

Singularities of the L^2 curvature flow

Jeffrey Streets

April 2014

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle.

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle. Let A denote a connection 1-form on P , and let

$$F_A := dA + A \wedge A \in \Lambda^2(P, \mathfrak{g})$$

denote the curvature of A .

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle. Let A denote a connection 1-form on P , and let

$$F_A := dA + A \wedge A \in \Lambda^2(P, \mathfrak{g})$$

denote the curvature of A . Combining g with an Ad -invariant inner product on \mathfrak{g} we define the **Yang-Mills energy**

$$\mathcal{YM}(A) := \int_M |F_A|^2 dV_g.$$

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle. Let A denote a connection 1-form on P , and let

$$F_A := dA + A \wedge A \in \Lambda^2(P, \mathfrak{g})$$

denote the curvature of A . Combining g with an Ad -invariant inner product on \mathfrak{g} we define the **Yang-Mills energy**

$$\mathcal{YM}(A) := \int_M |F_A|^2 dV_g.$$

A connection A is a critical point for \mathcal{YM} , called a **Yang-Mills connection**, if

$$D_A^* F_A = 0.$$

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle. Let A denote a connection 1-form on P , and let

$$F_A := dA + A \wedge A \in \Lambda^2(P, \mathfrak{g})$$

denote the curvature of A . Combining g with an Ad -invariant inner product on \mathfrak{g} we define the **Yang-Mills energy**

$$\mathcal{YM}(A) := \int_M |F_A|^2 dV_g.$$

A connection A is a critical point for \mathcal{YM} , called a **Yang-Mills connection**, if

$$D_A^* F_A = 0.$$

Combining with the Bianchi identity, this is a **second-order, semilinear elliptic equation** for the connection A .

Yang-Mills Energy

Let G be a compact semisimple Lie group, and let $G \rightarrow P \rightarrow (M^n, g)$ be a principal G -bundle. Let A denote a connection 1-form on P , and let

$$F_A := dA + A \wedge A \in \Lambda^2(P, \mathfrak{g})$$

denote the curvature of A . Combining g with an Ad -invariant inner product on \mathfrak{g} we define the **Yang-Mills energy**

$$\mathcal{YM}(A) := \int_M |F_A|^2 dV_g.$$

A connection A is a critical point for \mathcal{YM} , called a **Yang-Mills connection**, if

$$D_A^* F_A = 0.$$

Combining with the Bianchi identity, this is a **second-order, semilinear elliptic equation** for the connection A .

Yang-Mills connections are natural candidates to consider as “optimal” connections on P , and their study has played a central role in various physical, geometric, and topological theories, especially in **dimension $n = 4$** .

Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita connection of a Riemannian metric?

Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita connection of a Riemannian metric? Fix a compact smooth manifold M , and consider the functional of Riemannian metrics

$$\mathcal{F}(g) := \mathcal{YM}(\nabla^g) = \int_M |\text{Rm}_g|_g^2 dV_g.$$

Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita connection of a Riemannian metric? Fix a compact smooth manifold M , and consider the functional of Riemannian metrics

$$\mathcal{F}(g) := \mathcal{YM}(\nabla^g) = \int_M |\text{Rm}_g|^2_g dV_g.$$

A metric g is a critical point for \mathcal{F} , and called a **critical metric**, if and only if

$$0 = \text{grad } \mathcal{F} = \delta d \text{Rc} - \check{R} + \frac{1}{4} |\text{Rm}|^2 g.$$

Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita connection of a Riemannian metric? Fix a compact smooth manifold M , and consider the functional of Riemannian metrics

$$\mathcal{F}(g) := \mathcal{YM}(\nabla^g) = \int_M |\text{Rm}_g|^2_g dV_g.$$

A metric g is a critical point for \mathcal{F} , and called a **critical metric**, if and only if

$$0 = \text{grad } \mathcal{F} = \delta d \text{Rc} - \check{R} + \frac{1}{4} |\text{Rm}|^2 g.$$

This is a **fourth-order, quasilinear, degenerate elliptic equation** for g .

Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita connection of a Riemannian metric? Fix a compact smooth manifold M , and consider the functional of Riemannian metrics

$$\mathcal{F}(g) := \mathcal{YM}(\nabla^g) = \int_M |\text{Rm}_g|^2_g dV_g.$$

A metric g is a critical point for \mathcal{F} , and called a **critical metric**, if and only if

$$0 = \text{grad } \mathcal{F} = \delta d \text{Rc} - \check{R} + \frac{1}{4} |\text{Rm}|^2 g.$$

This is a **fourth-order, quasilinear, degenerate elliptic equation** for g .

From a Lagrangian-theoretic standpoint, critical metrics are natural choices of “best metrics” on smooth manifolds, especially in **dimension 4**, which is the **scale-invariant** dimension for \mathcal{F} .

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = - D_A^* F_A.$$

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = - D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A .

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = - D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A . Short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = -D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A . Short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Likewise, a natural tool for constructing critical metrics is to consider the negative gradient flow of \mathcal{YM} , known as the **L^2 flow**:

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = -D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A . Short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Likewise, a natural tool for constructing critical metrics is to consider the negative gradient flow of \mathcal{YM} , known as the **L^2 flow**:

$$\frac{\partial}{\partial t} g = -\text{grad } \mathcal{F} = -\delta d \text{Rc} + \check{R} - \frac{1}{4} |\text{Rm}|^2 g.$$

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = -D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A . Short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Likewise, a natural tool for constructing critical metrics is to consider the negative gradient flow of \mathcal{YM} , known as the **L^2 flow**:

$$\frac{\partial}{\partial t} g = -\text{grad } \mathcal{F} = -\delta d \text{Rc} + \check{R} - \frac{1}{4} |\text{Rm}|^2 g.$$

This is a **fourth-order, quasilinear, degenerate parabolic equation** for g . Again, short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative gradient flow of \mathcal{YM} , known as **Yang-Mills flow**:

$$\frac{\partial A}{\partial t} = -D_A^* F_A.$$

This is a **second order, semilinear, degenerate parabolic equation** for A . Short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Likewise, a natural tool for constructing critical metrics is to consider the negative gradient flow of \mathcal{YM} , known as the **L^2 flow**:

$$\frac{\partial}{\partial t} g = -\text{grad } \mathcal{F} = -\delta d \text{Rc} + \check{R} - \frac{1}{4} |\text{Rm}|^2 g.$$

This is a **fourth-order, quasilinear, degenerate parabolic equation** for g . Again, short-time existence for arbitrary initial data follows via the **gauge-fixing method**.

