Conclusions, Outlook, Questions

Eberhard Kirchberg

HU Berlin

Lecture 10, 27/03/2014

Eberhard Kirchberg (HU Berlin)

Conclusions, Outlook, Questions

Contents:

Topics in 10th and last lecture:

Conclusions of classification results and questions.

1. Structure of algebras with ideal-system preserving zero-homotopy.

2. Constructions of examples of algebras with given second countable locally compact sober T_0 spaces (not necessarily Hausdorff).

3. Minimal requirement for a weak version of a universal coefficent theorem for ideal-equivariant classification.

4. Optional: Equivariant versions for actions of compact groups (up to 2-cocycle equivalence) ?.

Consider the case where $X \cong Prim(B)$ and X acts non-degenerate, lower semi-continuous and monotone upper semi-continuos (i.e., "way below" continuous) on A. Then the observations applied under the – from now on overall – assumptions that A and B are *non-zero*, *separable, stable and strongly p.i.* – here equal to strong \mathcal{O}_{∞} -absorption ! – lead to the following:

Theorem (1)

The elements of $KK_X(A, B)$ can be represented by *X*-action compatible mono-morphisms $h: A \rightarrow B$. *h* and $h \oplus h_0$ are in the same class.

It is in the same KK_X -class as $h' : A \to B$ if and only if $h \oplus h_0$ and $h' \oplus h_0$ are unitarily homotopic.

h and $h \oplus h_0$ are unitarily homotopic, if and only if the action $J \mapsto h^{-1}(J) \subseteq \Psi_X(J)$ coincides always with Ψ_X of X on A.

The last remark excludes e.g. h = 0 which is in $KK_X(A, B)$ the same as $h_0: A \to B$ that defines the action of X on A – via $Prim(B) \cong X$ – and "extends" to a non-degenerate monomorphism from $A \otimes \mathcal{O}_2$ into B: $[h_0] = [0]$.

Corollary (2)

If the action of X on A comes from an homeomorphism of X with Prim(A), then $h: A \to B$ is a KK_X-equivalence, if and only if, $h \oplus h_0$ is unitarily homotopic to an X-equivariant isomorphism φ from A onto B.

Application to X-equivariant zero homotopies:

Here comes a case where this difference between 0 and h_0 plays an important role:

Suppose now that *B* has an ideal-system equivariant zero-homotopy, i.e., there exists $\varphi \colon B \to C([0, 1], B)$ given by a point-norm continuous path $\varphi_t \in \text{Hom}_X(B, B)$ with $\varphi_1 = \text{id}_B$ and $\varphi_0 = 0$.

If we now add to this homotopy our "big zero" $h_0: B \to B$, then $[h_0] = [h_0 \oplus id_B] = [id_B]$ in KK_X(B, B), homotopy invariance of KK_X(B, B). This implies that id_B is unitarily homotopic to h_0 , and then that $\mathcal{M}(B)$ contains a central sequence of copies of \mathcal{O}_2 . It implies $B \cong B \otimes \mathcal{O}_2$. The absorption of \mathcal{O}_2 and the *X*-compatible zero-homotopy allow to construct asymptotic embeddings of *B* into an inductive limit of certain AH-algebras coming from 1-dim simplicial complexes and also asymptotic embeddings of those AH-algebras into *B*. A controlled approximation procedure then gives that *B* is an AH-algebra of the below described type.

Our (M. Rørdam and me) approximation itself is not *X*-compatible and is not compatible with the given *X*-compatible zero homotopy.

Theorem (3)(GAFA, 15, 2005)

If A is a separable, nuclear, strongly purely infinite C*-algebra that is homotopic to zero in an ideal-system preserving way, then A is the inductive limit of C*-algebras of the form $C_0(\Gamma, v) \otimes M_k$, where Γ is a graph (and $C_0(\Gamma, v)$ is the algebra of continuous functions on Γ that vanish at a distinguished point $v \in \Gamma$).

It would be interesting if one can find an AH-approximation that is compatible with the ideal structure and is invariant under – some variant of – the zero homotopy.

Corollary (4)

If B is any separable, nuclear C*-algebra, then $B \otimes \mathcal{O}_2 \otimes \mathbb{K}$ is isomorphic to a crossed product $D \rtimes_{\alpha} \mathbb{Z}$, where D is an inductive limit of algebras $C_0(\Gamma, v) \otimes M_k$ (and D is \mathcal{O}_2 -absorbing and homotopic to zero in an ideal-system preserving way). An other consequence is the following observation:

Corollary (5)

If B is separable and amenable then $B\otimes \mathcal{O}_2$ contains a regular abelian C*-subalgebra.

In particular, $\mathcal{I}(B)$ is isomorphic a sub-lattice Ω of the open sets $\mathbb{O}(P)$ of some locally compact Polish space P that is closed under suprema and infima.

Thus B has Abelian factorization.

Examples.

