{B}(E)/\mathcal{K}(E)$.

8

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

for each $S \in \mathscr{B}(E)$.

The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T + \mathcal{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathcal{B}(E)/\mathcal{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

for each $S \in \mathscr{B}(E)$.

The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T + \mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E)/\mathscr{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.

Theorem (DKKKL). Let *E* be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

8

(i) \mathscr{L} is fixed; or

Definition. An operator T on a Banach space E is *inessential* if I - ST is a Fredholm operator, in the sense that

dim ker
$$(I - ST) < \infty$$
 and dim $\frac{E}{(I - ST)(E)} < \infty$,

for each $S \in \mathscr{B}(E)$.

The set $\mathscr{E}(E)$ of inessential operators on E is a closed, two-sided ideal of $\mathscr{B}(E)$, and proper whenever E is infinite-dimensional.

An equivalent, more algebraic, definition is that T is inessential if and only if $T + \mathscr{K}(E)$ belongs to the Jacobson radical of the Calkin algebra $\mathscr{B}(E)/\mathscr{K}(E)$.

Example. A Hilbert-space operator is inessential if and only if it is compact.

Theorem (DKKKL). Let *E* be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

(i) \mathscr{L} is fixed; or (ii) \mathscr{L} contains $\mathscr{E}(E)$. **Recall:** Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds: (i) \mathscr{L} is fixed; or

(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds: (i) \mathscr{L} is fixed; or

(ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

This result is essentially known for Hilbert spaces, but the approach is very different from ours.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element x ∈ M), or it contains the Fréchet filter of all cofinite subsets of M.

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element x ∈ M), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < ?

Recall: Let E be a non-zero Banach space. Then, for each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{E}(E)$.

Remarks.

- This result is essentially known for Hilbert spaces, but the approach is very different from ours.
- It can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element x ∈ M), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

(i) E has a Schauder basis and is complemented in its bidual

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

(i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \leq p < \infty$);

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \le p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \le p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \leq p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);

(iii)
$$E = c_0(\Gamma)$$
 , where Γ is a non-empty index set

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, where Γ is a non-empty index set and H is a Hilbert space;

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- (iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \leq p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- (iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Definition. An operator S on E is *strictly singular* if, for each $\varepsilon > 0$, each infinite-dimensional subspace of E contains a unit vector x such that $||Sx|| \leq \varepsilon$.

10

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \leq p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- (iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity (examples: hereditarily indecomposable Banach spaces);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Definition. An operator S on E is *strictly singular* if, for each $\varepsilon > 0$, each infinite-dimensional subspace of E contains a unit vector x such that $||Sx|| \leq \varepsilon$.

10

Theorem (DKKKL). Let *E* be a Banach space which satisfies one of the following five conditions:

- (i) E has a Schauder basis and is complemented in its bidual (examples: ℓ_p and $L_p[0,1]$ for $1 \leq p < \infty$);
- (ii) E is an injective Banach space, in the sense that E is automatically complemented in any superspace
 (examples: l_∞(Γ) for some non-empty index set Γ);
- (iii) $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- (iv) E has few operators, in the sense that each operator on E is a strictly singular perturbation of a scalar multiple of the identity (examples: hereditarily indecomposable Banach spaces);
- (v) E = C(K), where K is a compact Hausdorff space without isolated points, and each operator on C(K) is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Definition. An operator S on E is *strictly singular* if, for each $\varepsilon > 0$, each infinite-dimensional subspace of E contains a unit vector x such that $||Sx|| \leq \varepsilon$.

Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$.

▲□▶ 4 □▶ 4 □▶ 4 □▶ 1 □ ○ Q ○

The Hilbert-space case

Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$. A *state* on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

 $\langle a^{\star}a,\lambda
angle \geqslant 0 \quad (a\in \mathscr{A}).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

The Hilbert-space case

Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$. A *state* on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$\langle a^{\star}a,\lambda\rangle \geqslant 0 \quad (a \in \mathscr{A}).$$

Given a state λ on \mathscr{A} , the set

$$\mathscr{N}_{\lambda} = \{ a \in \mathscr{A} : \langle a^{\star}a, \lambda \rangle = 0 \}$$

is a closed left ideal of \mathscr{A} .

Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$. A *state* on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$\langle a^{\star}a,\lambda\rangle \geqslant 0 \quad (a \in \mathscr{A}).$$

Given a state λ on \mathscr{A} , the set

$$\mathscr{N}_{\lambda} = \{ a \in \mathscr{A} : \langle a^{\star}a, \lambda \rangle = 0 \}$$

is a closed left ideal of \mathscr{A} . It is maximal if and only if λ is a *pure state*, that is, an extreme point of the weak^{*}-compact, convex set of all states on \mathscr{A} .

Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$. A *state* on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$\langle a^{\star}a,\lambda\rangle \geqslant 0 \quad (a \in \mathscr{A}).$$

Given a state λ on \mathscr{A} , the set

$$\mathscr{N}_{\lambda} = \{ a \in \mathscr{A} : \langle a^{\star}a, \lambda \rangle = 0 \}$$

is a closed left ideal of \mathscr{A} . It is maximal if and only if λ is a *pure state*, that is, an extreme point of the weak^{*}-compact, convex set of all states on \mathscr{A} .

Suppose that $\mathscr{A} = \mathscr{B}(H)$ for some Hilbert space H, and let $x \in H$ be a unit vector. Then $\mathscr{N}_{\lambda} = \mathscr{ML}_{x}$ if and only if λ is the vector state induced by x, that is,

$$\langle T,\lambda\rangle = (Tx | x) \quad (T \in \mathscr{B}(H)),$$

where $(\cdot | \cdot)$ denotes the inner product on *H*.
Let \mathscr{A} be a unital C^* -algebra, with involution $a \mapsto a^*$. A *state* on \mathscr{A} is a norm-one functional λ on \mathscr{A} such that

$$\langle a^{\star}a,\lambda\rangle \geqslant 0 \quad (a \in \mathscr{A}).$$

Given a state λ on \mathscr{A} , the set

$$\mathscr{N}_{\lambda} = \{ a \in \mathscr{A} : \langle a^{\star}a, \lambda \rangle = 0 \}$$

is a closed left ideal of \mathscr{A} . It is maximal if and only if λ is a *pure state*, that is, an extreme point of the weak^{*}-compact, convex set of all states on \mathscr{A} .

Suppose that $\mathscr{A} = \mathscr{B}(H)$ for some Hilbert space H, and let $x \in H$ be a unit vector. Then $\mathscr{N}_{\lambda} = \mathscr{ML}_{x}$ if and only if λ is the vector state induced by x, that is,

$$\langle T, \lambda \rangle = (Tx | x) \quad (T \in \mathscr{B}(H)),$$

where $(\cdot | \cdot)$ denotes the inner product on *H*.

The Dichotomy Theorem for Hilbert spaces follows from these facts because each pure state λ on $\mathscr{B}(H)$ is either a vector state, or $\mathscr{K}(H) \subseteq \ker \lambda$, in which case $\mathscr{K}(H) \subseteq \mathscr{N}_{\lambda}$. **Theorem** (Argyros–Haydon 2011). There is a Banach space X_{AH} which has the following three properties:

(i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;

Theorem (Argyros–Haydon 2011). There is a Banach space X_{AH} which has the following three properties:

- (i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;
- (ii) X_{AH} has a Schauder basis;

Theorem (Argyros–Haydon 2011). There is a Banach space X_{AH} which has the following three properties:

- (i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;
- (ii) X_{AH} has a Schauder basis;
- (iii) the dual space of X_{AH} is isomorphic to ℓ_1 .

Let
$$E = X_{AH} \oplus \ell_{\infty}$$
.

・ロト < 団ト < 三ト < 三ト 三 のへで

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

More precisely, \mathscr{K}_1 is generated as a left ideal by the operator

$$L = \begin{pmatrix} 0 & 0 \\ V U^* \kappa & W \end{pmatrix},$$

where $\kappa \colon X_{AH} \to X_{AH}^{**}$ is the canonical embedding, while $U \colon \ell_1 \to X_{AH}^*$, $V \colon \ell_1^* = \ell_\infty \to \ell_\infty(2\mathbb{N} - 1)$ and $W \colon \ell_\infty \to \ell_\infty(2\mathbb{N})$ are isomorphisms.

Recall: $E = X_{AH} \oplus \ell_{\infty}$.

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

Recall: $E = X_{AH} \oplus \ell_{\infty}$.

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$\left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{2,2} \text{ is strictly singular} \right\},\$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

Recall: $E = X_{AH} \oplus \ell_{\infty}$.

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$\left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{2,2} \text{ is strictly singular} \right\},\$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

In particular, the answer to Question I is positive for E.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

(Recall: in the example, above, $E = X_{AH} \oplus \ell_{\infty}$.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Recall: in the example, above, $E = X_{AH} \oplus \ell_{\infty}$.)

Answer: yes!

(Recall: in the example, above, $E = X_{AH} \oplus \ell_{\infty}$.)

Answer: yes!

Theorem (Kania–L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:

(i) each operator from Y into X_{AH} has the form $\alpha J + K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \to X_{AH}$ denotes the inclusion;

(Recall: in the example, above, $E = X_{AH} \oplus \ell_{\infty}$.)

