Kinematic Vortices in a Thin Film Driven by an Applied Current

Peter Sternberg, Indiana University

Joint work with Lydia Peres Hari and Jacob Rubinstein
Technion
Consider a thin film superconductor subjected to an applied current of magnitude I (fed through the sides) and a perpendicular applied magnetic field of magnitude h.

Magnetic Field = $h \hat{z}$
Goal: Understanding anomalous vortex behavior

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- Oscillatory (periodic) behavior characterized by oppositely 'charged' vortex pairs either
 - nucleating inside the sample and then exiting on opposite sides
 - entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.

- Vortex emergence even with zero magnetic field: "Kinematic vortices" Andronov, Gordion, Kurin, Nefedov, Shereshevsky '93, Berdiyorov, Elmurodov, Peeters, Vodolazov, Milosevic '09, Du '03
Goal: Understanding anomalous vortex behavior

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- Oscillatory (periodic) behavior characterized by oppositely ‘charged’ vortex pairs either
 - nucleating inside the sample and then exiting on opposite sides
 or
 - entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.

Andronov, Gordion, Kurin, Nefedov, Shereshevsky ‘93, Berdiyorov, Elmurodov, Peeters, Vodolazov, Milosevic ‘09, Du ‘03
Goal: Understanding anomalous vortex behavior

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- oscillatory (periodic) behavior characterized by oppositely ‘charged’ vortex pairs either
 - nucleating inside the sample and then exiting on opposite sides
 or
 - entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.
- Vortex emergence even with zero magnetic field:
 “Kinematic vortices”
Goal: Understanding anomalous vortex behavior

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- oscillatory (periodic) behavior characterized by oppositely ‘charged’ vortex pairs either
 - nucleating inside the sample and then exiting on opposite sides or
 - entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.
- Vortex emergence even with zero magnetic field: “Kinematic vortices”

Andronov, Gordion, Kurin, Nefedov, Shereshevsky ’93, Berdiyorov, Elmurodov, Peeters, Vodolazov, Milosevic ’09, Du ’03
Ginzburg-Landau formulation of problem

\[\psi_t + i\phi \psi = (\nabla - ihA_0)^2 \psi + (\Gamma - |\psi|^2)\psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0, \]
\[\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \psi \nabla \psi^* - \psi^* \nabla \psi \} - |\psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0, \]

where \(\mathcal{R} = [-L, L] \times [-K, K], \ A_0 = (-y, 0) \) and \(\Gamma > 0 \) prop. to \(T_c - T \).
Ginzburg-Landau formulation of problem

\[\Psi_t + i \phi \Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2)\Psi \] for \((x, y) \in \mathcal{R}, \ t > 0,\)

\[\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \Psi \nabla \Psi^* - \Psi^* \nabla \Psi \} - |\Psi|^2 hA_0 \right) \] for \((x, y) \in \mathcal{R}, \ t > 0,\)

where \(\mathcal{R} = [-L, L] \times [-K, K],\ A_0 = (-y, 0)\) and \(\Gamma > 0\) prop. to \(T_c - T.\)

Note that we can view \(\phi\) as \(\phi[\Psi].\)
Ginzburg-Landau formulation of problem

\[
\Psi_t + i\phi \Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2)\Psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
\]

\[
\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{\Psi \nabla \Psi^* - \Psi^* \nabla \Psi\} - |\Psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
\]

where \(\mathcal{R} = [-L, L] \times [-K, K], \ A_0 = (-y, 0) \) and \(\Gamma > 0 \) prop. to \(T_c - T \).

Note that we can view \(\phi \) as \(\phi[\Psi] \).

Boundary conditions for \(\Psi \):

\[
\Psi(\pm L, y, t) = 0 \text{ for } |y| < \delta,
\]

\[
(\nabla - ihA_0) \Psi \cdot \mathbf{n} = 0 \text{ elsewhere on } \partial \mathcal{R}.
\]
Ginzburg-Landau formulation of problem

\[\psi_t + i \phi \psi = (\nabla - ihA_0)^2 \psi + (\Gamma - |\psi|^2)\psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0, \]

\[\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \psi \nabla \psi^* - \psi^* \nabla \psi \} - |\psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0, \]

where \(\mathcal{R} = [-L, L] \times [-K, K] \), \(A_0 = (-y, 0) \) and \(\Gamma > 0 \) prop. to \(T_c - T \).

Note that we can view \(\phi \) as \(\phi[\psi] \).

