Quantum symmetric states on free product C*-algebras

Claus Köstler University College Cork Joint work with
Ken Dykema \& John Williams
arXiv:1305.7293

Focus Program on Noncommutative Distributions in Free Probability
Workshop on Combinatorial and Random Matrix Aspects of Noncommutative Distributions and Free Probability

Fields Institute, Toronto, July 2-6, 2013

Introduction and Motivation

Classical Probability

Introduction and Motivation

Classical Probability

De Finetti's
Theorem
exchangeability \square symmetries of tensor products

Introduction and Motivation

Classical Probability

De Finetti's
Theorem
exchangeability \square symmetries of tensor products
\rightsquigarrow Subject of distributional symmetries and invariance principles

Introduction and Motivation

Classical Probability

De Finetti's
Theorem
exchangeability \square symmetries of tensor products
\rightsquigarrow Subject of distributional symmetries and invariance principles
Free Probability

Introduction and Motivation

Classical Probability

De Finetti's
Theorem
exchangeability

symmetries of tensor products
\rightsquigarrow Subject of distributional symmetries and invariance principles
Free Probability

\rightsquigarrow Foundation of free probability theory

Introduction and Motivation

Classical Probability

De Finetti's
Theorem
exchangeability

symmetries of tensor products
\rightsquigarrow Subject of distributional symmetries and invariance principles
Free Probability

\rightsquigarrow Foundation of free probability theory

Introduction and Motivation

Classical Probability

De Finetti's
Theorem

exchangeability \longleftrightarrow independence \longleftrightarrow| symmetries of |
| :---: |
| tensor products |

\rightsquigarrow Subject of distributional symmetries and invariance principles
Free Probability

\rightsquigarrow Foundation of free probability theory
\rightsquigarrow New direction of research in free probability

Exchangeability in classical probability

Consider probability space $\mathbb{A}=(\Omega, \Sigma, P)$ with expectation

$$
\varphi(X)=\int_{\Omega} X(\omega) d P(\omega)
$$

Exchangeability in classical probability

Consider probability space $\mathbb{A}=(\Omega, \Sigma, P)$ with expectation

$$
\varphi(X)=\int_{\Omega} X(\omega) d P(\omega)
$$

Definition
Random variables $X_{1}, X_{2}, \ldots \subset L^{\infty}(\mathbb{A})$ are exchangeable if

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all permutations π

Exchangeability in classical probability

Consider probability space $\mathbb{A}=(\Omega, \Sigma, P)$ with expectation

$$
\varphi(X)=\int_{\Omega} X(\omega) d P(\omega)
$$

Definition
Random variables $X_{1}, X_{2}, \ldots \subset L^{\infty}(\mathbb{A})$ are exchangeable if

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all permutations π
Examples

- $\varphi\left(X_{1}^{n}\right)=\varphi\left(X_{5}^{n}\right) \quad \rightsquigarrow X_{i}$'s are identically distributed

Exchangeability in classical probability

Consider probability space $\mathbb{A}=(\Omega, \Sigma, P)$ with expectation

$$
\varphi(X)=\int_{\Omega} X(\omega) d P(\omega)
$$

Definition
Random variables $X_{1}, X_{2}, \ldots \subset L^{\infty}(\mathbb{A})$ are exchangeable if

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all permutations π
Examples

- $\varphi\left(X_{1}^{n}\right)=\varphi\left(X_{5}^{n}\right) \quad \rightsquigarrow X_{i}$'s are identically distributed
- $\varphi\left(X_{1}^{2} X_{4}^{5} X_{3}\right)=\varphi\left(X_{1+k}^{2} X_{4+k}^{5} X_{3+k}\right) \rightsquigarrow X_{i}$'s are stationary

Exchangeability in classical probability

Consider probability space $\mathbb{A}=(\Omega, \Sigma, P)$ with expectation

$$
\varphi(X)=\int_{\Omega} X(\omega) d P(\omega)
$$

Definition
Random variables $X_{1}, X_{2}, \ldots \subset L^{\infty}(\mathbb{A})$ are exchangeable if