Answer: yes!

Theorem (Kania–L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:

- (i) each operator from Y into X_{AH} has the form $\alpha J + K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \to X_{AH}$ denotes the inclusion;
- (ii) Y has a Schauder basis;

(Recall: in the example, above, $E = X_{AH} \oplus \ell_{\infty}$.)

Answer: yes!

Theorem (Kania–L). Argyros and Haydon's Banach space X_{AH} contains a closed, infinite-dimensional subspace Y of infinite codimension such that:

- (i) each operator from Y into X_{AH} has the form $\alpha J + K$ for some $\alpha \in \mathbb{C}$ and some compact operator K, where $J: Y \to X_{AH}$ denotes the inclusion;
- (ii) Y has a Schauder basis;
- (iii) the dual space of Y is isomorphic to ℓ_1 .

A separable example (continued)

Let $E = X_{AH} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$T = \begin{pmatrix} \alpha_{1,1}I_{X_{AH}} + K_{1,1} & \alpha_{1,2}J + K_{1,2} \\ K_{2,1} & \alpha_{2,2}I_{Y} + K_{2,2} \end{pmatrix},$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

<□> <□> <□> <□> <=> <=> <=> <=> <</p>

A separable example (continued)

Let $E = X_{AH} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$T = \begin{pmatrix} \alpha_{1,1}I_{X_{AH}} + K_{1,1} & \alpha_{1,2}J + K_{1,2} \\ K_{2,1} & \alpha_{2,2}I_{Y} + K_{2,2} \end{pmatrix},$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

Theorem (Kania–L).

(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

 $\mathscr{M}_1 = \{T \in \mathscr{B}(E) : \alpha_{2,2} = 0\}$ and $\mathscr{M}_2 = \{T \in \mathscr{B}(E) : \alpha_{1,1} = 0\};$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let $E = X_{AH} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$T = \begin{pmatrix} \alpha_{1,1}I_{X_{AH}} + K_{1,1} & \alpha_{1,2}J + K_{1,2} \\ K_{2,1} & \alpha_{2,2}I_{Y} + K_{2,2} \end{pmatrix},$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

Theorem (Kania–L).

(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

 $\mathscr{M}_1 = \{T \in \mathscr{B}(E) : \alpha_{2,2} = 0\}$ and $\mathscr{M}_2 = \{T \in \mathscr{B}(E) : \alpha_{1,1} = 0\};$

(ii) \mathcal{M}_1 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

Let $E = X_{AH} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$T = \begin{pmatrix} \alpha_{1,1}I_{X_{AH}} + K_{1,1} & \alpha_{1,2}J + K_{1,2} \\ K_{2,1} & \alpha_{2,2}I_{Y} + K_{2,2} \end{pmatrix},$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

Theorem (Kania–L).

(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

 $\mathscr{M}_1 = \{T \in \mathscr{B}(E) : \alpha_{2,2} = 0\}$ and $\mathscr{M}_2 = \{T \in \mathscr{B}(E) : \alpha_{1,1} = 0\};$

(ii) \mathcal{M}_1 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

but \mathcal{M}_1 is not generated as a left ideal by a single operator on E;

Let $E = X_{AH} \oplus Y$. Then each $T \in \mathscr{B}(E)$ has the form

$$T = \begin{pmatrix} \alpha_{1,1}I_{X_{AH}} + K_{1,1} & \alpha_{1,2}J + K_{1,2} \\ K_{2,1} & \alpha_{2,2}I_{Y} + K_{2,2} \end{pmatrix},$$

where $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2} \in \mathbb{C}$ and the operators $K_{1,1}, K_{1,2}, K_{2,1}, K_{2,2}$ are compact.

Theorem (Kania–L).

(i) There are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

 $\mathscr{M}_1 = \{T \in \mathscr{B}(E) : \alpha_{2,2} = 0\}$ and $\mathscr{M}_2 = \{T \in \mathscr{B}(E) : \alpha_{1,1} = 0\};$

(ii) \mathcal{M}_1 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

but \mathcal{M}_1 is not generated as a left ideal by a single operator on E; (iii) \mathcal{M}_2 is not finitely generated as a left ideal. • Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

- Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal *right* ideals of $\mathscr{B}(E)$?

- Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal *right* ideals of $\mathscr{B}(E)$?

Key references

- H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen, Maximal left ideals of the Banach algebra of bounded operators on a Banach space, *Studia Math.* 218 (2013), 245–286.
- H. G. Dales and W. Żelazko, Generators of maximal left ideals in Banach algebras, Studia Math. 212 (2012), 173–193.
- T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded operators acting on a Banach space, in preparation.