
Singularities of the L2 curvature flow

Jeffrey Streets

April 2014



Yang-Mills Energy

Let G be a compact semisimple Lie group, and let G → P → (Mn, g) be a
principal G -bundle.

Let A denote a connection 1-form on P, and let

FA := dA + A ∧ A ∈ Λ2(P, g)

denote the curvature of A. Combining g with an Ad-invariant inner product on
g we define the Yang-Mills energy

YM(A) :=

∫
M

|FA|2 dVg .

A connection A is a critical point for YM, called a Yang-Mills connection, if

D∗AFA = 0.

Combining with the Bianchi identity, this is a second-order, semilinear elliptic
equation for the connection A.

Yang-Mills connections are natural candidates to consider as “optimal”
connections on P, and their study has played a central role in various physical,
geometric, and topological theories, especially in dimension n = 4.
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Riemannian Yang-Mills Energy

What if we demand that the connection A is actually the Levi-Civita
connection of a Riemannian metric?

Fix a compact smooth manifold M, and
consider the functional of Riemannian metrics

F(g) := YM(∇g ) =

∫
M

|Rmg |2g dVg .

A metric g is a critical point for F , and called a critical metric, if and only if

0 = gradF = δd Rc−Ř +
1

4
|Rm|2 g .

This is a fourth-order, quasilinear, degenerate elliptic equation for g .

From a Lagrangian-theoretic standpoint, critical metrics are natural choices of
“best metrics” on smooth manifolds, especially in dimension 4, which is the
scale-invariant dimension for F .
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Gradient Flows

A natural tool for constructing Yang-Mills connections is via the negative
gradient flow of YM, known as Yang-Mills flow:

∂A

∂t
= − D∗AFA.

This is a second order, semilinear, degenerate parabolic equation for A.
Short-time existence for arbitrary initial data follows via the gauge-fixing
method.

Likewise, a natural tool for constructing critical metrics is to consider the
negative gradient flow of YM, known as the L2 flow:

∂

∂t
g = − gradF = −δd Rc +Ř − 1

4
|Rm|2 g .

This is a fourth-order, quasilinear, degenerate parabolic equation for g . Again,
short-time existence for arbitrary initial data follows via the gauge-fixing
method.

Conjecturally, the long time behavior of both flows is governed by the
principle of dimensional criticality.
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Long time existence properties

Both functionals YM and F obey scaling laws which render dimensions n ≤ 3
“subcritical”, dimension n = 4 “critical”, and dimension n ≥ 5 “supercritical”.

The long time existence behavior of the corresponding gradient flows reflects
this principle.

n YM Flow L2 Flow
2 (Rade ’92): LTE, Conv. to YM ( , 2009) LTE
3 (Rade ’92): LTE, Conv. to YM ?

4, “Low energy” (Struwe ’94) LTE, Conv. to YM ?
4, “High energy” (Struwe ’94) ”Bubbling” ?

≥ 5 (Grotowski 2001) Finite time blowup Finite time blowup
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Preliminary results on singularity formation

Theorem
( 2012) Let (Mn, gt) be a solution to the L2 flow which exists on a
maximal time interval [0,T ),T <∞. Then

lim sup
t→T

|Rm| =∞.

For Ricci flow, the corresponding statement is obtained by smoothing estimates
which are obtained using the maximum principle. In our case, no maximum
principle applies, but global L2 smoothing estimates can be obtained using a
curvature bound. To convert these to the required pointwise bounds requires
control over the Sobolev constant. However, a curvature bound alone does not
control the metric in C 0, and so there is no obvious Sobolev constant estimate.
This difficulty can be overcome using a combination of local covering
arguments and blowup/compactness arguments.
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Preliminary results on singularity formation

As in the story of Ricci flow, a crucial role is played by the phenomenon of local
collapse.

Perelman’s crucial no local collapsing theorem allows for the construction of
blowup limits of Ricci flow solutions which don’t drop dimension as it provides
an injectivity radius estimate on the scale of curvature.