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all permutations π
Examples

- $\varphi\left(X_{1}^{n}\right)=\varphi\left(X_{5}^{n}\right) \quad \rightsquigarrow X_{i}$'s are identically distributed
- $\varphi\left(X_{1}^{2} X_{4}^{5} X_{3}\right)=\varphi\left(X_{1+k}^{2} X_{4+k}^{5} X_{3+k}\right) \rightsquigarrow X_{i}$'s are stationary
- $\varphi\left(X_{1}^{2} X_{4}^{5} X_{3}\right)=\varphi\left(X_{6}^{2} X_{1}^{5} X_{9}\right)$

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)
The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)
The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)

The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

$$
\Sigma^{\text {tail }}:=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq n\right)
$$

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)

The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

$$
\Sigma^{\text {tail }}:=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq n\right)
$$

Examples

- constant sequence X, X, X, \ldots

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)

The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

$$
\Sigma^{\text {tail }}:=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq n\right)
$$

Examples

- constant sequence X, X, X, \ldots
- infinite coin tosses, each with Bernoulli distribution $(p, 1-p)$

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)

The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

$$
\Sigma^{\text {tail }}:=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq n\right)
$$

Examples

- constant sequence X, X, X, \ldots
- infinite coin tosses, each with Bernoulli distribution $(p, 1-p)$
- mixture of $(p, 1-p)$-biased infinite coin tosses

The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt \& Savage 1955,...)

The following are equivalent:
(a) The infinite sequence X_{1}, X_{2}, \ldots is exchangeable
(b) The infinite sequence X_{1}, X_{2}, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

$$
\Sigma^{\text {tail }}:=\bigcap_{n \in \mathbb{N}} \sigma\left(X_{k} \mid k \geq n\right)
$$

Examples

- constant sequence X, X, X, \ldots
- infinite coin tosses, each with Bernoulli distribution $(p, 1-p)$
- mixture of $(p, 1-p)$-biased infinite coin tosses
\equiv exchangeable sequence of $0-1$-valued random variables

Equivalent formulations: Exchangeability is a ...

Equivalent formulations: Exchangeability is a ...

- ... distributional symmetry: by its very definition

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all $\pi \in \mathbb{S}_{\infty}$

Equivalent formulations: Exchangeability is a ...

- ... distributional symmetry: by its very definition

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all $\pi \in \mathbb{S}_{\infty}$

- ...dynamical symmetry: There is an action
$\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}\left(L^{\infty}(\mathbb{A})\right)$ such that

$$
\varphi=\varphi \circ \rho_{\pi} \quad \rho_{\pi}\left(X_{i}\right)=X_{\pi(i)}
$$

Equivalent formulations: Exchangeability is a ...

- ... distributional symmetry: by its very definition

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right)=\varphi\left(X_{\pi\left(i_{1}\right)} \cdots X_{\pi\left(i_{n}\right)}\right)
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots, i_{n} \in \mathbb{N}$, and all $\pi \in \mathbb{S}_{\infty}$

- ...dynamical symmetry: There is an action
$\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}\left(L^{\infty}(\mathbb{A})\right)$ such that

$$
\varphi=\varphi \circ \rho_{\pi} \quad \rho_{\pi}\left(X_{i}\right)=X_{\pi(i)}
$$

- ...dynamical co-symmetry: there is a *-homomorphism $\alpha: L^{\infty}(\mathbb{A}) \rightarrow C\left(\mathbb{S}_{k}\right) \otimes L^{\infty}(\mathbb{A})$ such that

$$
\begin{array}{rlrl}
\text { id } \otimes \varphi \circ \alpha(\bullet) & =\varphi(\bullet) \mathbb{1} & \quad \text { (invariance } \\
\alpha\left(X_{i}\right) & =\sum_{j=1}^{k} e(\pi)_{i j} \otimes X_{j}
\end{array}
$$

for all permutation matrices $e(\pi)$ with $e(\pi)_{i j}=\delta_{m(i)}$

Equivalent formulations: Exchangeability is a ...

Equivalent formulations: Exchangeability is a ...

