Quantum symmetric states on free product C*-algebras

Claus Köstler University College Cork

Joint work with Ken Dykema & John Williams arXiv:1305.7293

Focus Program on Noncommutative Distributions in Free Probability

Workshop on Combinatorial and Random Matrix Aspects of Noncommutative Distributions and Free Probability Fields Institute, Toronto, July 2-6, 2013

・ロト ・四ト ・ヨト ・ヨト - ヨ

Classical Probability

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 \rightsquigarrow Subject of distributional symmetries and invariance principles

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

→ Subject of distributional symmetries and invariance principles
 Free Probability

→ Subject of distributional symmetries and invariance principles
 Free Probability

 \rightsquigarrow Foundation of free probability theory

→ Subject of distributional symmetries and invariance principles
 Free Probability

 \rightsquigarrow Foundation of free probability theory

→ Subject of distributional symmetries and invariance principles
 Free Probability

 \rightsquigarrow Foundation of free probability theory

 \rightsquigarrow New direction of research in free probability

Consider probability space $\mathbb{A} = (\Omega, \Sigma, P)$ with expectation

$$arphi(X) = \int_{\Omega} X(\omega) dP(\omega)$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Consider probability space $\mathbb{A} = (\Omega, \Sigma, P)$ with expectation

$$arphi(X) = \int_{\Omega} X(\omega) dP(\omega)$$

Definition

Random variables $X_1, X_2, \ldots \subset L^{\infty}(\mathbb{A})$ are **exchangeable** if

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all permutations π

Consider probability space $\mathbb{A} = (\Omega, \Sigma, P)$ with expectation

$$arphi(X) = \int_{\Omega} X(\omega) dP(\omega)$$

Definition

Random variables $X_1, X_2, \ldots \subset L^{\infty}(\mathbb{A})$ are **exchangeable** if

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all permutations π

Examples

• $\varphi(X_1^n) = \varphi(X_5^n)$ $\rightsquigarrow X_i$'s are identically distributed

Consider probability space $\mathbb{A} = (\Omega, \Sigma, P)$ with expectation

$$arphi(X) = \int_{\Omega} X(\omega) dP(\omega)$$

Definition

Random variables $X_1, X_2, \ldots \subset L^{\infty}(\mathbb{A})$ are **exchangeable** if

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all permutations π

- $\varphi(X_1^n) = \varphi(X_5^n)$ $\rightsquigarrow X_i$'s are identically distributed
- $\varphi(X_1^2 X_4^5 X_3) = \varphi(X_{1+k}^2 X_{4+k}^5 X_{3+k}) \longrightarrow X_i$'s are stationary

Consider probability space $\mathbb{A} = (\Omega, \Sigma, P)$ with expectation

$$arphi(X) = \int_{\Omega} X(\omega) dP(\omega)$$

Definition

Random variables $X_1, X_2, \ldots \subset L^{\infty}(\mathbb{A})$ are **exchangeable** if

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all permutations π

Examples

• $\varphi(X_1^n) = \varphi(X_5^n)$ $\rightsquigarrow X_i$'s are identically distributed

- $\varphi(X_1^2 X_4^5 X_3) = \varphi(X_{1+k}^2 X_{4+k}^5 X_{3+k}) \longrightarrow X_i$'s are stationary
- $\varphi(X_1^2 X_4^5 X_3) = \varphi(X_6^2 X_1^5 X_9)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

(a) The infinite sequence X_1, X_2, \ldots is exchangeable

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the **tail** σ -algebra

$$\Sigma^{\mathrm{tail}} := \bigcap_{n \in \mathbb{N}} \sigma(X_k | k \ge n)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the **tail** σ -algebra

$$\Sigma^{\mathrm{tail}} := \bigcap_{n \in \mathbb{N}} \sigma(X_k | k \ge n)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Examples

constant sequence X, X, X, ...

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the **tail** σ -algebra

$$\Sigma^{\mathrm{tail}} := \bigcap_{n \in \mathbb{N}} \sigma(X_k | k \ge n)$$

- constant sequence X, X, X, ...
- infinite coin tosses, each with Bernoulli distribution (p, 1 p)

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the **tail** σ -algebra

$$\Sigma^{\mathrm{tail}} := \bigcap_{n \in \mathbb{N}} \sigma(X_k | k \ge n)$$

- constant sequence X, X, X, ...
- infinite coin tosses, each with Bernoulli distribution (p, 1 p)
- mixture of (p, 1 p)-biased infinite coin tosses

Theorem (De Finetti 1931, Hewitt & Savage 1955,...) The following are equivalent:

- (a) The infinite sequence X_1, X_2, \ldots is **exchangeable**
- (b) The infinite sequence X_1, X_2, \ldots is conditionally i.i.d.