Boundary conditions for \(\psi \):

\[\psi(\pm L, y, t) = 0 \text{ for } |y| < \delta, \]

\[(\nabla - ihA_0) \psi \cdot n = 0 \text{ elsewhere on } \partial \mathcal{R}. \]

Boundary conditions for \(\phi \):

\[\phi_x(\pm L, y, t) = \begin{cases} -1 & \text{for } |y| < \delta, \\ 0 & \text{for } \delta < |y| < K, \end{cases} \]

\[\phi_y(x, \pm K, t) = 0 \text{ for } |x| \leq L. \]
Rigorous bifurcation from normal state

Normal State: At high temp. (Γ small) and/or large magnetic field or electric current, expect to see no superconductivity:

\[\Psi \equiv 0, \quad \phi = I \phi^0 \]

where

\[\Delta \phi^0 = 0 \quad \text{in } \mathcal{R}, \]

\[\phi^0_x(\pm L, y) = \begin{cases}
-1 & \text{for } |y| < \delta, \\
0 & \text{for } \delta < |y| < K,
\end{cases} \]

\[\phi^0_y(x, \pm K) = 0 \quad \text{for } |x| \leq L. \]
Rigorous bifurcation from normal state

Normal State: At high temp. (Γ small) and/or large magnetic field or electric current, expect to see no superconductivity:

\[\Psi \equiv 0, \quad \phi = I \phi^0 \]

where

\[\Delta \phi^0 = 0 \quad \text{in } \mathcal{R}, \]

\[\phi^0_x(\pm L, y) = \begin{cases} -1 & \text{for } |y| < \delta, \\ 0 & \text{for } \delta < |y| < K, \end{cases} \]

\[\phi^0_y(x, \pm K) = 0 \quad \text{for } |x| \leq L. \]

Note: One easily checks that \(\phi^0 \) is odd in \(x \) and even in \(y \):

\[\phi^0(-x, y) = -\phi^0(x, y) \quad \text{and} \quad \phi^0(x, -y) = \phi^0(x, y). \]
Linearization about Normal State:

\[\psi_t = \mathcal{L}[\psi] + \Gamma \psi \quad \text{in } \mathcal{R}, \]

where

\[\mathcal{L}[\psi] := (\nabla - i\hbar A_0)^2 \psi - i\Im \phi^0 \psi. \]

subject to boundary conditions

\[\psi(\pm L, y, t) = 0 \text{ for } |y| < \delta, \]

\[(\nabla - i\hbar A_0) \psi \cdot \mathbf{n} = 0 \quad \text{elsewhere on } \partial \mathcal{R}, \]

\[\mathcal{L} = \text{Imaginary perturbation of (self-adjoint) magnetic Schrödinger operator}. \]
Spectral Properties of \mathcal{L}

Note that \mathcal{L}, and hence its spectrum, depend on L, K, δ, h and I.
Spectral Properties of \mathcal{L}

Note that \mathcal{L}, and hence its spectrum, depend on L, K, δ, h and I.

- Spectrum of \mathcal{L} consists only of point spectrum:

$$\mathcal{L}[u_j] = -\lambda_j u_j \quad \text{in } \mathcal{R} \quad \text{+ boundary cond.'s, } j = 1, 2, \ldots$$

with $0 < \Re \lambda_1 \leq \Re \lambda_2 \leq \ldots$, and $|\Im \lambda_j| < \|\phi^0\|_{L^\infty} I$
Spectral Properties of \mathcal{L}

Note that \mathcal{L}, and hence its spectrum, depend on L, K, δ, h and I.

- Spectrum of \mathcal{L} consists only of point spectrum:

 $$\mathcal{L}[u_j] = -\lambda_j u_j \quad \text{in } \mathcal{R} \quad + \quad \text{boundary cond.'s, } j = 1, 2, \ldots$$

 with $0 < \text{Re} \lambda_1 \leq \text{Re} \lambda_2 \leq \ldots$, and $|\text{Im} \lambda_j| < \|\phi^0\|_{L^\infty} I$

- **PT-Symmetry**: \mathcal{L} invariant under the combined operations of $x \rightarrow -x$ and complex conjugation \ast.
Spectral Properties of \mathcal{L}

Note that \mathcal{L}, and hence its spectrum, depend on L, K, δ, h and I.

- Spectrum of \mathcal{L} consists only of point spectrum:

$$\mathcal{L}[u_j] = -\lambda_j u_j \quad \text{in } \mathcal{R} \quad \text{+ boundary cond.'s, } j = 1, 2, \ldots$$

with $0 < \text{Re} \lambda_1 \leq \text{Re} \lambda_2 \leq \ldots$, and $|\text{Im} \lambda_j| < \|\phi^0\|_{L^\infty} I$

- **PT-Symmetry**: \mathcal{L} invariant under the combined operations of $x \rightarrow -x$ and complex conjugation \ast.