- ...distributional co-symmetry: As equation in the Hopf C*-algebra $C\left(\mathbb{S}_{k}\right)$,
$\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right) \mathbb{1}(\pi)=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e(\pi)_{i_{1} j_{1}} \cdots e(\pi)_{i_{n_{j}} j_{n}} \varphi\left(X_{j_{1}} \cdots X_{j_{n}}\right)$
for all permutation $k \times k$-matrices $e(\pi)$ with $e(\pi)_{i j}=\delta_{\pi(i) j}$

Equivalent formulations: Exchangeability is a ...

- ...distributional co-symmetry: As equation in the Hopf C*-algebra $C\left(\mathbb{S}_{k}\right)$,

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right) \mathbb{1}(\pi)=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e(\pi)_{i_{1} j_{1}} \cdots e(\pi)_{i_{n_{n}}} \varphi\left(X_{j_{1}} \cdots X_{j_{n}}\right)
$$

for all permutation $k \times k$-matrices $e(\pi)$ with $e(\pi)_{i j}=\delta_{\pi(i) j}$

$$
\left[=\varphi\left(X_{\pi\left(j_{1}\right)} \cdots X_{\pi\left(j_{n}\right)}\right) \mathbb{1}(\pi)\right]
$$

Equivalent formulations: Exchangeability is a ...

- ...distributional co-symmetry: As equation in the Hopf C*-algebra $C\left(\mathbb{S}_{k}\right)$,

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right) \mathbb{1}(\pi)=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e(\pi)_{i_{1} j_{1}} \cdots e(\pi)_{i_{n_{n}}} \varphi\left(X_{j_{1}} \cdots X_{j_{n}}\right)
$$

for all permutation $k \times k$-matrices $e(\pi)$ with $e(\pi)_{i j}=\delta_{\pi(i) j}$

$$
\left[=\varphi\left(X_{\pi\left(j_{1}\right)} \cdots X_{\pi\left(j_{n}\right)}\right) \mathbb{1}(\pi)\right]
$$

Key idea (K. \& Speicher 2008):
Exchangeability as a co-symmetry can be 'quantized': \diamond Replace X_{k} 's by operators x_{1}, x_{2}, \ldots

Equivalent formulations: Exchangeability is a ...

- ...distributional co-symmetry: As equation in the Hopf C^{*}-algebra $C\left(\mathbb{S}_{k}\right)$,

$$
\varphi\left(X_{i_{1}} \cdots X_{i_{n}}\right) \mathbb{1}(\pi)=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e(\pi)_{i_{1} j_{1}} \cdots e(\pi)_{i_{n_{n}}} \varphi\left(X_{j_{1}} \cdots X_{j_{n}}\right)
$$

for all permutation $k \times k$-matrices $e(\pi)$ with $e(\pi)_{i j}=\delta_{\pi(i) j}$

$$
\left[=\varphi\left(X_{\pi\left(j_{1}\right)} \cdots X_{\pi\left(j_{n}\right)}\right) \mathbb{1}(\pi)\right]
$$

Key idea (K. \& Speicher 2008):
Exchangeability as a co-symmetry can be 'quantized':
\diamond Replace X_{k} 's by operators x_{1}, x_{2}, \ldots
\diamond Replace $C\left(\mathbb{S}_{k}\right)$ by quantum permutation group $A_{s}(k)$

Quantum Permutation Groups

Definition and Theorem (Wang 1998)
The quantum permutation group $A_{s}(k)$ is the universal unital
C*-algebra generated by $e_{i j}(i, j=1, \ldots k)$ subject to the relations

Quantum Permutation Groups

Definition and Theorem (Wang 1998)
The quantum permutation group $A_{s}(k)$ is the universal unital C*-algebra generated by $e_{i j}(i, j=1, \ldots k)$ subject to the relations

- $e_{i j}^{2}=e_{i j}=e_{i j}^{*}$ for all $i, j=1, \ldots, k$

Quantum Permutation Groups

Definition and Theorem (Wang 1998)
The quantum permutation group $A_{s}(k)$ is the universal unital
C*-algebra generated by $e_{i j}(i, j=1, \ldots k)$ subject to the relations

- $e_{i j}^{2}=e_{i j}=e_{i j}^{*}$ for all $i, j=1, \ldots, k$
- each column and row of $\left[\begin{array}{ccc}e_{11} & \cdots & e_{1 k} \\ \vdots & \ddots & \vdots \\ e_{k 1} & \cdots & e_{k k}\end{array}\right]$ is a partition of unity