For the L2 flow, the story is quite different. First of all, finite time singularities
of the L2 flow in subcritical dimensions, if they occur at all, must be collapsed
at the scale of maximum curvature:

Proposition

Let (Mn, g(t)) be a solution to the L2 flow, n = 2, 3. Suppose g(t) exists on a
maximal time interval [0,T ), T <∞. Let {(xi , ti )} be a sequence of points
such that ti → T and |Rm| (xi , ti ) = sup[0,ti ]

|Rm|. Then

lim
i→∞

inj2g (xi ) |Rm| (xi ) = 0.

Moreover, for n ≥ 6, local collapse actually occurs, as evidenced by
homogeneous metrics on S5 × S1.
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Preliminary results on singularity formation

With this preliminary discussion, one can see that the main obstruction to
obtaining more precise statements about the nature of singularities of the L2

flow is a better understanding of local collapsing.

Note that any technique we come up with should fail (or be significantly
different) in dimension n ≥ 5.

Perelman achieved many nice estimates on the nature of local collapse via the
introduction of various monotonic quantities for Ricci flow (energy, entropy,
reduced length, etc.) It does not seem that Perelman-type monotonic quantites
exist for the L2 flow.

In the rest of the talk I will describe a new,
dimension-dependent technique for controlling the
local collapsing along the L2 flow, which yields new
structure theorems for finite time singularities, as
well as new compactness/diffeomorphism-finiteness
results in Riemannian geometry.
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Singularity Decompositions

We show that in dimension n = 3, any point of curvature blowup is eventually
arbitrarily close to arbitrarily collapsed points. The set Tµ(gt) is roughly points
which are µ-collapsed on the scale of curvature.

Theorem ( 2013)

Let (M3, g0) be a compact manifold, and suppose the solution to the L2 flow
with initial condition g0 exists on a maximal time interval [0,T ), T <∞. Then
for any x ∈ M such that lim supt→T |Rm| (x , t) =∞ and any µ > 0,

lim inf
t→T

d(x , Tµ(gt), t) = 0.



Singularity Decompositions

Before stating our result for n = 4, let’s recall the Struwe “bubbling” statement.

Theorem (Struwe)

“Finite time singularities of the Yang-Mills flow in dimension 4 occur via energy
concentration.” I.e., if T denotes a finite maximal existence time of the
Yang-Mills flow, there exist finitely many points {xi} ∈ M and an ε > 0
depending on the given bundle such that for all R > 0,

lim sup
t→T

∫
BR (xi )

|F |2 ≥ ε.

Note that it is still an open question if these finite time singularities actually
occur.
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Singularity Decompositions

Theorem ( 2013)

(Concentration-Collapse Decomposition) For any E , µ > 0 there exists
ε(E , µ) > 0 so that if (M4, gt) is a solution to the L2 flow satisfying

F(g0) ≤ E ,

then for any T ∈ R≥0 ∪ {∞}, and any x ∈ M such that
lim supt→T |Rm| (x , t) =∞, we have either:

1. For all r > 0, lim sup
t→T

∫
Br (x,t)

|Rm|2 ≥ ε,

2. lim inft→T d(x ,Tµ(gt), t) = 0.

Collapsed Region

Critical Bubbles

Bulk region

Bulk region|Rm|→∞



Smoothing Result

Definition
Let (Mn, g) be a Riemannian manifold. Fix 0 < δ < 1, and let ωn denote the
volume of the unit n-ball in Rn. Given x ∈ M, define the δ-volume radius at x
to be

rδ(x) := sup

{
r ≥ 0

∣∣∣∣ ∀s ≤ r ,
Vol Bs(x)

sn
≥ δωn

}
.

Theorem ( 2013)

Given 0 < δ < 1, there exists ε, ι,A > 0 depending only on δ so that if (M4, g)
is a compact Riemannian manifold satisfying

1. rδ ≥ ρ,

2. F(g) ≤ ε,
the L2 flow with initial condition g exists on

[
0, ρ4

]
and moreover satisfies the

estimates

1. |Rm|gt ≤ AF
1
6 (gt)t−

1
2 ,

2. injgt ≥ ιt
1
4 ,
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Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem
(Gao, Anderson, Anderson-Cheeger) Given V ,D,H > 0 there exists
ε = ε(V ,D,H) so that if (M4, g) is a compact Riemannian manifold satisfying:

1. |Rc| ≤ H

2. diam ≤ D

3. Vol ≥ V ,

4.
∫
M
|Rm|2 ≤ ε,

then M admits a flat metric.

Also, many works of Petersen-Wei, Dai-Petersen-Wei, Yang try to replace the
pointwise Ricci curvature bound with an Lp Ricci curvature bound, p > 2.

These results all rely, implicitly or explicitly, on smoothing properties for second
order elliptic or parabolic PDE (Ricci flow), usually through the technique of
Moser iteration, which requires a “supercritical” estimate to work.



Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem
(Gao, Anderson, Anderson-Cheeger) Given V ,D,H > 0 there exists
ε = ε(V ,D,H) so that if (M4, g) is a compact Riemannian manifold satisfying:

1. |Rc| ≤ H

2. diam ≤ D

3. Vol ≥ V ,

4.
∫
M
|Rm|2 ≤ ε,

then M admits a flat metric.

Also, many works of Petersen-Wei, Dai-Petersen-Wei, Yang try to replace the
pointwise Ricci curvature bound with an Lp Ricci curvature bound, p > 2.

These results all rely, implicitly or explicitly, on smoothing properties for second
order elliptic or parabolic PDE (Ricci flow), usually through the technique of
Moser iteration, which requires a “supercritical” estimate to work.



Corollaries on compactness and diffeofiniteness

Let us recall a typical statement of “pinching” for Riemannian manifolds:

Theorem
(Gao, Anderson, Anderson-Cheeger) Given V ,D,H > 0 there exists
ε = ε(V ,D,H) so that if (M4, g) is a compact Riemannian manifold satisfying:

1. |Rc| ≤ H

2. diam ≤ D

3. Vol ≥ V ,

4.
∫
M
|Rm|2 ≤ ε,

then M admits a flat metric.

Also, many works of Petersen-Wei, Dai-Petersen-Wei, Yang try to replace the
pointwise Ricci curvature bound with an Lp Ricci curvature bound, p > 2.

These results all rely, implicitly or explicitly, on smoothing properties for second
order elliptic or parabolic PDE (Ricci flow), usually through the technique of
Moser iteration, which requires a “supercritical” estimate to work.



Corollaries on compactness and diffeofiniteness

Corollary ( 2013)

Given 0 < δ < 1 and ρ,V > 0 there exists ε = ε(δ, ρ,V ) > 0 such that given
(M4, g) a compact Riemannian manifold satisfying

1. Vol ≤ V ,

2. rδ ≥ ρ,

3. F(g) ≤ ε,
then the solution to the L2 flow with initial condition g exists for all time and
converges exponentially to a flat metric.

Corollary ( 2013)

Given A,V > 0 there exists ε = ε(A,V ) > 0 so that if (M4, g) is a compact
Riemannian four-manifold satisfying

1. Vol ≤ V ,

2. CS ≤ A,

3. F(g) ≤ ε,
then the solution to the L2 flow with initial condition g exists for all time and
converges exponentially to a flat metric.
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Corollaries on compactness and diffeofiniteness

Corollary ( 2013)

Given 0 < δ < 1, there exists ε(δ) > 0 so that for any ρ,V > 0, there are only
finitely many diffeomorphism types of compact Riemannian manifolds (M4, g)
satisfying

1. Vol ≤ V ,

2. rδ ≥ ρ,

3. F(g) ≤ ε.

Note that the ε above is universal!