Here the conditioning is with respect to the **tail** σ -algebra

$$\Sigma^{\mathrm{tail}} := \bigcap_{n \in \mathbb{N}} \sigma(X_k | k \ge n)$$

- constant sequence *X*, *X*, *X*, ...
- infinite coin tosses, each with Bernoulli distribution (p, 1 p)
- mixture of (p, 1 p)-biased infinite coin tosses
 - \equiv exchangeable sequence of 0-1-valued random variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ⊙

• ... distributional symmetry: by its very definition

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all $\pi \in \mathbb{S}_{\infty}$

• ... distributional symmetry: by its very definition

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all $\pi \in \mathbb{S}_{\infty}$

• ... dynamical symmetry: There is an action $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(L^{\infty}(\mathbb{A}))$ such that

$$\varphi = \varphi \circ \rho_{\pi} \qquad \qquad \rho_{\pi}(X_i) = X_{\pi(i)}$$

イロト (部) (日) (日) (日) (日)

• ... distributional symmetry: by its very definition

$$\varphi(X_{i_1}\cdots X_{i_n})=\varphi(X_{\pi(i_1)}\cdots X_{\pi(i_n)})$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \mathbb{N}$, and all $\pi \in \mathbb{S}_\infty$

• ... dynamical symmetry: There is an action $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(L^{\infty}(\mathbb{A}))$ such that

$$\varphi = \varphi \circ \rho_{\pi} \qquad \qquad \rho_{\pi}(X_i) = X_{\pi(i)}$$

... dynamical co-symmetry: there is a *-homomorphism
 α: L[∞](A) → C(S_k) ⊗ L[∞](A) such that

$$\mathsf{id} \otimes \varphi \circ \alpha(\bullet) = \varphi(\bullet) \mathbb{1} \qquad (\mathsf{invariance})$$

$$lpha(X_i) = \sum_{j=1} e(\pi)_{ij} \otimes X_j$$
 (coaction)

for all permutation matrices $e(\pi)$ with $e(\pi)_{ij} = \delta_{\pi(i)j}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ⊙

... distributional co-symmetry: As equation in the Hopf C*-algebra C(S_k),

$$\varphi(X_{i_1}\cdots X_{i_n})\mathbb{1}(\pi)=\sum_{j_1,\ldots,j_n=1}^k e(\pi)_{i_1j_1}\cdots e(\pi)_{i_nj_n} \varphi(X_{j_1}\cdots X_{j_n})$$

for all permutation $k \times k$ -matrices $e(\pi)$ with $e(\pi)_{ij} = \delta_{\pi(i)j}$

... distributional co-symmetry: As equation in the Hopf C*-algebra C(S_k),

$$\varphi(X_{i_1}\cdots X_{i_n})\mathbb{1}(\pi)=\sum_{j_1,\ldots,j_n=1}^k e(\pi)_{i_1j_1}\cdots e(\pi)_{i_nj_n} \varphi(X_{j_1}\cdots X_{j_n})$$

for all permutation $k \times k$ -matrices $e(\pi)$ with $e(\pi)_{ij} = \delta_{\pi(i)j}$

$$\left[= \varphi(X_{\pi(j_1)} \cdots X_{\pi(j_n)}) \mathbb{1}(\pi) \right]$$

 ... distributional co-symmetry: As equation in the Hopf C*-algebra C(S_k),

$$\varphi(X_{i_1}\cdots X_{i_n})\mathbb{1}(\pi)=\sum_{j_1,\ldots,j_n=1}^k e(\pi)_{i_1j_1}\cdots e(\pi)_{i_nj_n} \varphi(X_{j_1}\cdots X_{j_n})$$

for all permutation $k \times k$ -matrices $e(\pi)$ with $e(\pi)_{ij} = \delta_{\pi(i)j}$

$$\left[= \varphi(X_{\pi(j_1)} \cdots X_{\pi(j_n)}) \mathbb{1}(\pi) \right]$$

Key idea (K. & Speicher 2008):

