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Abstract

Abstract: In 1968 V.E. Zakharov derived the Nonlinear Schrödinger
equation as an approximation to the 2D water wave problem in the absence
of surface tension in order to describe slow temporal and spatial modulations
of a spatially and temporarily oscillating wave packet. I will describe a
recent proof that the wave packets in the two-dimensional water wave
problem in a canal of finite depth can be accurately approximated by
solutions of the Nonlinear Schrödinger equation.
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Introduction

I. Explain the context in which the nonlinear Schrödinger
approximation arises.

II. Explain why normal form theorems are so critical in the proof.
III. Explain the problems encountered in constructing the normal

form.
A. Resonances.
B. Loss of smoothness.
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The NLS approximation

Want to study the evolution of “wave packets” on a fluid surface

The underlying carrier wave (blue) will propagate with the “phase velocity”,
whereas the envelope (red) will translate with the “group velocity”, but as V.
Zakharov (1968) argued, the shape of the envelope should evolve on a much
slower time scale, and the changes in its shape should be described the the
Nonlinear Schrödinger Equation (NLS).
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Modulation Equations

1 The NLS equation is just one example of what are known as
modulation or amplitude equations.

2 In different physical regimes other equations are relevant, e.g. for long
waves with small amplitudes, the appropriate equation is the
Korteweg-de Vries equation (KdV).

3 These modulation equations are a sort of normal form for the original
nonlinear PDE’s.

4 There has been a great deal of activity in recent years that focusses on
giving rigorous estimates of the accuracy with which these modulation
equations approximate the true motion of the system.

5 Much of this activity was motivated by Walter’s paper: An existence
theory for water waves and the Boussinesq and Kortweg-de Vries
scaling limits, Comm. PDE’s vol. 10, pp. 787-1003 (1993).
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NLS again

The NLS approximation has been one of the last of these modulation
equations to yield to rigorous analysis.

1 W. Craig, C. Sulem, P.L. Sulem. Nonlinear modulation of gravity
waves: a rigorous approach (1992)

2 N. Totz, S. Wu. A rigorous justification of the modulation
approximation to the 2D full water wave problem (2012).

3 W.-P. Düll, G. Schneider, C.E. Wayne. Justification of the NLS
equation for the evolution of gravity driven 2D surface water waves in
a canal of finite depth (2013).
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A model problem

Consider the model problem:

∂2u
∂t2 = −ω2u −ω2u2

u = u(x, t), x ∈ R, t ∈ R

Here,ω2 is a Fourier multiplier operator, defined by its action on Fourier
transforms:

ω2u = F−1(k tanh(k)û(k, t)) .

Similarities with the water wave problem:

1 The same dispersion relation.

2 Quadratic nonlinear term.

3 The Fourier transform of the nonlinear term vanishes at the origin.
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Wavetrains

Note that the linear part of the equation has a family of plane waves:

uL(x, t) = ei(kx+ω(k)2t) .

It is now common to search for slowly varying wave trains of the nonlinear
problem of the form:

ΨNLS(x, t) = εA(εx, ε2t)ei(kx+ω(k)t) + complex conjugate .

Then a nonrigorous calculation shows that the amplitude function A satisfies

∂A
∂T

= iν1
∂2A
∂X2 + iν2A|A|2 .
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Timescales, etc.

One can see from this last calculation a part of the reason why the NLS
approximation is so difficult to justify rigorously.

In terms of the parameter ε which describes the amplitude of the solution,
one needs to control the equation for times ∼ O(ε2) - a very long time.

For the KdV regime, for example, one needs only control the evolution for
times ∼ O(ε3/2).
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Justifying the approximation

To rigorously justify this approximation we write

u(x, t) = ΨNLS + εβR

for β > 2.

We then insert this expression for u in our original equation and derive the
equation for R.