Quantum Permutation Groups

Definition and Theorem (Wang 1998)

The quantum permutation group $A_{s}(k)$ is the universal unital
C*-algebra generated by $e_{i j}(i, j=1, \ldots k)$ subject to the relations

- $e_{i j}^{2}=e_{i j}=e_{i j}^{*}$ for all $i, j=1, \ldots, k$
- each column and row of $\left[\begin{array}{ccc}e_{11} & \cdots & e_{1 k} \\ \vdots & \ddots & \vdots \\ e_{k 1} & \cdots & e_{k k}\end{array}\right]$ is a partition of unity
$A_{s}(k)$ is a compact quantum group in the sense of Woronowicz, in particular a Hopf C^{*}-algebra

Quantum Permutation Groups

Definition and Theorem (Wang 1998)

The quantum permutation group $A_{s}(k)$ is the universal unital
C*-algebra generated by $e_{i j}(i, j=1, \ldots k)$ subject to the relations

- $e_{i j}^{2}=e_{i j}=e_{i j}^{*}$ for all $i, j=1, \ldots, k$
- each column and row of $\left[\begin{array}{ccc}e_{11} & \cdots & e_{1 k} \\ \vdots & \ddots & \vdots \\ e_{k 1} & \cdots & e_{k k}\end{array}\right]$ is a partition of unity
$A_{s}(k)$ is a compact quantum group in the sense of Woronowicz, in particular a Hopf C^{*}-algebra

The abelianization of $A_{s}(k)$ is $C\left(\mathbb{S}_{k}\right)$, the continuous functions on the symmetric group \mathbb{S}_{k}

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state)
Definition (K. \& Speicher 2008)
Consider a W^{*}-probability space (\mathcal{A}, φ).

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state)
Definition (K. \& Speicher 2008)
Consider a W^{*}-probability space (\mathcal{A}, φ). A sequence of operators $x_{1}, x_{2}, \ldots \subset \mathcal{A}$ is quantum exchangeable if its distribution is invariant under the coaction of quantum permutations:

$$
\varphi\left(x_{i_{1}} \cdots x_{i_{n}}\right) \mathbb{1}_{A_{s}(k)}=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e_{i_{1} j_{1}} \cdots e_{i_{n} j_{n}} \varphi\left(x_{j_{1}} \cdots x_{j_{n}}\right)
$$

for all $k \times k$-matrices $\left(e_{i j}\right)_{i j}$ satisfying defining relations for $A_{s}(k)$.

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state)

Definition (K. \& Speicher 2008)

Consider a W^{*}-probability space (\mathcal{A}, φ). A sequence of operators $x_{1}, x_{2}, \ldots \subset \mathcal{A}$ is quantum exchangeable if its distribution is invariant under the coaction of quantum permutations:

$$
\varphi\left(x_{i_{1}} \cdots x_{i_{n}}\right) \mathbb{1}_{A_{s}(k)}=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e_{i_{j} j_{1}} \cdots e_{i_{i_{n}}} \varphi\left(x_{j_{1}} \cdots x_{j_{n}}\right)
$$

for all $k \times k$-matrices $\left(e_{i j}\right)_{i j}$ satisfying defining relations for $A_{s}(k)$.
Remark
quantum exchangeability \nRightarrow exchangeability

A free analogue of de Finetti's theorem

Theorem (K. \& Speicher 2008)
The following are equivalent for an infinite sequence of noncommutative random variables x_{1}, x_{2}, \ldots in a W^{*}-probability space (\mathcal{A}, φ) :

A free analogue of de Finetti's theorem

Theorem (K. \& Speicher 2008)
The following are equivalent for an infinite sequence of noncommutative random variables x_{1}, x_{2}, \ldots in a W^{*}-probability space (\mathcal{A}, φ) :
(a) the sequence is quantum exchangeable

A free analogue of de Finetti's theorem

Theorem (K. \& Speicher 2008)