Conjecturally, the long time behavior of both flows is governed by the principle of **dimensional criticality**.

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical".

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2		
3		
4, "Low energy"		
4, "High energy"		
≥ 5		

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"		
4, "High energy"		
≥ 5		

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	
4, "High energy"		
≥ 5		

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	
4, "High energy"	(Struwe '94) "Bubbling"	
≥ 5		

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	
4, "High energy"	(Struwe '94) "Bubbling"	
≥ 5	(Grotowski 2001) Finite time blowup	

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	(_____, 2009) LTE
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	
4, "High energy"	(Struwe '94) "Bubbling"	
≥ 5	(Grotowski 2001) Finite time blowup	

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	(_____, 2009) LTE
3	(Rade '92): LTE, Conv. to YM	
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	
4, "High energy"	(Struwe '94) "Bubbling"	
≥ 5	(Grotowski 2001) Finite time blowup	Finite time blowup

Long time existence properties

Both functionals \mathcal{YM} and \mathcal{F} obey scaling laws which render dimensions $n \leq 3$ "subcritical", dimension $n = 4$ "critical", and dimension $n \geq 5$ "supercritical". The long time existence behavior of the corresponding gradient flows reflects this principle.

n	YM Flow	L^2 Flow
2	(Rade '92): LTE, Conv. to YM	(_____, 2009) LTE
3	(Rade '92): LTE, Conv. to YM	?
4, "Low energy"	(Struwe '94) LTE, Conv. to YM	?
4, "High energy"	(Struwe '94) "Bubbling"	?
≥ 5	(Grotowski 2001) Finite time blowup	Finite time blowup

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

For Ricci flow, the corresponding statement is obtained by smoothing estimates which are obtained using the **maximum principle**.

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

For Ricci flow, the corresponding statement is obtained by smoothing estimates which are obtained using the **maximum principle**. In our case, no maximum principle applies, but **global L^2 smoothing estimates** can be obtained using a curvature bound.

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

For Ricci flow, the corresponding statement is obtained by smoothing estimates which are obtained using the **maximum principle**. In our case, no maximum principle applies, but **global L^2 smoothing estimates** can be obtained using a curvature bound. To convert these to the required pointwise bounds requires control over the **Sobolev constant**.

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

For Ricci flow, the corresponding statement is obtained by smoothing estimates which are obtained using the **maximum principle**. In our case, no maximum principle applies, but **global L^2 smoothing estimates** can be obtained using a curvature bound. To convert these to the required pointwise bounds requires control over the **Sobolev constant**. However, a curvature bound alone does not control the metric in C^0 , and so there is no obvious Sobolev constant estimate.

Preliminary results on singularity formation

Theorem

(____ 2012) Let (M^n, g_t) be a solution to the L^2 flow which exists on a maximal time interval $[0, T)$, $T < \infty$. Then

$$\limsup_{t \rightarrow T} |\text{Rm}| = \infty.$$

For Ricci flow, the corresponding statement is obtained by smoothing estimates which are obtained using the **maximum principle**. In our case, no maximum principle applies, but **global L^2 smoothing estimates** can be obtained using a curvature bound. To convert these to the required pointwise bounds requires control over the **Sobolev constant**. However, a curvature bound alone does not control the metric in C^0 , and so there is no obvious Sobolev constant estimate. This difficulty can be overcome using a combination of local covering arguments and blowup/compactness arguments.

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

For the L^2 flow, the story is quite different.

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

For the L^2 flow, the story is quite different. First of all, finite time singularities of the L^2 flow in subcritical dimensions, **if they occur at all**,

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

For the L^2 flow, the story is quite different. First of all, finite time singularities of the L^2 flow in subcritical dimensions, **if they occur at all**, must be collapsed at the scale of maximum curvature:

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

For the L^2 flow, the story is quite different. First of all, finite time singularities of the L^2 flow in subcritical dimensions, **if they occur at all**, must be collapsed at the scale of maximum curvature:

Proposition

Let $(M^n, g(t))$ be a solution to the L^2 flow, $n = 2, 3$. Suppose $g(t)$ exists on a maximal time interval $[0, T)$, $T < \infty$. Let $\{(x_i, t_i)\}$ be a sequence of points such that $t_i \rightarrow T$ and $|\text{Rm}|(x_i, t_i) = \sup_{[0, t_i]} |\text{Rm}|$. Then

$$\lim_{i \rightarrow \infty} \text{inj}_g^2(x_i) |\text{Rm}|(x_i) = 0.$$

Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of **local collapse**.

Perelman's crucial **no local collapsing theorem** allows for the construction of blowup limits of Ricci flow solutions **which don't drop dimension** as it provides an **injectivity radius estimate on the scale of curvature**.

For the L^2 flow, the story is quite different. First of all, finite time singularities of the L^2 flow in subcritical dimensions, **if they occur at all**, must be collapsed at the scale of maximum curvature:

Proposition

Let $(M^n, g(t))$ be a solution to the L^2 flow, $n = 2, 3$. Suppose $g(t)$ exists on a maximal time interval $[0, T)$, $T < \infty$. Let $\{(x_i, t_i)\}$ be a sequence of points such that $t_i \rightarrow T$ and $|\text{Rm}|(x_i, t_i) = \sup_{[0, t_i]} |\text{Rm}|$. Then

$$\lim_{i \rightarrow \infty} \text{inj}_g^2(x_i) |\text{Rm}|(x_i) = 0.$$

Moreover, for $n \geq 6$, local collapse actually occurs, as evidenced by homogeneous metrics on $S^5 \times S^1$.

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different)** in dimension $n \geq 5$.

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different) in dimension $n \geq 5$** .