Since we have no ideal-equivariant UCT available, one can attempt to construct test-examples. This will be supported by the below given theorem:

Let Ω a sub-lattice of the lattice of open subsets of an l.c. Polish space *P* that is closed under supremum and infimum, then this action defines a canonical lower semi-continuous action of $\mathbb{O}(P)$ on *P*,

and Ω is naturally isomorphic to the lattice of open subsets of the locally compact space *X* of its prime elements.

We get from the action of X on $C_0(P)$ a self-action of P on a Hilbert bi-module \mathcal{H} over $C_0(P, \mathbb{K})$ in general position.

Theorem

(6) Under above assumptions is the Toeplitz-Pimsner algebra and the Cuntz-Pimsner algebra is the same C*-algebra, is strongly purely infinite and its ideal lattice is isomorphic to Ω . The Pimsner construction of a homotopy equivalence between $C_0(P, \mathbb{K})$ and $\mathcal{T}(\mathcal{H})$ is X-equivariant. One can use that this homotopy produces also KK_Y -equivalences for coarser topologies, e.g. $KK_X(A, B) \rightarrow KK(A, B)$ to distinguish easier KK_X classes.

In general there are only some very special cases where there is a chance to derive invariants for the verification of KK_X -equivalence practical. See further below.

Example

Consider $P_0 := (0, 1], X_0 := (0, 1]_{lsc} := (0, 1]$, with topology $\mathbb{O}(X_0) := \Omega := \{\emptyset, (t, 1]; t \in [0, 1)\} \subset \mathbb{O}(P).$

Alternatively:

 $P_1 :=$ probability measures on [0, 1] *except* the character δ_0 with topology "wage" ($\cong \sigma(C[0, 1]^*, C[0, 1])$ - topology on the states of C[0, 1]).

Define a map $\gamma: \mu \in P_1 \to (0, 1]$ by $\gamma(\mu) = \max(\text{support of } \mu)$. Then $\gamma: P_1 \to X_0$ is continuous and open.

The corresponding Cuntz-Pimsner algebras are the same and coincide with the example studied by Mortensen and Rødram, that we call A_0 .

It has by our descriptions a ideal-system preserving zero homotopy and $t \mapsto t^2$ is implemented by an automorphism of A_0 that is properly outer because each power $t \to t^{2n}$ moves all ideals (notice here that { 1} is neither open nor closed). The crossed product by this action is $A_0 \rtimes \mathbb{Z} \cong \mathcal{O}_2 \otimes \mathbb{K}$.

If *B* is an amenable *C*^{*}-algebra, then $B \otimes A_0$ has an ideal-system preserving zero-homotopy.

Thus, $B \otimes A_0$ has the structure considered in the last Theorem.

The natural inclusion $B \otimes A_0 \subset B \otimes \mathcal{O}_2 \otimes \mathbb{K}$ implies that a regular Abelian C^* -subalgebra of $B \otimes A_0$ is also regular in $B \otimes \mathcal{O}_2 \otimes \mathbb{K} \subset B \otimes \mathcal{O}_2$.

Crossed product with the \mathbb{Z} -action defined by $t \to t^2$ leads to a proof of the Corollary.

Except the idea of Rødram for the T_0 space $\{0, 1\}$ with topology $\{\emptyset, \{1\}, \{0, 1\}\}$ (for 1-step extensions of UCT-class p.i. stable separable *C**-algebras).

It can be described by transformations between of 6-term sequences.

Some progress exists also for 2-step extension $\{0,1,2\}$ with topology $\{\emptyset,\{2\},\{1,2\},\{0,1,2\}\}.$

The case of linear ordered $\mathbb{O}(X)$ is difficult enough.

Next we use for an action $\Psi : \mathbb{O}(Y) \to \mathcal{I}(A)$ of *X* on *A* the notation $A|Z := \Psi(U)/\Psi(U) \cap \Psi(U \setminus Z)$ if *Z* is a closed subset of an open subset $U \subset X$. We say that *X* acts on *A* continuously if Ψ is a lattice *monomorphism* and is both upper semi-continuous and lower semicontinuous. (not only monotone)

Conjecture: Let X a second countable locally quasi-compact point-complete T_0 space.

Conjecture: TFAE:

- (i) If A is nuclear and separable, Prim(A) ≅ X, and A/J ≅ (A/J) ⊗ O₂ for every *primitive* ideal, then A ≅ A ⊗ O₂.
- (ii) If *X* acts on separable nuclear *C**-algebras *A* and *B* continuously, and if $\psi: A \to B$ is an *X*-equivariant *-monomorphism such that, for each $x \in X$, the induced morphism $A|\overline{\{x\}} \to B|\overline{\{x\}}$ defines a KK($\overline{\{x\}}; A|\overline{\{x\}}, B|\overline{\{x\}}$) equivalence, then ψ defines a KK(X; A, B) equivalence.