The following are equivalent for an infinite sequence of noncommutative random variables x_{1}, x_{2}, \ldots in a W^{*}-probability space (\mathcal{A}, φ) :
(a) the sequence is quantum exchangeable
(b) the sequence is identically distributed and freely independent with amalgamation over \mathcal{T}

Here \mathcal{T} denotes the tail von Neumann algebra

$$
\mathcal{T}=\bigcap_{n \in \mathbb{N}} v \mathrm{~N}\left(x_{k} \mid k \geq n\right)
$$

Quantum symmetric states

Definition (Dykema \& K \& Williams)

Let A be a unital C^{*}-algebra, (\mathfrak{B}, ϕ) a C^{*}-probability space and $\lambda_{i}: \mathfrak{A} \rightarrow \mathfrak{B}$ unital ${ }^{*}$-homomorphisms $(i \in \mathbb{N})$. The sequence $\left(\lambda_{i}\right)_{i}$ is said to be quantum exchangeable w.r.t. ψ or the state ψ is said to be quantum symmetric w.r.t. $\left(\lambda_{i}\right)_{i}$ if

$$
\begin{array}{r}
\psi\left(\lambda_{i_{1}}\left(a_{1}\right) \cdots \lambda_{i_{n}}\left(a_{n}\right)\right) \mathbb{1}_{A_{s}(k)} \\
=\sum_{j_{1}, \ldots, j_{n}=1}^{k} e_{i_{1} j_{1}} \cdots e_{i_{n} j_{n}} \psi\left(\lambda_{j_{1}}\left(a_{1}\right) \cdots \lambda_{j_{n}}\left(a_{n}\right)\right) \mathbb{1}_{A_{s}(k)}
\end{array}
$$

for all $n \in \mathbb{N}$, all $i_{1}, \ldots i_{n} \in\{1, \ldots, k\}$, all $a_{1}, \ldots a_{n} \in A$, all $k \times k$-matrices $\left(e_{i j}\right)_{i j}$ satisfying defining relations for $A_{s}(k)$.

Standing notation - Goal

Throughout A is a unital C^{*}-algebra and $\mathfrak{A}:=*_{1}^{\infty} A$ denotes the universal, unital free product of infinitely many copies of A.

QSS (A) denotes the set of all quantum symmetric states on \mathfrak{A}.
TQSS (A) denotes the set of all tracial quantum symmetric states on \mathfrak{A}.

Proposition

For any unital C^{*}-algebra A the sets $\operatorname{QSS}(A)$ and $\operatorname{TQSS}(A)$ are compact, convex subsets of the Banach space dual of \mathfrak{A} in the weak*-topology.

Goal
Study and characterize $\operatorname{QSS}(A)$ and $\operatorname{TQSS}(A)$ as far as possible.

What is the free probability counterpart to the following 'classical' result?

Theorem (Størmer 1969)

Let A be a unital C^{*}-algebra and $\otimes_{1}^{\infty} \mathrm{A}$ the infinite minimal tensor product of A. Then the set of all symmetric states on $\otimes_{1}^{\infty} A$ is a Choquet simplex and an extreme symmetric state on $\otimes_{1}^{\infty} A$ is an infinite tensor product state of the form $\otimes_{1}^{\infty} \psi$, with $\psi \in \mathrm{S}(A)$.

Remark

So, for a given unital C^{*}-algebra, one has a bijective correspondence between symmetric states on $\bigotimes_{1}^{\infty} A$ and probability measures on $S(A)$.

Quantum symmetric states arising from freeness

Proposition

Let \mathfrak{B} be a unital C*-algebra and $^{\mathfrak{D}} \subseteq \mathfrak{B}$ be unital C*-subalgebra * with conditional expectation $E: \mathfrak{B} \rightarrow \mathfrak{D}$ (i.e. a projection of norm one onto \mathfrak{D}). Suppose that

$$
\pi_{i}: A \rightarrow \mathfrak{B} \quad(i \in \mathbb{N})
$$

are ${ }^{*}$-homorphisms such that $E \circ \pi_{i}$ is the same for all i and that $\left(\pi_{i}(A)\right)_{i=1}^{\infty}$ is free with respect to E. Let $\pi=*_{i=1}^{\infty} \pi_{i}: \mathfrak{A} \rightarrow \mathfrak{B}$ be the resulting free product *-homomorphism. For a state ρ on \mathfrak{D} consider the state $\psi=\rho \circ E \circ \pi$. Then ψ is quantum symmetric.