Perelman achieved many nice estimates on the nature of local collapse via the introduction of various **monotonic quantities** for Ricci flow (energy, entropy, reduced length, etc.)

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different) in dimension $n \geq 5$** .

Perelman achieved many nice estimates on the nature of local collapse via the introduction of various **monotonic quantities** for Ricci flow (energy, entropy, reduced length, etc.) It does not seem that Perelman-type monotonic quantities exist for the L^2 flow.

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different) in dimension $n \geq 5$** .

Perelman achieved many nice estimates on the nature of local collapse via the introduction of various **monotonic quantities** for Ricci flow (energy, entropy, reduced length, etc.) It does not seem that Perelman-type monotonic quantities exist for the L^2 flow.

In the rest of the talk I will describe a **new, dimension-dependent technique** for controlling the local collapsing along the L^2 flow,

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different) in dimension $n \geq 5$** .

Perelman achieved many nice estimates on the nature of local collapse via the introduction of various **monotonic quantities** for Ricci flow (energy, entropy, reduced length, etc.) It does not seem that Perelman-type monotonic quantities exist for the L^2 flow.

In the rest of the talk I will describe a **new, dimension-dependent technique** for controlling the local collapsing along the L^2 flow, which yields **new structure theorems for finite time singularities**,

Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to obtaining more precise statements about the nature of singularities of the L^2 flow is a **better understanding of local collapsing**.

Note that any technique we come up with should **fail (or be significantly different) in dimension $n \geq 5$** .

Perelman achieved many nice estimates on the nature of local collapse via the introduction of various **monotonic quantities** for Ricci flow (energy, entropy, reduced length, etc.) It does not seem that Perelman-type monotonic quantities exist for the L^2 flow.

In the rest of the talk I will describe a **new, dimension-dependent technique** for controlling the local collapsing along the L^2 flow, which yields **new structure theorems for finite time singularities**, as well as **new compactness/diffeomorphism-finiteness results in Riemannian geometry**.

Singularity Decompositions

We show that in dimension $n = 3$, any point of curvature blowup is eventually arbitrarily close to arbitrarily collapsed points. The set $\mathcal{T}_\mu(g_t)$ is roughly points which are μ -collapsed on the scale of curvature.

Theorem (_____ 2013)

Let (M^3, g_0) be a compact manifold, and suppose the solution to the L^2 flow with initial condition g_0 exists on a maximal time interval $[0, T)$, $T < \infty$. Then for any $x \in M$ such that $\limsup_{t \rightarrow T} |\text{Rm}|(x, t) = \infty$ and any $\mu > 0$,

$$\liminf_{t \rightarrow T} d(x, \mathcal{T}_\mu(g_t), t) = 0.$$

Singularity Decompositions

Before stating our result for $n = 4$, let's recall the Struwe "bubbling" statement.

Theorem (Struwe)

"Finite time singularities of the Yang-Mills flow in dimension 4 occur via energy concentration." I.e., if T denotes a finite maximal existence time of the Yang-Mills flow, there exist finitely many points $\{x_i\} \in M$ and an $\epsilon > 0$ depending on the given bundle such that for all $R > 0$,

$$\limsup_{t \rightarrow T} \int_{B_R(x_i)} |F|^2 \geq \epsilon.$$

Singularity Decompositions

Before stating our result for $n = 4$, let's recall the Struwe "bubbling" statement.

Theorem (Struwe)

"Finite time singularities of the Yang-Mills flow in dimension 4 occur via energy concentration." I.e., if T denotes a finite maximal existence time of the Yang-Mills flow, there exist finitely many points $\{x_i\} \in M$ and an $\epsilon > 0$ depending on the given bundle such that for all $R > 0$,

$$\limsup_{t \rightarrow T} \int_{B_R(x_i)} |F|^2 \geq \epsilon.$$

Note that it is **still an open question if these finite time singularities actually occur.**

Singularity Decompositions

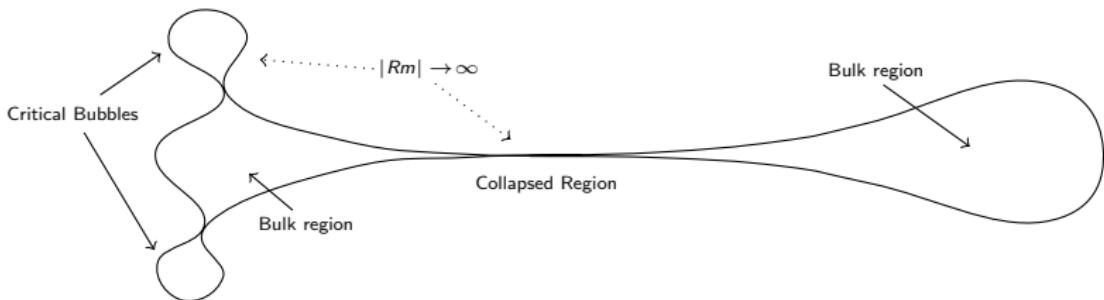
Theorem (_____ 2013)

(Concentration-Collapse Decomposition) For any $E, \mu > 0$ there exists $\epsilon(E, \mu) > 0$ so that if (M^4, g_t) is a solution to the L^2 flow satisfying

$$\mathcal{F}(g_0) \leq E,$$

then for any $T \in \mathbb{R}_{\geq 0} \cup \{\infty\}$, and any $x \in M$ such that $\limsup_{t \rightarrow T} |\text{Rm}|(x, t) = \infty$, we have either:

1. For all $r > 0$, $\limsup_{t \rightarrow T} \int_{B_r(x, t)} |\text{Rm}|^2 \geq \epsilon$,
2. $\liminf_{t \rightarrow T} d(x, T_\mu(g_t), t) = 0$.



Smoothing Result

Definition

Let (M^n, g) be a Riemannian manifold. Fix $0 < \delta < 1$, and let ω_n denote the volume of the unit n -ball in \mathbb{R}^n . Given $x \in M$, define the δ -volume radius at x to be

$$r_\delta(x) := \sup \left\{ r \geq 0 \mid \forall s \leq r, \frac{\text{Vol } B_s(x)}{s^n} \geq \delta \omega_n \right\}.$$

Smoothing Result

Definition

Let (M^n, g) be a Riemannian manifold. Fix $0 < \delta < 1$, and let ω_n denote the volume of the unit n -ball in \mathbb{R}^n . Given $x \in M$, define the δ -volume radius at x to be

$$r_\delta(x) := \sup \left\{ r \geq 0 \mid \forall s \leq r, \frac{\text{Vol } B_s(x)}{s^n} \geq \delta \omega_n \right\}.$$

Theorem (_____ 2013)

Given $0 < \delta < 1$, there exists $\epsilon, \iota, A > 0$ depending only on δ so that if (M^4, g) is a compact Riemannian manifold satisfying

1. $r_\delta \geq \rho$,
2. $\mathcal{F}(g) \leq \epsilon$,

the L^2 flow with initial condition g exists on $[0, \rho^4]$ and moreover satisfies the estimates

1. $|\text{Rm}|_{g_t} \leq A \mathcal{F}^{\frac{1}{6}}(g_t) t^{-\frac{1}{2}}$,
2. $\text{inj}_{g_t} \geq \iota t^{\frac{1}{4}}$,

Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem

(Gao, Anderson, Anderson-Cheeger) Given $V, D, H > 0$ there exists $\epsilon = \epsilon(V, D, H)$ so that if (M^4, g) is a compact Riemannian manifold satisfying:

1. $|\mathrm{Rc}| \leq H$
2. $\mathrm{diam} \leq D$
3. $\mathrm{Vol} \geq V$,
4. $\int_M |\mathrm{Rm}|^2 \leq \epsilon$,

then M admits a flat metric.

Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem

(Gao, Anderson, Anderson-Cheeger) Given $V, D, H > 0$ there exists $\epsilon = \epsilon(V, D, H)$ so that if (M^4, g) is a compact Riemannian manifold satisfying:

1. $|\text{Rc}| \leq H$
2. $\text{diam} \leq D$
3. $\text{Vol} \geq V$,
4. $\int_M |\text{Rm}|^2 \leq \epsilon$,

then M admits a flat metric.

Also, many works of Petersen-Wei, Dai-Petersen-Wei, Yang try to replace the pointwise Ricci curvature bound with an L^p Ricci curvature bound, $p > 2$.

Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem

(Gao, Anderson, Anderson-Cheeger) Given $V, D, H > 0$ there exists $\epsilon = \epsilon(V, D, H)$ so that if (M^4, g) is a compact Riemannian manifold satisfying:

1. $|\text{Rc}| \leq H$
2. $\text{diam} \leq D$
3. $\text{Vol} \geq V$,
4. $\int_M |\text{Rm}|^2 \leq \epsilon$,

then M admits a flat metric.

Also, many works of Petersen-Wei, Dai-Petersen-Wei, Yang try to replace the pointwise Ricci curvature bound with an L^p Ricci curvature bound, $p > 2$.

These results all rely, implicitly or explicitly, on smoothing properties for second order elliptic or parabolic PDE (Ricci flow), usually through the technique of **Moser iteration**, which requires a “supercritical” estimate to work.

Corollaries on compactness and diffeofiniteness

Corollary (_____ 2013)

Given $0 < \delta < 1$ and $\rho, V > 0$ there exists $\epsilon = \epsilon(\delta, \rho, V) > 0$ such that given (M^4, g) a compact Riemannian manifold satisfying

1. $\text{Vol} \leq V$,
2. $r_\delta \geq \rho$,
3. $\mathcal{F}(g) \leq \epsilon$,

then the solution to the L^2 flow with initial condition g exists for all time and converges exponentially to a flat metric.

Corollaries on compactness and diffeofiniteness

Corollary (_____ 2013)

Given $0 < \delta < 1$ and $\rho, V > 0$ there exists $\epsilon = \epsilon(\delta, \rho, V) > 0$ such that given (M^4, g) a compact Riemannian manifold satisfying

1. $\text{Vol} \leq V$,
2. $r_\delta \geq \rho$,
3. $\mathcal{F}(g) \leq \epsilon$,

then the solution to the L^2 flow with initial condition g exists for all time and converges exponentially to a flat metric.

Corollary (_____ 2013)

Given $A, V > 0$ there exists $\epsilon = \epsilon(A, V) > 0$ so that if (M^4, g) is a compact Riemannian four-manifold satisfying

1. $\text{Vol} \leq V$,
2. $C_S \leq A$,
3. $\mathcal{F}(g) \leq \epsilon$,

then the solution to the L^2 flow with initial condition g exists for all time and converges exponentially to a flat metric.

Corollaries on compactness and diffeofiniteness

Corollary (_____ 2013)

Given $0 < \delta < 1$, there exists $\epsilon(\delta) > 0$ so that for any $\rho, V > 0$, there are only finitely many diffeomorphism types of compact Riemannian manifolds (M^4, g) satisfying

1. $\text{Vol} \leq V$,
2. $r_\delta \geq \rho$,
3. $\mathcal{F}(g) \leq \epsilon$.

Corollaries on compactness and diffeofiniteness

Corollary (_____ 2013)

Given $0 < \delta < 1$, there exists $\epsilon(\delta) > 0$ so that for any $\rho, V > 0$, there are only finitely many diffeomorphism types of compact Riemannian manifolds (M^4, g) satisfying

1. $\text{Vol} \leq V$,
2. $r_\delta \geq \rho$,
3. $\mathcal{F}(g) \leq \epsilon$.

Note that the ϵ above is **universal!**

Corollaries on compactness and diffeofiniteness

Corollary (_____ 2013)

Given $0 < \delta < 1$, there exists $\epsilon(\delta) > 0$ so that for any $\rho, V > 0$, there are only finitely many diffeomorphism types of compact Riemannian manifolds (M^4, g) satisfying

1. $\text{Vol} \leq V$,
2. $r_\delta \geq \rho$,
3. $\mathcal{F}(g) \leq \epsilon$.