Corollary ( 2013)

Given 0 < δ < 1 and A > 0 there exists ε(δ,A) > 0 so that if (M4, g) is a
compact Riemannian manifold satisfying

1. F(g) ≤ ε,
2. supM rδ ≤ A infM rδ,

M admits an F -structure.
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Proof of Smoothing Result

By an overall parabolic rescaling, it suffices to show that if rδ ≥ 1, for ε chosen
sufficiently small with respect to δ the solution to L2 flow exists on [0, 1], and
satisfies estimates

|Rm|gt < AF
1
6 (gt)t−

1
2 , injgt > ιt

1
4 .

By continuity, these estimates hold on [0, ε). If they failed to hold on [0, 1],
choose the first time τ at which one of the above is an equality, and rescale
again so that the equality occurs at [0, 1].

Our task is to derive contradictions from either possible equality.
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Proof of Smoothing Result

Case I: Curvature inequality fails

Choose a point x ∈ M such that

|Rm| (x) = sup
M
|Rm| = AF

1
6 (g1) =: K ≤ 1,

Using our previous Sobolev-constant independent pointwise smoothing results
we obtain a uniform bound on |∇Rm| at time t = 1. Thus

inf
BµK

|Rm| ≥ K

2

for some small universal µ. On the other hand, since K ≤ 1 and inj ≥ ι we
have Vol BµK ≈ cK 4. Hence

F(g1) ≥
∫
BµK (x)

∣∣Rm
∣∣2 ≥ K 2

4
Vol(BµKi (xi )) ≥ cµ4K 6 = cµ4A6F(g1) > F(g1),

a contradiction.
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Proof of Smoothing Result

Case II: Injectivity radius inequality fails

Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small.

On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0).

By construction we have Volg0(U) ≥ δω4
16

. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Case II: Injectivity radius inequality fails Choose a point x ∈ M such that

injg1(x) = injg1 = ι

Recall that, at time t = 1, we have |Rm| ≤ 1, thus by Cheeger’s Lemma we
obtain that the volume ratio of a ball of unit size will be small if ι is small. On
the other hand, by hypothesis we know that the volume ratio of balls of radius
1 at the initial time is not too small: rδ ≥ 1.

Thus we will obtain a contradiction if we can show that the L2 flow does not
decrease the volume ratio of metric balls too quickly!

Let U = B 1
2
(x , g0). By construction we have Volg0(U) ≥ δω4

16
. We will show

two estimates:

1. Volg1(U) ≥ δω4
32

2. U ⊂ B1(x , g1).

Together these imply that the volume ratio of unit balls at time t = 1 is at
least some controlled fraction of δ, which will yield the final contradiction
provided ι is chosen small with respect to δ.



Proof of Smoothing Result

Estimate 1: We can directly compute the evolution of volume of an open set
U via

d

dt

∫
U

dVg =

∫
U

trg gradFdVg ≥ −C ||gradF||L2 Volgt (U)
1
2 .

But the time integral of ||gradF||2L2 is bounded by the initial energy, which is
small, hence this can be directly integrated to yield the required estimate.

Estimate 2: Fix a point y ∈ B 1
2
(x , g0). Fix γ a unit speed minimizing geodesic

connecting x to y . A direct approach is to simply compute the time derivative
of the length of this curve:

d

dt
L(γ) =

∫
γ

− gradF(γ̇, γ̇)dσ ≤
∫
γ

|gradF| dσ.

Due to the curvature smoothing, we also have scale-invariant smoothing of all
derivatives of curvature as well, which take the form:

|∇m Rm| ≤ Cmt−
2+m
4 .

But gradF = ∇2 Rm + Rm∗2 ≈ t−1, so this is not integrable!.
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Proof of Smoothing Result

To overcome this crucial obstacle we need to find a way to use our one
“supercritical” estimate: the fundamental energy estimate∫ t

0

∫
M

|gradF|2 dVgdt = F(g0)−F(gt) ≤ ε.

The crucial idea to obtain the required distance estimate is to replace the
integral of gradF along a curve by averaging over a tubular neighborhood.
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Proof of Smoothing Result

Now at some time t ∈ [0, 1], suppose γ admits a disc neighborhood of radius
rt = Rtα.

Using the smoothing estimates, for a point q ∈ Drt (p) we have

|gradF| (p) ≤ |gradF| (q) + CRtα−
5
4 .

Thus, by averaging over the disc or radius rt orthogonal to γ, one obtains

|gradF| (p, t) ≤ Area(Drt (p))−
1
2

[∫
Drt (p)

|gradF|2 (q)dA(q)

] 1
2

+ CRtα−
5
4 .

Ideally, provided rt ≤ injgt ≈ t
1
4 , one has Area(Drt (p)) ≥ rn−1

t ≥ C(R)tα(n−1).
Thus, integrating over the curve yields

d

dt
L(γ) ≤ CR1−nt−

α(n−1)
2

∫
γ
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|gradF|2 dA

] 1
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+ CRL(γ)tα−
5
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≤ CR1−nL(γ)
1
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Proof of Smoothing Result

Integrating over time yields

L(γT ) . L(γ0) + R1−n

∫ T

0

t−
α(n−1)

2

[∫
γ

∫
Drt

|gradF|2 dA

] 1
2

+ CR

∫ T

0

tα−
5
4

. L(γ0) + R1−n

[∫ T

0

tα(1−n)

] 1
2
[∫ T

0

∫
M

|gradF|2 dVg

] 1
2

+ R

∫ T

0

tα−
5
4 .

The third term is

• Finite ↔ α > 1
4
.

• Small if R is chosen small.

With this choice made, the second term is

• Finite ↔ α < 1
n−1

.

• Small if the energy is small.

Thus there is an appropriate choice of α if and only
if n ≤ 4, as required!
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Proof of Smoothing Result
However, this rough sketch hides a crucial technical difficulty:

• If γ is a geodesic at some time t, it quickly acquires geodesic curvature!
• With geodesic curvature, constructing the disc neighborhood becomes

nontrivial, and the coarea formula application may fail.

How to overcome?
• Allow a given curve to acquire some geodesic curvature, but ensure the

disc neighborhood can be constructed
• Once too much geodesic curvature is acquired, pick a new geodesic and

continue!

t = 0

t = S

rt = Rtα

x

y
γ(t, ·) = γ(0, ·)

γ(S , ·) is a minimizing geodesic
for gS
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• Once too much geodesic curvature is acquired, pick a new geodesic and
continue!

t = 0

t = S

rt = Rtα

x

y
γ(t, ·) = γ(0, ·)

γ(S , ·) is a minimizing geodesic
for gS
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Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Proof of Singularity Decomposition

Here is a sketch of the concentration-collapse decomposition for n = 4:

• Choose a point x where lim supt→T |Rm| =∞, and fix some time t close
to T . Suppose it does NOT approach a collapsed point.

• Apply a point-picking argument to obtain a point of larger curvature,
which is not too far from the given point.

• A crucial point is to ensure that this new point is in the center of a
parabolic ball of a controlled radius. This requires another application of
the tubular averaging technique to bound the distance.

• One then shows new local smoothing estimates for parabolic balls with
curvature bounds to obtain higher order control.

• With these preliminaries, one can construct a local blowup limit, which by
energy estimates, is automatically critical.

• Finally, via a new ε-regularity result ensures that at least some energy
must have concentrated near the blowup point.



Calabi Flow

Let (M2n, g , J) be a compact Kähler manifold.

Consider the Calabi functional
defined on a fixed Kähler class

C(φ) =

∫
M

(sφ − s)2 dVg .

The gradient flow of this functional is the Calabi flow:

∂

∂t
φ = sφ − s.

This flow bears a close family resemblance to the L2 flow, and many analytic
techniques can be shared between these two flows. In particular, the singularity
decomposition for n = 4 applies to Calabi flow on complex surfaces.
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Thank You!