Note that if R ∼ O(1) for 0 6 t 6 ε−2 then the nonlinear Schrödinger
approximation correctly describes the behavior of solutions of our original
equation.
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The remainder
In order to control the evolution of R over the long times we consider we
make two initial changes:

• We rewrite the equation as a system of two first order equations.

• We diagonalize the linear part of the equation.

This leads to the following equation for the remainder R:

∂R
∂t

= ΛR + 2εN(ΨNLS, R) + εβN(R, R) + ε−βRes(ΨNLS)

• In an abuse of notation R is now a two-component vector - it still,
however, is the difference between the NLS approximation and a true
solution of our original equation.

• Λ is a 2× 2, diagonal matrix operator whose diagonal elements (in
Fourier transform variables) are

λj(k) = (−i)j−1ω(k) = (−i)j−1
√

k tanh(k), j = 1, 2.

Fields Institute, Jan. 2013 Water Waves and NLS



The remainder
In order to control the evolution of R over the long times we consider we
make two initial changes:

• We rewrite the equation as a system of two first order equations.

• We diagonalize the linear part of the equation.

This leads to the following equation for the remainder R:

∂R
∂t

= ΛR + 2εN(ΨNLS, R) + εβN(R, R) + ε−βRes(ΨNLS)

• In an abuse of notation R is now a two-component vector - it still,
however, is the difference between the NLS approximation and a true
solution of our original equation.

• Λ is a 2× 2, diagonal matrix operator whose diagonal elements (in
Fourier transform variables) are

λj(k) = (−i)j−1ω(k) = (−i)j−1
√

k tanh(k), j = 1, 2.

Fields Institute, Jan. 2013 Water Waves and NLS



The remainder

∂R
∂t

= ΛR + 2εN(ΨNLS, R) + εβN(R, R) + ε−βRes(ΨNLS)

• The bilinear function N has the representation (again in Fourier space)
of

N̂(U, V)(k) = −ω(k)(0, ((Û)1 ∗ (V̂)1)(k))T

• Res(ΨNLS) measures the amount by which ΨNLS fails to satisfy the
original equation at any given time. We can make it as small as we
wish but choosing the approximation appropriately. (This choice does
not affect the fact that the leading order approximation is still given by
NLS.)
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The remainder

∂R
∂t

= ΛR + 2εN(ΨNLS, R) + εβN(R, R) + ε−βRes(ΨNLS)

If we can control the linear evolution then the nonlinear term and the
inhomogeneous term can be controlled by Gronwall’s inequality.

Thus, our approximation theorem boils down to showing that solutions of
the linear equation

∂R
∂t

= ΛR + 2εN(ΨNLS, R)

Remain O(1) for times 0 6 1 6 ε−2.
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Controlling the linear evolution

∂R
∂t

= ΛR + 2εN(ΨNLS, R)

Note that the evolution due to Λ preserves the Hs norm so that the problems
come from the term 2εN(ΨNLS, R)

In principle, this term could cause the linear evolution to grow like

eCεt

which over time scales t ∼ O(ε−2) would lead to a loss of control of the
error R.

We will attempt to remove this term via a normal form transformation - or
more accurately we will attempt to transform the equation to

∂R
∂t

= ΛR + O(ε2) ,

whose growth can be no worse than eCε2t.
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The normal form transform
The Fouier transform of the term 2εN(ΨNLS, R) can be written as

εN̂(ΨNLS, R)(k) = ε
∫
α(k, k − m, m)Ψ̂NLS(k − m)R̂(m)dm

|α(k, k − m, m)| 6 C min(|k|,
√
|k|) .

Note that in fact we should sum over the components of R here - we look at
this simplified model to try and illustrate the main ideas in this problem with
as few technicalities as possible.