Remark

The proof uses Speicher's free \mathfrak{D}-valued cumulants and the defining properties of the projections $e_{i j}$ from Wang's quantum permutation groups.

Tail algebras of symmetric states

Let ψ be a state on $\mathfrak{A}=*_{1}^{\infty} A$. Passing to the GNS representation $\left(\mathcal{H}_{\psi}, \pi_{\psi}, \Omega_{\psi}\right)$ of (\mathfrak{A}, ψ), put

$$
\mathcal{M}_{\psi}=\pi_{\psi}(\mathfrak{A})^{\prime \prime} \quad \hat{\psi}:=\left\langle\Omega_{\psi}, \bullet \Omega_{\psi}\right\rangle
$$

The tail algebra of ψ is the von Neumann subalgebra

$$
\mathcal{T}_{\psi}=\bigcap_{n=1}^{\infty} W^{*}\left(\bigcup_{i=n}^{\infty} \pi_{\psi}\left(\lambda_{i}(A)\right)\right) \subset \mathcal{M}_{\psi}
$$

Proposition (Dykema \& K \& Williams)

Suppose ψ is symmetric. Then there exists a normal $\hat{\psi}$-preserving conditional expection E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ}.

'Quantum symmetric noncommutative distributions' imply freeness with amalgamation

Theorem (Dykema \& K \& Williams)

Let ψ be a quantum symmetric state on $\mathfrak{A}=*_{1}^{\infty} A$ and put

$$
\mathcal{B}_{i}:=W^{*}\left(\pi_{\psi}\left(\lambda_{i}(A)\right) \cup \mathcal{T}_{\psi}\right) .
$$

Then $\left(\mathcal{B}_{i}\right)_{i=1}^{\infty}$ is free with respect to E_{ψ}.

Remark

- Our proof is modeled along the proof of K \& Speicher (2009), but now starts in an C^{*}-algebraic setting and does not assume the faithfulness of states.
- Curran's approach (2009) considers the more delicate situation of quantum exchangeability of finite sequences in a *-algebraic setting and obtains the result for infinite sequences as a limiting

What tail algebras can appear?

In Størmer's setting of symmetric states on $\bigotimes_{1}^{\infty} A$, only abelian tail algebras can arise. But in our setting of quantum symmetric states one has:

Theorem (Dykema \& K '2012)
Let \mathcal{N} be a countable generated von Neumann algebra. Then there exists a unital C^{*}-algebra A and a quantum symmetric state ψ on $\mathfrak{A}=*_{1}^{\infty} A$ such that $\mathcal{T}_{\psi} \simeq \mathcal{N}$.

Remark

Størmer's approach does not use tail algebras; the machinery of ergodic decomposition of states and Choquet theory is available.

Description of quantum symmetric states $\operatorname{QSS}(A)$

For a unital C^{*}-algebra A, let $\mathcal{V}(A)$ be the set (of all equivalence classes) of quintuples ($\mathcal{B}, \mathcal{D}, E, \sigma, \rho$) such that
(i) \mathcal{B} is a von Neumann algebra,
(ii) \mathcal{D} is a unital von Neumann subalgebra of \mathcal{B},
(iii) $E: \mathcal{B} \rightarrow \mathcal{D}$ is a normal conditional expectation onto \mathcal{D},
(iv) $\sigma: A \rightarrow \mathcal{B}$ is a unital *-homomorphism,
(v) ρ is a normal state on \mathcal{D},
(vi) the GNS representation of $\rho \circ E$ is a faithful represent. of \mathcal{B};
(vii) $\mathcal{B}=W^{*}(\sigma(A) \cup \mathcal{D})$,
(viii) \mathcal{D} is the smallest unital von Neumann subalgebra of \mathcal{B} that satisfies

$$
E\left(d_{0} \sigma\left(a_{1}\right) d_{1} \cdots \sigma\left(a_{n}\right) d_{n}\right) \in \mathcal{D}
$$

Theorem (Dykema \& K \& Williams)