Exchangeability as a co-symmetry can be 'quantized': \diamond Replace X_k 's by **operators** $x_1, x_2, ...$

... distributional co-symmetry: As equation in the Hopf C*-algebra C(S_k),

$$\varphi(X_{i_1}\cdots X_{i_n})\mathbb{1}(\pi)=\sum_{j_1,\ldots,j_n=1}^k e(\pi)_{i_1j_1}\cdots e(\pi)_{i_nj_n} \varphi(X_{j_1}\cdots X_{j_n})$$

for all permutation $k \times k$ -matrices $e(\pi)$ with $e(\pi)_{ij} = \delta_{\pi(i)j}$

$$\left[= \varphi(X_{\pi(j_1)} \cdots X_{\pi(j_n)}) \mathbb{1}(\pi) \right]$$

(ロ) (同) (目) (日) (日) (0) (0)

Key idea (K. & Speicher 2008):

Exchangeability as a co-symmetry can be 'quantized': \diamond Replace X_k 's by **operators** $x_1, x_2, ...$ \diamond Replace $C(\mathbb{S}_k)$ by **quantum permutation group** $A_s(k)$

Definition and Theorem (Wang 1998)

The quantum permutation group $A_s(k)$ is the universal unital C*-algebra generated by e_{ij} (i, j = 1, ..., k) subject to the relations

イロト (部) (日) (日) (日) (日)

Definition and Theorem (Wang 1998)

The quantum permutation group $A_s(k)$ is the universal unital C*-algebra generated by e_{ij} (i, j = 1, ..., k) subject to the relations

イロト (部) (日) (日) (日) (日)

•
$$e_{ij}^2 = e_{ij} = e_{ij}^*$$
 for all $i, j = 1, ..., k$

Definition and Theorem (Wang 1998)

The **quantum permutation group** $A_s(k)$ is the universal unital C*-algebra generated by e_{ij} (i, j = 1, ..., k) subject to the relations

•
$$e_{ij}^2 = e_{ij} = e_{ij}^*$$
 for all $i, j = 1, ..., k$
• each column and row of $\begin{bmatrix} e_{11} & \cdots & e_{1k} \\ \vdots & \ddots & \vdots \\ e_{k1} & \cdots & e_{kk} \end{bmatrix}$ is a partition of unity

Definition and Theorem (Wang 1998)

The **quantum permutation group** $A_s(k)$ is the universal unital C*-algebra generated by e_{ij} (i, j = 1, ..., k) subject to the relations

•
$$e_{ij}^2 = e_{ij} = e_{ij}^*$$
 for all $i, j = 1, ..., k$
• each column and row of $\begin{bmatrix} e_{11} & \cdots & e_{1k} \\ \vdots & \ddots & \vdots \\ e_{k1} & \cdots & e_{kk} \end{bmatrix}$ is a partition of unity

 $A_s(k)$ is a **compact quantum group** in the sense of Woronowicz, in particular a Hopf C*-algebra

Definition and Theorem (Wang 1998)

The **quantum permutation group** $A_s(k)$ is the universal unital C*-algebra generated by e_{ij} (i, j = 1, ..., k) subject to the relations

•
$$e_{ij}^2 = e_{ij} = e_{ij}^*$$
 for all $i, j = 1, ..., k$
• each column and row of $\begin{bmatrix} e_{11} & \cdots & e_{1k} \\ \vdots & \ddots & \vdots \\ e_{k1} & \cdots & e_{kk} \end{bmatrix}$ is a partition of unity

 $A_s(k)$ is a **compact quantum group** in the sense of Woronowicz, in particular a Hopf C*-algebra

The **abelianization** of $A_s(k)$ is $C(\mathbb{S}_k)$, the continuous functions on the symmetric group \mathbb{S}_k

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state) Definition (K. & Speicher 2008) Consider a W*-probability space (A, φ).

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state) Definition (K. & Speicher 2008)

Consider a W*-probability space (\mathcal{A}, φ) . A sequence of operators $x_1, x_2, \ldots \subset \mathcal{A}$ is **quantum exchangeable** if its distribution is invariant under the coaction of quantum permutations:

$$\varphi(x_{i_1}\cdots x_{i_n})\mathbb{1}_{A_s(k)}=\sum_{j_1,\ldots,j_n=1}^k e_{i_1j_1}\cdots e_{i_nj_n} \varphi(x_{j_1}\cdots x_{j_n})$$

for all $k \times k$ -matrices $(e_{ij})_{ij}$ satisfying defining relations for $A_s(k)$.