Note that the ϵ above is **universal!**

Corollary (_____ 2013)

Given $0 < \delta < 1$ and $A > 0$ there exists $\epsilon(\delta, A) > 0$ so that if (M^4, g) is a compact Riemannian manifold satisfying

1. $\mathcal{F}(g) \leq \epsilon$,
2. $\sup_M r_\delta \leq A \inf_M r_\delta$,

M admits an F -structure.

Proof of Smoothing Result

By an overall parabolic rescaling, it suffices to show that if $r_\delta \geq 1$, for ϵ chosen sufficiently small with respect to δ the solution to L^2 flow exists on $[0, 1]$, and satisfies estimates

$$|\mathrm{Rm}|_{g_t} < A\mathcal{F}^{\frac{1}{6}}(g_t)t^{-\frac{1}{2}}, \quad \mathrm{inj}_{g_t} > \iota t^{\frac{1}{4}}.$$

Proof of Smoothing Result

By an overall parabolic rescaling, it suffices to show that if $r_\delta \geq 1$, for ϵ chosen sufficiently small with respect to δ the solution to L^2 flow exists on $[0, 1]$, and satisfies estimates

$$|\mathrm{Rm}|_{g_t} < A\mathcal{F}^{\frac{1}{6}}(g_t)t^{-\frac{1}{2}}, \quad \mathrm{inj}_{g_t} > \iota t^{\frac{1}{4}}.$$

By continuity, these estimates hold on $[0, \epsilon)$.

Proof of Smoothing Result

By an overall parabolic rescaling, it suffices to show that if $r_\delta \geq 1$, for ϵ chosen sufficiently small with respect to δ the solution to L^2 flow exists on $[0, 1]$, and satisfies estimates

$$|\mathrm{Rm}|_{g_t} < A\mathcal{F}^{\frac{1}{6}}(g_t)t^{-\frac{1}{2}}, \quad \mathrm{inj}_{g_t} > \iota t^{\frac{1}{4}}.$$

By continuity, these estimates hold on $[0, \epsilon)$. If they failed to hold on $[0, 1]$, choose the first time τ at which one of the above is an **equality**, and rescale again so that the equality occurs at $[0, 1]$.

Our task is to derive contradictions from either possible equality.

Proof of Smoothing Result

Case I: Curvature inequality fails

Proof of Smoothing Result

Case I: Curvature inequality fails Choose a point $x \in M$ such that

$$|\text{Rm}|(x) = \sup_M |\text{Rm}| = A\mathcal{F}^{\frac{1}{6}}(g_1) =: K \leq 1,$$

Proof of Smoothing Result

Case I: Curvature inequality fails Choose a point $x \in M$ such that

$$|\text{Rm}|(x) = \sup_M |\text{Rm}| = A\mathcal{F}^{\frac{1}{6}}(g_1) =: K \leq 1,$$

Using our previous **Sobolev-constant independent pointwise smoothing results** we obtain a uniform bound on $|\nabla \text{Rm}|$ at time $t = 1$.

Proof of Smoothing Result

Case I: Curvature inequality fails Choose a point $x \in M$ such that

$$|\mathrm{Rm}|(x) = \sup_M |\mathrm{Rm}| = A\mathcal{F}^{\frac{1}{6}}(g_1) =: K \leq 1,$$

Using our previous **Sobolev-constant independent pointwise smoothing results** we obtain a uniform bound on $|\nabla \mathrm{Rm}|$ at time $t = 1$. Thus

$$\inf_{B_{\mu K}} |\mathrm{Rm}| \geq \frac{K}{2}$$

for some small universal μ .

Proof of Smoothing Result

Case I: Curvature inequality fails Choose a point $x \in M$ such that

$$|\mathrm{Rm}|(x) = \sup_M |\mathrm{Rm}| = A\mathcal{F}^{\frac{1}{6}}(g_1) =: K \leq 1,$$

Using our previous **Sobolev-constant independent pointwise smoothing results** we obtain a uniform bound on $|\nabla \mathrm{Rm}|$ at time $t = 1$. Thus

$$\inf_{B_{\mu K}} |\mathrm{Rm}| \geq \frac{K}{2}$$

for some small universal μ . On the other hand, since $K \leq 1$ and $\mathrm{inj} \geq \iota$ we have $\mathrm{Vol} B_{\mu K} \approx cK^4$.

Proof of Smoothing Result

Case I: Curvature inequality fails Choose a point $x \in M$ such that

$$|\mathrm{Rm}|(x) = \sup_M |\mathrm{Rm}| = A\mathcal{F}^{\frac{1}{6}}(g_1) =: K \leq 1,$$

Using our previous **Sobolev-constant independent pointwise smoothing results** we obtain a uniform bound on $|\nabla \mathrm{Rm}|$ at time $t = 1$. Thus

$$\inf_{B_{\mu K}} |\mathrm{Rm}| \geq \frac{K}{2}$$

for some small universal μ . On the other hand, since $K \leq 1$ and $\mathrm{inj} \geq \iota$ we have $\mathrm{Vol} B_{\mu K} \approx cK^4$. Hence

$$\mathcal{F}(g_1) \geq \int_{B_{\mu K}(x)} |\overline{\mathrm{Rm}}|^2 \geq \frac{K^2}{4} \mathrm{Vol}(B_{\mu K}(x_i)) \geq c\mu^4 K^6 = c\mu^4 A^6 \mathcal{F}(g_1) > \mathcal{F}(g_1),$$

a contradiction.

Proof of Smoothing Result

Case II: Injectivity radius inequality fails

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small.

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small. On the other hand, by hypothesis we know that the volume ratio of balls of radius 1 at the initial time is not too small: $r_\delta \geq 1$.

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small. On the other hand, by hypothesis we know that the volume ratio of balls of radius 1 at the initial time is not too small: $r_\delta \geq 1$.

Thus we will obtain a contradiction if we can show that the L^2 flow **does not decrease the volume ratio of metric balls too quickly!**

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small. On the other hand, by hypothesis we know that the volume ratio of balls of radius 1 at the initial time is not too small: $r_\delta \geq 1$.

Thus we will obtain a contradiction if we can show that the L^2 flow **does not decrease the volume ratio of metric balls too quickly!**

Let $U = B_{\frac{1}{2}}(x, g_0)$.

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small. On the other hand, by hypothesis we know that the volume ratio of balls of radius 1 at the initial time is not too small: $r_\delta \geq 1$.

Thus we will obtain a contradiction if we can show that the L^2 flow **does not decrease the volume ratio of metric balls too quickly!**

Let $U = B_{\frac{1}{2}}(x, g_0)$. By construction we have $\text{Vol}_{g_0}(U) \geq \frac{\delta\omega_4}{16}$. We will show two estimates:

1. $\text{Vol}_{g_1}(U) \geq \frac{\delta\omega_4}{32}$
2. $U \subset B_1(x, g_1)$.

Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point $x \in M$ such that

$$\text{inj}_{g_1}(x) = \text{inj}_{g_1} = \iota$$

Recall that, at time $t = 1$, we have $|\text{Rm}| \leq 1$, thus by **Cheeger's Lemma** we obtain that the volume ratio of a ball of unit size will be small if ι is small. On the other hand, by hypothesis we know that the volume ratio of balls of radius 1 at the initial time is not too small: $r_\delta \geq 1$.

Thus we will obtain a contradiction if we can show that the L^2 flow **does not decrease the volume ratio of metric balls too quickly!**

Let $U = B_{\frac{1}{2}}(x, g_0)$. By construction we have $\text{Vol}_{g_0}(U) \geq \frac{\delta\omega_4}{16}$. We will show two estimates:

1. $\text{Vol}_{g_1}(U) \geq \frac{\delta\omega_4}{32}$
2. $U \subset B_1(x, g_1)$.

Together these imply that the volume ratio of unit balls at time $t = 1$ is at least some controlled fraction of δ , which will yield the final contradiction provided ι is chosen small with respect to δ .

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

But the time integral of $\|\text{grad } \mathcal{F}\|_{L^2}^2$ is bounded by the initial energy, which is small, hence this can be directly integrated to yield the required estimate.

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

But the time integral of $\|\text{grad } \mathcal{F}\|_{L^2}^2$ is bounded by the initial energy, which is small, hence this can be directly integrated to yield the required estimate.

Estimate 2: Fix a point $y \in B_{\frac{1}{2}}(x, g_0)$. Fix γ a unit speed minimizing geodesic connecting x to y .

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

But the time integral of $\|\text{grad } \mathcal{F}\|_{L^2}^2$ is bounded by the initial energy, which is small, hence this can be directly integrated to yield the required estimate.

Estimate 2: Fix a point $y \in B_{\frac{1}{2}}(x, g_0)$. Fix γ a unit speed minimizing geodesic connecting x to y . A direct approach is to simply compute the time derivative of the length of this curve:

$$\frac{d}{dt} L(\gamma) = \int_{\gamma} -\text{grad } \mathcal{F}(\dot{\gamma}, \dot{\gamma}) d\sigma \leq \int_{\gamma} |\text{grad } \mathcal{F}| d\sigma.$$

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

But the time integral of $\|\text{grad } \mathcal{F}\|_{L^2}^2$ is bounded by the initial energy, which is small, hence this can be directly integrated to yield the required estimate.

Estimate 2: Fix a point $y \in B_{\frac{1}{2}}(x, g_0)$. Fix γ a unit speed minimizing geodesic connecting x to y . A direct approach is to simply compute the time derivative of the length of this curve:

$$\frac{d}{dt} L(\gamma) = \int_{\gamma} -\text{grad } \mathcal{F}(\dot{\gamma}, \dot{\gamma}) d\sigma \leq \int_{\gamma} |\text{grad } \mathcal{F}| d\sigma.$$

Due to the curvature smoothing, we also have **scale-invariant smoothing of all derivatives of curvature as well**, which take the form:

$$|\nabla^m \text{Rm}| \leq C_m t^{-\frac{2+m}{4}}.$$

Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set U via

$$\frac{d}{dt} \int_U dV_g = \int_U \text{tr}_g \text{grad } \mathcal{F} dV_g \geq -C \|\text{grad } \mathcal{F}\|_{L^2} \text{Vol}_{g_t}(U)^{\frac{1}{2}}.$$

But the time integral of $\|\text{grad } \mathcal{F}\|_{L^2}^2$ is bounded by the initial energy, which is small, hence this can be directly integrated to yield the required estimate.

Estimate 2: Fix a point $y \in B_{\frac{1}{2}}(x, g_0)$. Fix γ a unit speed minimizing geodesic connecting x to y . A direct approach is to simply compute the time derivative of the length of this curve:

$$\frac{d}{dt} L(\gamma) = \int_{\gamma} -\text{grad } \mathcal{F}(\dot{\gamma}, \dot{\gamma}) d\sigma \leq \int_{\gamma} |\text{grad } \mathcal{F}| d\sigma.$$

Due to the curvature smoothing, we also have **scale-invariant smoothing of all derivatives of curvature as well**, which take the form:

$$|\nabla^m \text{Rm}| \leq C_m t^{-\frac{2+m}{4}}.$$

But $\text{grad } \mathcal{F} = \nabla^2 \text{Rm} + \text{Rm}^{*2} \approx t^{-1}$, so this is **not integrable!**

Proof of Smoothing Result

To overcome this crucial obstacle we need to find a way to use our one “supercritical” estimate: the fundamental energy estimate

$$\int_0^t \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g dt = \mathcal{F}(g_0) - \mathcal{F}(g_t) \leq \epsilon.$$

Proof of Smoothing Result

To overcome this crucial obstacle we need to find a way to use our one “supercritical” estimate: the fundamental energy estimate

$$\int_0^t \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g dt = \mathcal{F}(g_0) - \mathcal{F}(g_t) \leq \epsilon.$$

The crucial idea to obtain the required distance estimate is to **replace the integral of $\operatorname{grad} \mathcal{F}$ along a curve by averaging over a tubular neighborhood**.

Proof of Smoothing Result

Now at some time $t \in [0, 1]$, suppose γ admits a disc neighborhood of radius $r_t = Rt^\alpha$.