Hence, if (λ_j, u_j) is an eigenpair then so is $(\lambda_j^\ast, u_j^\dagger)$ where

$$u_j^\dagger(x, y) := u_j^\ast(-x, y).$$

If λ_j is real, then $u_j = u_j^\dagger$, and indeed each λ_j is real for I small.
Collisions of first 4 eigenvalues for $L = 1$, $K = 2/3$, $\delta = 1/6$, $h = 0$.
Tuning the temperature to capture bifurcation

From now on, fix $I > I_c$ so that $\text{Im} \lambda_1 \neq 0$.
Tuning the temperature to capture bifurcation

From now on, fix $I > I_c$ so that $\text{Im} \lambda_1 \neq 0$.

Going back to linearized problem

$$\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},$$

we see that once Γ exceeds $\text{Re} \lambda_1$, normal state loses stability.
Tuning the temperature to capture bifurcation

From now on, fix $I > I_c$ so that $\text{Im} \lambda_1 \neq 0$.

Going back to linearized problem

$$\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},$$

we see that once Γ exceeds $\text{Re} \lambda_1$, normal state loses stability.

Set $\mathcal{L}_1 := \mathcal{L} + \text{Re} \lambda_1$, so that bottom of spectrum of \mathcal{L}_1 consists of purely imaginary eigenvalues:

$$\pm \text{Im} \lambda_1 i,$$

followed by eigenvalues having negative real part.
Tuning the temperature to capture bifurcation

From now on, fix $I > I_c$ so that $\text{Im} \lambda_1 \neq 0$.

Going back to linearized problem

$$\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},$$

we see that once Γ exceeds $\text{Re} \lambda_1$, normal state loses stability.

Set $\mathcal{L}_1 := \mathcal{L} + \text{Re} \lambda_1$, so that bottom of spectrum of \mathcal{L}_1 consists of purely imaginary eigenvalues:

$$\pm \text{Im} \lambda_1 i,$$

followed by eigenvalues having negative real part.

To capture this (Hopf) bifurcation we take

$$\Gamma = \text{Re} \lambda_1 + \varepsilon \quad \text{for } 0 < \varepsilon \ll 1.$$
Formulation as a single nonlocal PDE:

With the choice $\Gamma = \text{Re} \lambda_1 + \varepsilon$ for $0 < \varepsilon \ll 1$, full problem then takes the form of a single nonlinear, nonlocal PDE:

$$\Psi_t = \mathcal{L}_1[\Psi] + \varepsilon \Psi + \mathcal{N}(\Psi),$$

where

$$\mathcal{N}(\Psi) := -|\Psi|^2 \Psi - i\tilde{\phi}[\Psi] \Psi,$$

with $\tilde{\phi} = \tilde{\phi}[\Psi]$ solving

$$\Delta \tilde{\phi} = \nabla \cdot \left(\frac{i}{2} \{\Psi \nabla \Psi^* - \Psi^* \nabla \Psi\} - |\Psi|^2 hA_0 \right) \quad \text{in } \mathcal{R}$$

along with homogeneous boundary conditions on Ψ and $\tilde{\phi}$.
There exists a value $\varepsilon_0 > 0$ such that for all positive $\varepsilon < \varepsilon_0$, the system undergoes a supercritical Hopf bifurcation to a periodic state $(\psi_\varepsilon, \phi_\varepsilon)$.

One has the estimate

$$\|\psi_\varepsilon - \left(a^\varepsilon(t)u_1 + a^\varepsilon(t)^* u_1^\dagger \right) \|_{H^2(\mathcal{R})} \leq C\varepsilon^{3/2}$$

with

$$a^\varepsilon(t) := C_0\varepsilon^{1/2} e^{-i\chi t} \text{ where } \chi = \text{Im } \lambda_1 + \gamma \varepsilon$$

and C_0 and γ are constants depending on certain integrals of u_1.

Generalization of techniques from 1d problem by J.R., S. and K. Zumbrun.
A key element of the proof: Exploiting PT symmetry on center manifold.

• For each ε small, there exists a graph $\Phi^\varepsilon : S \to H^2(\mathcal{R}; \mathbb{C})$ over center subspace $S := \text{Span}\{u_1, u_2\}$ and complex-valued functions $\alpha_1(t), \alpha_2(t)$ such that (for small initial data) solution to TDGL ψ_ε describable as

$$\psi_\varepsilon(t) = \Phi^\varepsilon (\alpha_1(t)u_1 + \alpha_2(t)u_2).$$
A key element of the proof: Exploiting PT symmetry on center manifold.

• For each \(\varepsilon \) small, there exists a graph \(\Phi^\varepsilon : S \rightarrow H^2(\mathcal{R}; \mathbb{C}) \) over center subspace \(S := \text{Span}\{u_1, u_2\} \) and complex-valued functions \(\alpha_1(t), \alpha_2(t) \) such that (for small initial data) solution to TDGL \(\psi_\varepsilon \) describable as

\[
\psi_\varepsilon(t) = \Phi^\varepsilon (\alpha_1(t)u_1 + \alpha_2(t)u_2).
\]

• Projection onto \(S \) leads to dynamical system for \(\alpha_1 \) and \(\alpha_2 \). Four real equations in four unknowns.
A key element of the proof: Exploiting PT symmetry on center manifold.

- For each ε small, there exists a graph $\Phi^\varepsilon : S \to H^2(\mathcal{R}; \mathbb{C})$ over center subspace $S := \text{Span}\{u_1, u_2\}$ and complex-valued functions $\alpha_1(t), \alpha_2(t)$ such that (for small initial data) solution to TDGL ψ^ε describable as

$$\psi^\varepsilon(t) = \Phi^\varepsilon (\alpha_1(t)u_1 + \alpha_2(t)u_2).$$

- Projection onto S leads to dynamical system for α_1 and α_2. Four real equations in four unknowns.
- One proves exponential attraction to PT-symmetric subset of center manifold.

$$\alpha_1(t)u_1 + \alpha_2(t)u_2 = (\alpha_1(t)u_1 + \alpha_2(t)u_2)^\dagger \iff \alpha_2 = \alpha_1^*.$$

Easy system for α_1—explicitly solvable.
A kinematic vortex motion law

According to theorem, the leading order term \((O(\varepsilon^{1/2}))\) is:

\[
\psi = a^\varepsilon(t)u_1 + a^\varepsilon(t)^*u_1^\dagger \quad \text{with} \quad a^\varepsilon(t) = C_0 \varepsilon^{1/2} e^{-i \chi t}.
\]

Focusing our attention along the center line \(x = 0\) and writing

\[
u_1(0, y) = |u_1(0, y)| e^{i\beta(y)} \quad \text{for some phase} \ \beta(y)
\]

we find that

\[
\psi(0, y, t) = 2C_0 \varepsilon^{1/2} |u_1(0, y)| \cos (\beta(y) - \chi t).
\]

Hence, the order parameter vanishes on the center line \(x = 0\) whenever the equation

\[
\chi t = \beta(y) + \pi/2 + n\pi, \quad n = 0, \pm 1, \pm 2, \ldots
\]

is satisfied. Recall that \(\chi = \text{Im} \lambda_1 + o(1)\).
Using shape of \(\beta \) to explain anomalous vortex behavior

Case 1: No magnetic field, \(h = 0 \). Recall that \(\beta = \text{phase of} \ u_1(0, y) \). Numerical computations reveal sensitive dependence on \(I \).

Here \(L = 1, K = 2/3, \delta = 4/15 \). Note symmetry of \(\beta \).
Case 2: Graphs of β when magnetic field present: $h > 0$.

Symmetry broken so vortices enter/exit boundaries $y = K$ and $y = -K$ at different times. Here we have taken $h = 0.05$.
Remarks on numerical experiments

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

\[\nabla - i h A_0 \frac{d^2}{d x^2} - i I \phi_0 u_1 = -\lambda_1 u_1 \]
Remarks on numerical experiments

- When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

- As h increases, many new effects:
 (i) vortices enter/exit the top and bottom at different times.

\[
\begin{align*}
\nabla - i h A_0 \nabla^2 u_1 - i I \phi_0 u_1 &= -\lambda_1 u_1 \\
\end{align*}
\]
Remarks on numerical experiments

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

• As h increases, many new effects:
 (i) vortices enter/exit the top and bottom at different times.
 (ii) some vortices move along and then slightly off center line
 (in a periodic manner)
Remarks on numerical experiments

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

• As h increases, many new effects:
 (i) vortices enter/exit the top and bottom at different times.
 (ii) some vortices move along and then slightly off center line (in a periodic manner)
 (iii) ‘magnetic vortices’ appear far from center line, presumably associated with vortices of ground-state u_1 of perturbed magnetic Schrödinger operator

\[
(\nabla - i h A_0)^2 u_1 - i \phi^0 u_1 = -\lambda_1 u_1
\]
Conclusions

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.
Conclusions

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of ‘kinematic vortices’ moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both ‘magnetic vortices’ off the center line and ‘kinematic vortices’ on or near the center line.

• What happens deep in the nonlinear regime? (No longer small amplitude)
Conclusions

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of ‘kinematic vortices’ moving along the center line \(x = 0 \) traced to PT symmetry and nature of first eigenfunction \(u_1 \) of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of \(u_1(0, y) \) on the value of applied current \(I \).
Conclusions

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of ‘kinematic vortices’ moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both ‘magnetic vortices’ off the center line and ‘kinematic vortices’ on or near the center line.
Conclusions

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of ‘kinematic vortices’ moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both ‘magnetic vortices’ off the center line and ‘kinematic vortices’ on or near the center line.

• What happens deep in the nonlinear regime? (No longer small amplitude)