Quantum exchangeability

W*-probability space \equiv (von Neumann algebra, faithful normal state) Definition (K. & Speicher 2008)

Consider a W*-probability space (\mathcal{A}, φ) . A sequence of operators $x_1, x_2, \ldots \subset \mathcal{A}$ is **quantum exchangeable** if its distribution is invariant under the coaction of quantum permutations:

$$\varphi(x_{i_1}\cdots x_{i_n})\mathbb{1}_{A_s(k)}=\sum_{j_1,\ldots,j_n=1}^k e_{i_1j_1}\cdots e_{i_nj_n} \varphi(x_{j_1}\cdots x_{j_n})$$

for all $k \times k$ -matrices $(e_{ij})_{ij}$ satisfying defining relations for $A_s(k)$.

 $\begin{array}{c} \mathsf{Remark} \\ \hline \\ \mathsf{quantum exchangeability} \end{array} \overleftrightarrow{exchangeability} \end{array}$

A free analogue of de Finetti's theorem

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of noncommutative random variables x_1, x_2, \ldots in a W*-probability space (\mathcal{A}, φ) :

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

A free analogue of de Finetti's theorem

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of noncommutative random variables x_1, x_2, \ldots in a W*-probability space (\mathcal{A}, φ) :

イロト (部) (日) (日) (日) (日)

(a) the sequence is quantum exchangeable

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of noncommutative random variables x_1, x_2, \ldots in a W*-probability space (\mathcal{A}, φ) :

- (a) the sequence is quantum exchangeable
- (b) the sequence is identically distributed and freely independent with amalgamation over \mathcal{T}

Here \mathcal{T} denotes the **tail von Neumann algebra**

$$\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathsf{vN}(x_k | k \ge n)$$

イロト (部) (日) (日) (日) (日)

Quantum symmetric states

Definition (Dykema & K & Williams)

Let *A* be a unital C*-algebra, (\mathfrak{B}, ϕ) a C*-probability space and $\lambda_i \colon \mathfrak{A} \to \mathfrak{B}$ unital *-homomorphisms $(i \in \mathbb{N})$. The sequence $(\lambda_i)_i$ is said to be **quantum exchangeable w.r.t.** ψ or the state ψ is said to be **quantum symmetric** w.r.t. $(\lambda_i)_i$ if

$$\psi(\lambda_{i_1}(a_1)\cdots\lambda_{i_n}(a_n))\mathbb{1}_{A_s(k)}$$
$$=\sum_{j_1,\dots,j_n=1}^k e_{i_1j_1}\cdots e_{i_nj_n} \ \psi(\lambda_{j_1}(a_1)\cdots\lambda_{j_n}(a_n))\mathbb{1}_{A_s(k)}$$

for all $n \in \mathbb{N}$, all $i_1, \ldots, i_n \in \{1, \ldots, k\}$, all $a_1, \ldots, a_n \in A$, all $k \times k$ -matrices $(e_{ij})_{ij}$ satisfying defining relations for $A_s(k)$.

Standing notation — Goal

Throughout A is a unital C*-algebra and $\mathfrak{A} := *_1^{\infty} A$ denotes the universal, unital free product of infinitely many copies of A.

QSS(A) denotes the set of all quantum symmetric states on \mathfrak{A} .

TQSS(A) denotes the set of all tracial quantum symmetric states on \mathfrak{A} .

Proposition

For any unital C*-algebra A the sets QSS(A) and TQSS(A) are compact, convex subsets of the Banach space dual of \mathfrak{A} in the weak*-topology.

Goal

Study and characterize QSS(A) and TQSS(A) as far as possible.

What is the free probability counterpart to the following 'classical' result?

Theorem (Størmer 1969)

Let A be a unital C*-algebra and $\bigotimes_{1}^{\infty} A$ the infinite minimal tensor product of A. Then the set of all symmetric states on $\bigotimes_{1}^{\infty} A$ is a Choquet simplex and an extreme symmetric state on $\bigotimes_{1}^{\infty} A$ is an infinite tensor product state of the form $\bigotimes_{1}^{\infty} \psi$, with $\psi \in S(A)$.