Proof of Smoothing Result

Now at some time $t \in [0, 1]$, suppose γ admits a disc neighborhood of radius $r_t = Rt^\alpha$. Using the smoothing estimates, for a point $q \in D_{r_t}(p)$ we have

$$|\operatorname{grad} \mathcal{F}|(p) \leq |\operatorname{grad} \mathcal{F}|(q) + CRt^{\alpha - \frac{5}{4}}.$$

Proof of Smoothing Result

Now at some time $t \in [0, 1]$, suppose γ admits a disc neighborhood of radius $r_t = Rt^\alpha$. Using the smoothing estimates, for a point $q \in D_{r_t}(p)$ we have

$$|\operatorname{grad} \mathcal{F}|(p) \leq |\operatorname{grad} \mathcal{F}|(q) + CRt^{\alpha - \frac{5}{4}}.$$

Thus, by averaging over the disc of radius r_t orthogonal to γ , one obtains

$$|\operatorname{grad} \mathcal{F}|(p, t) \leq \operatorname{Area}(D_{r_t}(p))^{-\frac{1}{2}} \left[\int_{D_{r_t}(p)} |\operatorname{grad} \mathcal{F}|^2(q) dA(q) \right]^{\frac{1}{2}} + CRt^{\alpha - \frac{5}{4}}.$$

Proof of Smoothing Result

Now at some time $t \in [0, 1]$, suppose γ admits a disc neighborhood of radius $r_t = Rt^\alpha$. Using the smoothing estimates, for a point $q \in D_{r_t}(p)$ we have

$$|\operatorname{grad} \mathcal{F}|(p) \leq |\operatorname{grad} \mathcal{F}|(q) + CRt^{\alpha - \frac{5}{4}}.$$

Thus, by averaging over the disc of radius r_t orthogonal to γ , one obtains

$$|\operatorname{grad} \mathcal{F}|(p, t) \leq \operatorname{Area}(D_{r_t}(p))^{-\frac{1}{2}} \left[\int_{D_{r_t}(p)} |\operatorname{grad} \mathcal{F}|^2(q) dA(q) \right]^{\frac{1}{2}} + CRt^{\alpha - \frac{5}{4}}.$$

Ideally, provided $r_t \leq \operatorname{inj}_{g_t} \approx t^{\frac{1}{4}}$, one has $\operatorname{Area}(D_{r_t}(p)) \geq r_t^{n-1} \geq C(R)t^{\alpha(n-1)}$.

Proof of Smoothing Result

Now at some time $t \in [0, 1]$, suppose γ admits a disc neighborhood of radius $r_t = Rt^\alpha$. Using the smoothing estimates, for a point $q \in D_{r_t}(p)$ we have

$$|\operatorname{grad} \mathcal{F}|(p) \leq |\operatorname{grad} \mathcal{F}|(q) + CRt^{\alpha - \frac{5}{4}}.$$

Thus, by averaging over the disc of radius r_t orthogonal to γ , one obtains

$$|\operatorname{grad} \mathcal{F}|(p, t) \leq \operatorname{Area}(D_{r_t}(p))^{-\frac{1}{2}} \left[\int_{D_{r_t}(p)} |\operatorname{grad} \mathcal{F}|^2(q) dA(q) \right]^{\frac{1}{2}} + CRt^{\alpha - \frac{5}{4}}.$$

Ideally, provided $r_t \leq \operatorname{inj}_{g_t} \approx t^{\frac{1}{4}}$, one has $\operatorname{Area}(D_{r_t}(p)) \geq r_t^{n-1} \geq C(R)t^{\alpha(n-1)}$. Thus, integrating over the curve yields

$$\begin{aligned} \frac{d}{dt} L(\gamma) &\leq CR^{1-n} t^{-\frac{\alpha(n-1)}{2}} \int_{\gamma} \left[\int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CRL(\gamma) t^{\alpha - \frac{5}{4}} \\ &\leq CR^{1-n} L(\gamma)^{\frac{1}{2}} t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CRL(\gamma) t^{\alpha - \frac{5}{4}}. \end{aligned}$$

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.
- **Small** if R is chosen small.

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.
- **Small** if R is chosen small.

With this choice made, the second term is

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.
- **Small** if R is chosen small.

With this choice made, the second term is

- **Finite** $\leftrightarrow \alpha < \frac{1}{n-1}$.

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.
- **Small** if R is chosen small.

With this choice made, the second term is

- **Finite** $\leftrightarrow \alpha < \frac{1}{n-1}$.
- **Small** if the energy is small.

Proof of Smoothing Result

Integrating over time yields

$$\begin{aligned} L(\gamma_T) &\lesssim L(\gamma_0) + R^{1-n} \int_0^T t^{-\frac{\alpha(n-1)}{2}} \left[\int_{\gamma} \int_{D_{r_t}} |\operatorname{grad} \mathcal{F}|^2 dA \right]^{\frac{1}{2}} + CR \int_0^T t^{\alpha - \frac{5}{4}} \\ &\lesssim L(\gamma_0) + R^{1-n} \left[\int_0^T t^{\alpha(1-n)} \right]^{\frac{1}{2}} \left[\int_0^T \int_M |\operatorname{grad} \mathcal{F}|^2 dV_g \right]^{\frac{1}{2}} + R \int_0^T t^{\alpha - \frac{5}{4}}. \end{aligned}$$

The third term is

- **Finite** $\leftrightarrow \alpha > \frac{1}{4}$.
- **Small** if R is chosen small.

With this choice made, the second term is

- **Finite** $\leftrightarrow \alpha < \frac{1}{n-1}$.
- **Small** if the energy is small.

Thus there is an appropriate choice of α if and only if $n \leq 4$, as required!

Proof of Smoothing Result

However, this rough sketch hides a **crucial technical difficulty**:

Proof of Smoothing Result

However, this rough sketch hides a crucial technical difficulty:

- If γ is a geodesic at some time t , it quickly acquires geodesic curvature!

Proof of Smoothing Result

However, this rough sketch hides a **crucial technical difficulty**:

- If γ is a geodesic at some time t , it quickly acquires geodesic curvature!
- With geodesic curvature, constructing the disc neighborhood becomes nontrivial, and the coarea formula application may fail.

Proof of Smoothing Result

However, this rough sketch hides a **crucial technical difficulty**:

- If γ is a geodesic at some time t , it quickly acquires geodesic curvature!
- With geodesic curvature, constructing the disc neighborhood becomes nontrivial, and the coarea formula application may fail.

How to overcome?

Proof of Smoothing Result

However, this rough sketch hides a **crucial technical difficulty**:

- If γ is a geodesic at some time t , it quickly acquires geodesic curvature!
- With geodesic curvature, constructing the disc neighborhood becomes nontrivial, and the coarea formula application may fail.

How to overcome?

- Allow a given curve to acquire some geodesic curvature, but ensure the disc neighborhood can be constructed

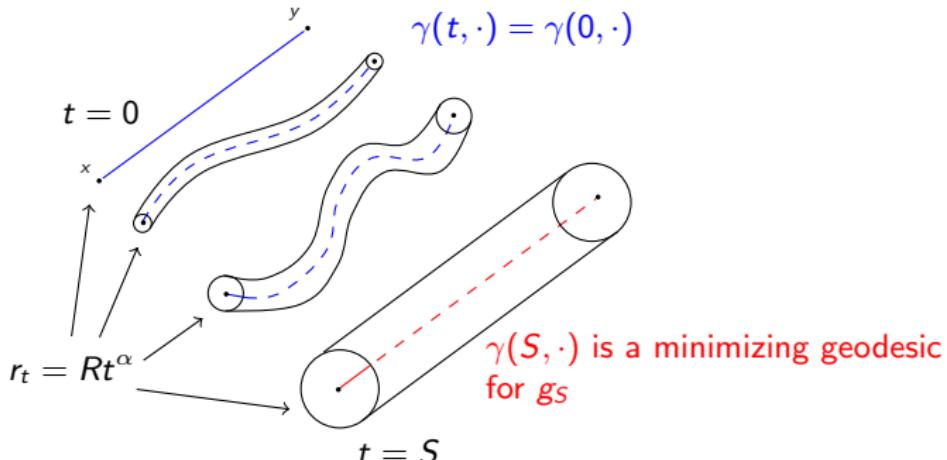
Proof of Smoothing Result

However, this rough sketch hides a crucial technical difficulty:

- If γ is a geodesic at some time t , it quickly acquires geodesic curvature!
- With geodesic curvature, constructing the disc neighborhood becomes nontrivial, and the coarea formula application may fail.

How to overcome?

- Allow a given curve to acquire some geodesic curvature, but ensure the disc neighborhood can be constructed
- Once too much geodesic curvature is acquired, pick a new geodesic and continue!



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for $n = 4$:

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.
- Apply a **point-picking argument** to obtain a point of **larger curvature**, which is not too far from the given point.

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.
- Apply a **point-picking argument** to obtain a point of **larger curvature**, which is not too far from the given point.
- A crucial point is to ensure that this new point is **in the center of a parabolic ball of a controlled radius**. This requires another application of the **tubular averaging technique** to bound the distance.

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.
- Apply a **point-picking argument** to obtain a point of **larger curvature**, which is not too far from the given point.
- A crucial point is to ensure that this new point is **in the center of a parabolic ball of a controlled radius**. This requires another application of the **tubular averaging technique** to bound the distance.
- One then shows **new local smoothing estimates** for parabolic balls with curvature bounds to obtain higher order control.

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.
- Apply a **point-picking argument** to obtain a point of **larger curvature**, which is not too far from the given point.
- A crucial point is to ensure that this new point is **in the center of a parabolic ball of a controlled radius**. This requires another application of the **tubular averaging technique** to bound the distance.
- One then shows **new local smoothing estimates** for parabolic balls with curvature bounds to obtain higher order control.
- With these preliminaries, one can construct a **local blowup limit**, which by energy estimates, is automatically **critical**.

Proof of Singularity Decomposition

Here is a sketch of the **concentration-collapse decomposition for $n = 4$** :

- Choose a point x where $\limsup_{t \rightarrow T} |Rm| = \infty$, and fix some time t close to T . Suppose it does NOT approach a collapsed point.
- Apply a **point-picking argument** to obtain a point of **larger curvature**, which is not too far from the given point.
- A crucial point is to ensure that this new point is **in the center of a parabolic ball of a controlled radius**. This requires another application of the **tubular averaging technique** to bound the distance.
- One then shows **new local smoothing estimates** for parabolic balls with curvature bounds to obtain higher order control.
- With these preliminaries, one can construct a **local blowup limit**, which by energy estimates, is automatically **critical**.
- Finally, via a **new ϵ -regularity result** ensures that at least some energy must have concentrated near the blowup point.

Calabi Flow

Let (M^{2n}, g, J) be a compact Kähler manifold.

Calabi Flow

Let (M^{2n}, g, J) be a compact Kähler manifold. Consider the **Calabi functional** defined on a fixed Kähler class

$$\mathcal{C}(\phi) = \int_M (s_\phi - \bar{s})^2 dV_g.$$

Calabi Flow

Let (M^{2n}, g, J) be a compact Kähler manifold. Consider the **Calabi functional** defined on a fixed Kähler class

$$\mathcal{C}(\phi) = \int_M (s_\phi - \bar{s})^2 dV_g.$$

The gradient flow of this functional is the **Calabi flow**:

$$\frac{\partial}{\partial t} \phi = s_\phi - \bar{s}.$$

Calabi Flow

Let (M^{2n}, g, J) be a compact Kähler manifold. Consider the **Calabi functional** defined on a fixed Kähler class

$$\mathcal{C}(\phi) = \int_M (s_\phi - \bar{s})^2 dV_g.$$

The gradient flow of this functional is the **Calabi flow**:

$$\frac{\partial}{\partial t} \phi = s_\phi - \bar{s}.$$

This flow bears a close family resemblance to the L^2 flow, and many analytic techniques can be shared between these two flows. In particular, the **singularity decomposition for $n = 4$ applies to Calabi flow on complex surfaces**.

Thank You!