To try and eliminate this term we will make a transformation from R to

R̃ = R + εB(ΨNLS, R)

B̂(ΨNLS, R) = ε
∫
β(k, k − m, m)Ψ̂NLS(k − m)R̂(m)dm

(See also “Birkhoff normal form for the nonlinear Schrödinger equation” by
W. Craig, A. Selvitella, Y. Wang, Rendiconti Lincei-Matematica e
Applicazioni (2013).)
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The transformation

If we differentiate this equation we find

∂tR̃ = ∂tR + εB(∂tΨ
NLS, R) + εB(ΨNLS,∂tR) .

From the formula for ΨNLS we know that ∂tΨ
NLS = iω(k0)Ψ

NLS + O(ε).

• We can ignore the O(ε) terms since when we insert them into the
expression for ∂tR̃ we obtain terms O(ε2) which we will consistently
ignore.

• We should also have a term proportional to −iω(k0) which we ignore
for simplicity - it is handled in exactly the same way as the term that is
present.
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The transformation

Inserting the expression for ∂tR into this expression we find

∂tR̃ = Λ(R̃−εB(ΨNLS, R)) + εN(ΨNLS, R)+

+εB(iω(k0)Ψ
NLS, R) + εB(ΨNLS,ΛR) + O(ε2) .

Recall that our goal is to eliminate all terms in the equation for ∂tR̃ up to
O(ε2), except for ΛR̃.

Thus, we search for B such that

−εΛB(ΨNLS, R)) + εN(ΨNLS, R)+

+εB(iω(k0)Ψ
NLS, R) + εB(ΨNLS,ΛR) = 0
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The resonances

This leads to a formula for the kernel of the transformation of the form:

β(k, k − l, m) =
α(k, k − l, m)

−iω(k) + iω(k0) + iω(m)
.

As usual, the actual expression has many more terms since we have to keep
track of the behavior of both of the components of R, but all are of this form
(just with different combinations of plus and minus sign in the denominator.

The “resonances” are points at which the denominator of this expression
vanishes. It’s difficult to keep track of both k and m so before we try to
bound this expression we simplify somewhat.
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The resonances

Recall that

B̂(ΨNLS, R) = ε
∫
β(k, k − m, m)Ψ̂NLS(k − m)R̂(m)dm

We can simplify our consideration of the resonance of the normal form
transformation by remembering that the Fourier transfrom of Ψ̂NLS is very
strongly concentrated around k0 (and −k0). Since

Ψ̂0(k) = Â(
k − k0

ε
) + . . .

Thus, we can approximate k − m ≈ k0 or m ≈ k − k0. with this
approximation the kernel of the normal form transform becomes:

β(k, k − l, m) =
α(k, k − l, m)

−iω(k) + iω(k0) + iω(k − k0)
.
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The resonances

β(k, k − l, m) =
α(k, k − l, m)

−iω(k) + iω(k0) + iω(k − k0)
.

Note that the denominator of this expression vanishes if:

• k = 0

• k = k0

1 The first resonance can be ignored from the fact that
|α(k, k − m, m)| 6 C|k| for k ≈ 0. Thus, zero in the numerator cancels
that in the denominator and β is bounded for k near zero.

2 The resonance at k = k0 is more serious however since the numerator
does not vanish there. However, since k − m ≈ k0 if k ≈ k0, m must be
close to zero and we expect that R̂(m) will be very small when m ≈ 0
because of the fact that the nonlinearity vanishes at wave number zero.

B̂(ΨNLS, R) = ε
∫
β(k, k − m, m)Ψ̂NLS(k − m)R̂(m)dm
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Loss of smoothness

These ideas, allow us to deal with the resonances in this model. However,
there is an additional difficulty that doesn’t appear in finite dimensional
normal forms problems.

β(k, k − l, m) =
α(k, k − l, m)

−iω(k) + iω(k0) + iω(k − k0)
.

Recall that α(k, k − l, m) ∼
√
|k| as |k|→∞, while the denominator,

−iω(k) + iω(k0) + iω(k − k0) ∼ const.

Thus, the linear transformation defined by β “looses half a derivative”. i.e

B(ΨNLS, ·) : Hs → Hs−1/2 .
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Invertibility of the transformation

We know that
R̃ = T(R) = R + εB(ΨNLS, R)

maps Hs+1/2 into Hs. We want to show that it is one-to-one on its image and
hence invertible.
Suppose one has a transformation which can be written in Fourier variables
as

û(k) = v̂(k) + ε
∫

b̂(k)Ψ̂(k − m)v̂(m)dm ,

where

1 b̂ is Lipshitz, pure imaginary and b̂(k) ∼
√
|k|,

2 Ψ is smooth and real valued.
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Invertibility of the transformation

∫
v̂(k)û(k) + v̂(k)û(k) = 2

∫
v̂(k)v̂(k) + ε

∫
v̂(k)b̂(k)Ψ̂(k − m)v̂(m)dm dk

+ε

∫
v̂(k)b̂(k) Ψ̂(k − m) v̂(m)dm dk

= 2
∫

v̂(k)v̂(k)

+ε

∫
v̂(k)Ψ̂(k − m)v̂(m)(b̂(k) + b̂(m))dk dm

Now from the hypotheses on b̂ we have

|b̂(k) + b̂(m)| = |b̂(k) − b̂(m)| 6 C|k − m| .
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Invertibility of the transformation

Inserting this estimate into the integral and applying Young’s inequality to
bound the convolution we find:

2‖v̂‖2
L2 6 2‖v̂‖L2‖û‖L2 + Cε‖v̂‖L2

∫
|Ψ̂(k − m)|k − m|dk

If we now use the fact that Ψ is smooth, we have

‖u‖2
L2 > C‖v‖2

L2

from which we conclude that this transformation is one-to-one (and hence
invertible) on it’s image.
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The error estimates

The method described above allows us to define an invertible transformation,
but the loss of smoothness of the transformation creates a new problem:

R̃t = ΛR + ε2L(R̃) + εβÑ(R̃) + ε−βRes(Ψ)

The problem is that now, Ñ : Hs → Hs−1, i.e. it looses a full derivative. This
means that standard existence theorems for quasi-linear equations no longer
apply.

We use another approach which relies on the fact that we can assume that
our initial data is very smooth.
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Smoothing the initial data

Because the initial approximation is of the form

Ψ0(x) = εA(εx)eik0x + c.c.

its Fourier transform is

Ψ̂0(k) = Â(
k − k0

ε
) + . . .

Thus, the Fourier transform of our initial approximation is very strongly
localized around k = ±k0.

We can truncate Fourier transform so that it has compact support:

• without worsening the degree of our approximation,

• and, we obtain an approximating function that is analytic.
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The smoothing process

With this in mind, we rewrite

˜̂R(k, t) = ŵ(k, t)e−|k|(a−bε2t)

We’ll then prove that w remains bounded over time scales of O(ε−2).

If we write out the evolution equation for w, we find:

∂tŵ(k, t) = Λŵ − ε2b|k|ŵ(k, t) − ε2L̃(ŵ) + εβÑ(ŵ) + ε−βRes(Ψ)

The smoothing term −ε2b|k|ŵ(k, t) is just sufficient to offset the loss of
smoothness coming from the nonlinear term εβÑ(ŵ).
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The approximation result

“Theorem”: Given any solution A(X, T) of the nonlinear Schrödinger
equation, let

ΨNLS(x, t) = εA(ε(x + cgt), ε2t)ei(k0x+ω0t) + c.c. .

There there exists C0 > 0 and a solution u(x, t) of the original PDE such that

‖u(·, t) − Ψ(·, t)‖ 6 Cε3/2

for 0 6 t 6 C0ε
−2.

A similar result holds for the actual water wave problem.
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Conclusions

• Is there a general theory of normal forms for Hamiltonian PDE’s
on the line.

• Is there a more systematic way of classifying the resonances in
this problem?

• Is there a way to avoid (or mitigate) the loss of smoothness in the
normal form transformation.
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