Remark

So, for a given unital C*-algebra, one has a bijective correspondence between symmetric states on $\bigotimes_{1}^{\infty} A$ and probability measures on S(A).

Quantum symmetric states arising from freeness

Proposition

Let \mathfrak{B} be a unital C*-algebra and $\mathfrak{D} \subseteq \mathfrak{B}$ be unital C*-subalgebra with conditional expectation $E \colon \mathfrak{B} \to \mathfrak{D}$ (i.e. a projection of norm one onto \mathfrak{D}). Suppose that

$$\pi_i \colon A \to \mathfrak{B} \qquad (i \in \mathbb{N})$$

are *-homorphisms such that $E \circ \pi_i$ is the same for all *i* and that $(\pi_i(A))_{i=1}^{\infty}$ is free with respect to *E*. Let $\pi = *_{i=1}^{\infty} \pi_i \colon \mathfrak{A} \to \mathfrak{B}$ be the resulting free product *-homomorphism. For a state ρ on \mathfrak{D} consider the state $\psi = \rho \circ E \circ \pi$. Then ψ is **quantum symmetric**.

Remark

The proof uses Speicher's free \mathfrak{D} -valued cumulants and the defining properties of the projections e_{ij} from Wang's quantum permutation groups.

Let ψ be a state on $\mathfrak{A} = *_1^{\infty} A$. Passing to the GNS representation $(\mathcal{H}_{\psi}, \pi_{\psi}, \Omega_{\psi})$ of (\mathfrak{A}, ψ) , put

$$\mathcal{M}_{\psi} = \pi_{\psi}(\mathfrak{A})'' \qquad \hat{\psi} := \langle \Omega_{\psi}, ullet \Omega_{\psi}
angle$$

The **tail algebra** of ψ is the von Neumann subalgebra

$$\mathcal{T}_{\psi} = \bigcap_{n=1}^{\infty} W^* \Big(\bigcup_{i=n}^{\infty} \pi_{\psi}(\lambda_i(A)) \Big) \subset \mathcal{M}_{\psi}.$$

Proposition (Dykema & K & Williams)

Suppose ψ is symmetric. Then there exists a normal $\hat{\psi}$ -preserving conditional expection E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ} .

'Quantum symmetric noncommutative distributions' imply freeness with amalgamation

Theorem (Dykema & K & Williams)

Let ψ be a quantum symmetric state on $\mathfrak{A} = *^\infty_1 A$ and put

$$\mathcal{B}_i := W^* \Big(\pi_{\psi}(\lambda_i(\mathcal{A})) \cup \mathcal{T}_{\psi} \Big).$$

Then $(\mathcal{B}_i)_{i=1}^{\infty}$ is free with respect to E_{ψ} .

Remark

- Our proof is modeled along the proof of K & Speicher (2009), but now starts in an C*-algebraic setting and does **not** assume the faithfulness of states.

- Curran's approach (2009) considers the more delicate situation of quantum exchangeability of finite sequences in a *-algebraic setting and obtains the result for infinite sequences as a limiting case. but also under the assumption of faithfulness of the state.

In Størmer's setting of symmetric states on $\bigotimes_{1}^{\infty} A$, only abelian tail algebras can arise. But in our setting of quantum symmetric states one has:

Theorem (Dykema & K '2012)

Let \mathcal{N} be a countable generated von Neumann algebra. Then there exists a unital C*-algebra A and a quantum symmetric state ψ on $\mathfrak{A} = *_1^{\infty} A$ such that $\mathcal{T}_{\psi} \simeq \mathcal{N}$.

Remark

Størmer's approach does **not** use tail algebras; the machinery of ergodic decomposition of states and Choquet theory is available.