There is a bijection $\mathcal{V}(A) \rightarrow \operatorname{QSS}(A)$ that assigns to $W=(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$ the quantum symmetric state $\psi=\psi_{W}$ as follows. Let

$$
(\mathcal{M}, \widetilde{E})=\left(*_{\mathcal{D}}\right)_{i=1}^{\infty}(\mathcal{B}, E)
$$

be the amalgamated free product of von Neumann algebras, let

$$
\pi_{i}: A \xrightarrow{\sigma} \mathcal{B} \xrightarrow{i \text {-th comp }} \mathcal{M}, \quad \pi:=*_{i=1}^{\infty} \pi_{i}: \mathfrak{A} \rightarrow \mathcal{M}
$$

free product *-homomorphism
and set $\psi=\rho \circ \widetilde{E} \circ \pi$. Under this correspondence, the following identifications of objects and resulting constructions can be made:

from GNS construction	\mathcal{T}_{ψ}	\mathcal{M}_{ψ}	π_{ψ}	$\hat{\psi}$	E_{ψ}	
from quintuple W	D	\mathcal{M}		$\rho \circ \tilde{E}$	\tilde{E}	

N-pure states on von Neumann algebras

A state ψ on a C^{*}-algebra is said to be pure if whenever ρ is a state on this C^{*}-algebra with $t \rho \leq \psi$ for some $0<t<1$, it follows $\rho=\psi$.

Proposition

Let ρ be a normal state on the von Neumann algebra \mathcal{D}. TFAE:
(i) the support projection of ρ is a minimal projection in \mathcal{D},
(ii) ρ is pure.

To emphasize this support property, a normal pure state ρ on \mathcal{D} is called an \mathbf{n}-pure state.

Remark

Von Neumann algebras without discrete type I parts possess no n-pure states, but such von Neumann algebras may appear as tail algebra for a quantum symmetric state.

Extreme quantum symmetric states

Theorem (Dykema \& K \& Williams)
Let $\psi \in \operatorname{QSS}(A)$ and let $W=(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$ be the quintuple corresponding to ψ (under the bijection as indicated in the previous theorem).

$$
\psi \in \partial_{e} \operatorname{QSS}(A) \quad \Longleftrightarrow \quad \rho \text { is an n-pure state on } \mathcal{D} \text {. }
$$

Remark

- Though having an n-pure state is a restriction on the tail algebra and forces it to have a discrete type I part, the tail algebra can still be quite complicated.
- For various examples of quantum symmetric states with 'exotic tail algebras' see our preprint.

Central quantum symmetric states

Recall that $\mathfrak{A}=*_{1}^{\infty} A$.
Notation
$\operatorname{ZQSS}(A):=\left\{\psi \in \operatorname{QSS}(A) \mid \mathcal{T}_{\psi} \subset \mathcal{Z}\left(\pi_{\psi}(\mathfrak{A})^{\prime \prime}\right)\right\}$
$\operatorname{ZTQSS}(A):=\operatorname{TQSS}(A) \cap \operatorname{ZQSS}(A)$
Theorem (Dykema \& K \& Williams)
$\operatorname{ZQSS}(A)$ and ZTQSS (A) are compact, convex subsets of QSS (A) and both are Choquet simplices, whose extreme points are the free product states and free product tracial states, respectively:

$$
\begin{aligned}
\partial_{e}(\operatorname{ZQSS}(A)) & =\left\{*_{1}^{\infty} \phi \mid \phi \in \mathrm{S}(A)\right\} \\
\partial_{e}(\operatorname{ZTQSS}(A)) & =\left\{*_{1}^{\infty} \tau \mid \tau \in \operatorname{TS}(A)\right\}
\end{aligned}
$$

Remark
$\operatorname{ZQSS}(A)$ is that part of QSS (A) which is in analogy to Størmer's
result on symmetric states on the minimal tenser nondut $\operatorname{cin}^{\infty} \|$.

A final question ...

It is known that $\operatorname{TS}(A)$, if non-empty, forms a Choquet simplex.
Question
Is $\operatorname{TQSS}(A)$ a Choquet simplex whenever $\operatorname{TS}(A)$ is non-empty?

Thank you for your attention!