Description of quantum symmetric states QSS(A)

For a unital C*-algebra A, let $\mathcal{V}(A)$ be the set (of all equivalence classes) of quintuples $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$ such that

- (i) \mathcal{B} is a von Neumann algebra,
- (ii) \mathcal{D} is a unital von Neumann subalgebra of \mathcal{B} ,
- (iii) $E \colon \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation onto \mathcal{D} ,
- (iv) $\sigma \colon A \to \mathcal{B}$ is a unital *-homomorphism,
- (v) ρ is a normal state on \mathcal{D} ,
- (vi) the GNS representation of $\rho \circ E$ is a faithful represent. of \mathcal{B} ; (vii) $\mathcal{B} = W^* (\sigma(A) \cup D)$,
- (viii) ${\cal D}$ is the smallest unital von Neumann subalgebra of ${\cal B}$ that satisfies

$$E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n)\in\mathcal{D}$$

whenever $n \in \mathbb{N}$, $d_0, \ldots, d_n \in \mathcal{D}$ and $a_1, \ldots, a_n \in A$.

Theorem (Dykema & K & Williams)

There is a bijection $\mathcal{V}(A) \to QSS(A)$ that assigns to $W = (\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$ the quantum symmetric state $\psi = \psi_W$ as follows. Let

$$(\mathcal{M}, \widetilde{E}) = (*_{\mathcal{D}})_{i=1}^{\infty}(\mathcal{B}, E)$$

be the amalgamated free product of von Neumann algebras, let

$$\pi_{i} \colon A \xrightarrow{\sigma} \mathcal{B} \xrightarrow{i\text{-th comp}} \mathcal{M}, \qquad \qquad \pi := \ast_{i=1}^{\infty} \pi_{i} \colon \mathfrak{A} \to \mathcal{M}$$
free product *-homomorphism

and set $\psi = \rho \circ \tilde{E} \circ \pi$. Under this correspondence, the following identifications of objects and resulting constructions can be made:

from GNS construction	\mathcal{T}_ψ	\mathcal{M}_ψ	π_ψ	$\hat{\psi}$	E_{ψ}			
from quintuple W	\mathcal{D}	\mathcal{M}	π	$\rho \circ \widetilde{E}$	Ĩ			
						≣≯	æ.	୬୯୯

N-pure states on von Neumann algebras

A state ψ on a C*-algebra is said to be **pure** if whenever ρ is a state on this C*-algebra with $t\rho \leq \psi$ for some 0 < t < 1, it follows $\rho = \psi$.

Proposition

Let ρ be a normal state on the von Neumann algebra \mathcal{D} . TFAE: (i) the support projection of ρ is a minimal projection in \mathcal{D} , (ii) ρ is pure.

To emphasize this support property, a normal pure state ρ on \mathcal{D} is called an **n-pure state**.

Remark

Von Neumann algebras without discrete type *I* parts possess **no** n-pure states, but such von Neumann algebras **may** appear as tail algebra for a quantum symmetric state.

Theorem (Dykema & K & Williams)

Let $\psi \in QSS(A)$ and let $W = (\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$ be the quintuple corresponding to ψ (under the bijection as indicated in the previous theorem).

 $\psi \in \partial_e \operatorname{QSS}(A) \iff \rho \text{ is an n-pure state on } \mathcal{D}.$

Remark

- Though having an n-pure state is a restriction on the tail algebra and forces it to have a discrete type I part, the tail algebra can still be quite complicated.

- For various examples of quantum symmetric states with 'exotic tail algebras' see our preprint.

Central quantum symmetric states

Recall that $\mathfrak{A} = *_1^{\infty} A$.

Notation $ZQSS(A) := \{ \psi \in QSS(A) | \mathcal{T}_{\psi} \subset \mathcal{Z}(\pi_{\psi}(\mathfrak{A})'') \}$ $ZTQSS(A) := TQSS(A) \cap ZQSS(A)$

Theorem (Dykema & K & Williams)

ZQSS(A) and ZTQSS(A) are compact, convex subsets of QSS(A) and both are Choquet simplices, whose extreme points are the free product states and free product tracial states, respectively:

$$\partial_{e}(\mathsf{ZQSS}(A)) = \{ *_{1}^{\infty} \phi \mid \phi \in \mathsf{S}(A) \} \\ \partial_{e}(\mathsf{ZTQSS}(A)) = \{ *_{1}^{\infty} \tau \mid \tau \in \mathsf{TS}(A) \}$$

Remark

ZQSS(A) is that part of QSS(A) which is in analogy to Størmer's result on symmetric states on the minimal tensor product $\otimes_{1}^{\infty} A$.

A final question ...

It is known that TS(A), if non-empty, forms a Choquet simplex. Question Is TQSS(A) a Choquet simplex whenever TS(A) is non-empty?

Thank you for your attention!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの