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Exchangeability in classical probability

Consider probability space A = (Ω,Σ,P) with expectation

ϕ(X ) =

∫
Ω
X (ω)dP(ω)

Definition
Random variables X1,X2, . . . ⊂ L∞(A) are exchangeable if

ϕ(Xi1 · · ·Xin) = ϕ(Xπ(i1) · · ·Xπ(in))

for all n ∈ N, all i1, . . . , in ∈ N, and all permutations π

Examples

• ϕ(X n
1 ) = ϕ(X n

5 )  Xi ’s are identically distributed

• ϕ(X 2
1 X

5
4 X3) = ϕ(X 2

1+kX
5
4+kX3+k)  Xi ’s are stationary

• ϕ(X 2
1 X

5
4 X3) = ϕ(X 2

6 X
5
1 X9)
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The classical de Finetti theorem

Theorem (De Finetti 1931, Hewitt & Savage 1955,. . . )

The following are equivalent:

(a) The infinite sequence X1,X2, . . . is exchangeable

(b) The infinite sequence X1,X2, . . . is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-algebra

Σtail :=
⋂
n∈N

σ(Xk |k ≥ n)

Examples

• constant sequence X ,X ,X , . . .

• infinite coin tosses, each with Bernoulli distribution (p, 1− p)

• mixture of (p, 1− p)-biased infinite coin tosses

≡ exchangeable sequence of 0-1-valued random variables
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Equivalent formulations: Exchangeability is a . . .

• . . . distributional symmetry: by its very definition

ϕ(Xi1 · · ·Xin) = ϕ(Xπ(i1) · · ·Xπ(in))

for all n ∈ N, all i1, . . . , in ∈ N, and all π ∈ S∞
• . . . dynamical symmetry: There is an action
ρ : S∞ → Aut(L∞(A)) such that

ϕ = ϕ ◦ ρπ ρπ(Xi ) = Xπ(i)

• . . . dynamical co-symmetry: there is a *-homomorphism
α : L∞(A)→ C (Sk)⊗ L∞(A) such that

id⊗ϕ ◦ α(•) = ϕ(•)1l (invariance)

α(Xi ) =
k∑

j=1

e(π)ij ⊗ Xj (coaction)

for all permutation matrices e(π) with e(π)ij = δπ(i)j
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Equivalent formulations: Exchangeability is a . . .

• . . . distributional co-symmetry: As equation in the Hopf
C*-algebra C (Sk),

ϕ(Xi1 · · ·Xin)1l(π) =
k∑

j1,...,jn=1

e(π)i1j1 · · · e(π)injn ϕ(Xj1 · · ·Xjn)

for all permutation k × k-matrices e(π) with e(π)ij = δπ(i)j

[
= ϕ(Xπ(j1) · · ·Xπ(jn))1l(π)

]

Key idea (K. & Speicher 2008):

Exchangeability as a co-symmetry can be ‘quantized’:
� Replace Xk ’s by operators x1, x2, . . .

� Replace C (Sk) by quantum permutation group As(k)
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Quantum Permutation Groups

Definition and Theorem (Wang 1998)

The quantum permutation group As(k) is the universal unital
C*-algebra generated by eij (i , j = 1, . . . k) subject to the relations

• e2
ij = eij = e∗ij for all i , j = 1, . . . , k

• each column and row of

e11 · · · e1k
...

. . .
...

ek1 · · · ekk

 is a partition of unity

As(k) is a compact quantum group in the sense of Woronowicz,
in particular a Hopf C*-algebra

The abelianization of As(k) is C (Sk), the continuous functions on
the symmetric group Sk
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Quantum exchangeability

W*-probability space ≡ (von Neumann algebra, faithful normal state)

Definition (K. & Speicher 2008)

Consider a W*-probability space (A, ϕ).

A sequence of operators
x1, x2, . . . ⊂ A is quantum exchangeable if its distribution is
invariant under the coaction of quantum permutations:

ϕ(xi1 · · · xin)1lAs(k) =
k∑

j1,...,jn=1

ei1j1 · · · einjn ϕ(xj1 · · · xjn)

for all k × k-matrices (eij)ij satisfying defining relations for As(k).

Remark
quantum exchangeability =⇒

6⇐= exchangeability
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A free analogue of de Finetti’s theorem

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of
noncommutative random variables x1, x2, . . . in a W*-probability
space (A, ϕ):

(a) the sequence is quantum exchangeable

(b) the sequence is identically distributed and freely
independent with amalgamation over T

Here T denotes the tail von Neumann algebra

T =
⋂
n∈N

vN(xk |k ≥ n)
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Quantum symmetric states

Definition (Dykema & K & Williams)

Let A be a unital C*-algebra, (B, φ) a C*-probability space and
λi : A→ B unital *-homomorphisms (i ∈ N). The sequence (λi )i
is said to be quantum exchangeable w.r.t. ψ or the state ψ is
said to be quantum symmetric w.r.t. (λi )i if

ψ(λi1(a1) · · ·λin(an))1lAs(k)

=
k∑

j1,...,jn=1

ei1j1 · · · einjn ψ(λj1(a1) · · ·λjn(an))1lAs(k)

for all n ∈ N, all i1, . . . in ∈ {1, . . . , k}, all a1, . . . an ∈ A, all
k × k-matrices (eij)ij satisfying defining relations for As(k).



Standing notation — Goal

Throughout A is a unital C*-algebra and A := ∗∞1 A denotes the
universal, unital free product of infinitely many copies of A.

QSS(A) denotes the set of all quantum symmetric states on A.

TQSS(A) denotes the set of all tracial quantum symmetric states
on A.

Proposition

For any unital C*-algebra A the sets QSS(A) and TQSS(A) are
compact, convex subsets of the Banach space dual of A in the
weak*-topology.

Goal
Study and characterize QSS(A) and TQSS(A) as far as possible.



What is the free probability counterpart
to the following ’classical’ result?

Theorem (Størmer 1969)

Let A be a unital C*-algebra and
⊗∞

1 A the infinite minimal tensor
product of A. Then the set of all symmetric states on

⊗∞
1 A is a

Choquet simplex and an extreme symmetric state on
⊗∞

1 A is an
infinite tensor product state of the form

⊗∞
1 ψ, with ψ ∈ S(A).

Remark
So, for a given unital C*-algebra, one has a bijective
correspondence between symmetric states on

⊗∞
1 A and

probability measures on S(A).



Quantum symmetric states arising from freeness

Proposition

Let B be a unital C*-algebra and D ⊆ B be unital C*-subalgebra
with conditional expectation E : B→ D (i.e. a projection of norm
one onto D). Suppose that

πi : A→ B (i ∈ N)

are *-homorphisms such that E ◦ πi is the same for all i and that
(πi (A))∞i=1 is free with respect to E . Let π = ∗∞i=1πi : A→ B be
the resulting free product *-homomorphism. For a state ρ on D
consider the state ψ = ρ ◦ E ◦ π. Then ψ is quantum symmetric.

Remark
The proof uses Speicher’s free D-valued cumulants and the
defining properties of the projections eij from Wang’s quantum
permutation groups.



Tail algebras of symmetric states

Let ψ be a state on A = ∗∞1 A. Passing to the GNS representation
(Hψ, πψ,Ωψ) of (A, ψ), put

Mψ = πψ(A)′′ ψ̂ := 〈Ωψ, •Ωψ〉

The tail algebra of ψ is the von Neumann subalgebra

Tψ =
∞⋂
n=1

W ∗
( ∞⋃

i=n

πψ(λi (A))
)
⊂Mψ.

Proposition (Dykema & K & Williams)

Suppose ψ is symmetric. Then there exists a normal ψ̂-preserving
conditional expection Eψ from Mψ onto Tψ.



’Quantum symmetric noncommutative distributions’ imply
freeness with amalgamation

Theorem (Dykema & K & Williams)

Let ψ be a quantum symmetric state on A = ∗∞1 A and put

Bi := W ∗
(
πψ(λi (A)) ∪ Tψ

)
.

Then (Bi )∞i=1 is free with respect to Eψ.

Remark
- Our proof is modeled along the proof of K & Speicher (2009),
but now starts in an C*-algebraic setting and does not assume the
faithfulness of states.
- Curran’s approach (2009) considers the more delicate situation of
quantum exchangeability of finite sequences in a *-algebraic
setting and obtains the result for infinite sequences as a limiting
case, but also under the assumption of faithfulness of the state.



What tail algebras can appear?

In Størmer’s setting of symmetric states on
⊗∞

1 A, only abelian
tail algebras can arise. But in our setting of quantum symmetric
states one has:

Theorem (Dykema & K ’2012)

Let N be a countable generated von Neumann algebra. Then
there exists a unital C*-algebra A and a quantum symmetric state
ψ on A = ∗∞1 A such that Tψ ' N .

Remark
Størmer’s approach does not use tail algebras; the machinery of
ergodic decomposition of states and Choquet theory is available.



Description of quantum symmetric states QSS(A)

For a unital C*-algebra A, let V(A) be the set (of all equivalence
classes) of quintuples (B,D,E , σ, ρ) such that

(i) B is a von Neumann algebra,

(ii) D is a unital von Neumann subalgebra of B,

(iii) E : B → D is a normal conditional expectation onto D,

(iv) σ : A→ B is a unital *-homomorphism,

(v) ρ is a normal state on D,

(vi) the GNS representation of ρ ◦ E is a faithful represent. of B;

(vii) B = W ∗
(
σ(A) ∪ D

)
,

(viii) D is the smallest unital von Neumann subalgebra of B that
satisfies

E (d0σ(a1)d1 · · ·σ(an)dn) ∈ D

whenever n ∈ N, d0, . . . , dn ∈ D and a1, . . . an ∈ A.



Theorem (Dykema & K & Williams)

There is a bijection V(A)→ QSS(A) that assigns to
W = (B,D,E , σ, ρ) ∈ V(A) the quantum symmetric state
ψ = ψW as follows. Let

(M, Ẽ ) = (∗D)∞i=1(B,E )

be the amalgamated free product of von Neumann algebras, let

πi : A
σ→ B

i-th comp
↪→ M, π := ∗∞i=1πi : A→M

free product *-homomorphism

and set ψ = ρ ◦ Ẽ ◦ π. Under this correspondence, the following
identifications of objects and resulting constructions can be made:

from GNS construction Tψ Mψ πψ ψ̂ Eψ

from quintuple W D M π ρ ◦ Ẽ Ẽ



N-pure states on von Neumann algebras

A state ψ on a C*-algebra is said to be pure if whenever ρ is a
state on this C*-algebra with tρ ≤ ψ for some 0 < t < 1, it follows
ρ = ψ.

Proposition

Let ρ be a normal state on the von Neumann algebra D. TFAE:

(i) the support projection of ρ is a minimal projection in D,

(ii) ρ is pure.

To emphasize this support property, a normal pure state ρ on D is
called an n-pure state.

Remark
Von Neumann algebras without discrete type I parts possess no
n-pure states, but such von Neumann algebras may appear as tail
algebra for a quantum symmetric state.



Extreme quantum symmetric states

Theorem (Dykema & K & Williams)

Let ψ ∈ QSS(A) and let W = (B,D,E , σ, ρ) ∈ V(A) be the
quintuple corresponding to ψ (under the bijection as indicated in
the previous theorem).

ψ ∈ ∂e QSS(A) ⇐⇒ ρ is an n-pure state on D.

Remark
- Though having an n-pure state is a restriction on the tail algebra
and forces it to have a discrete type I part, the tail algebra can still
be quite complicated.
- For various examples of quantum symmetric states with ’exotic
tail algebras’ see our preprint.



Central quantum symmetric states

Recall that A = ∗∞1 A.

Notation
ZQSS(A) := {ψ ∈ QSS(A) | Tψ ⊂ Z(πψ(A)′′)}
ZTQSS(A) := TQSS(A) ∩ ZQSS(A)

Theorem (Dykema & K & Williams)

ZQSS(A) and ZTQSS(A) are compact, convex subsets of QSS(A)
and both are Choquet simplices, whose extreme points are the free
product states and free product tracial states, respectively:

∂e(ZQSS(A)) = {∗∞1 φ |φ ∈ S(A)}
∂e(ZTQSS(A)) = {∗∞1 τ | τ ∈ TS(A)}

Remark
ZQSS(A) is that part of QSS(A) which is in analogy to Størmer’s
result on symmetric states on the minimal tensor product ⊗∞1 A.



A final question . . .

It is known that TS(A), if non-empty, forms a Choquet simplex.

Question
Is TQSS(A) a Choquet simplex whenever TS(A) is non-empty?

Thank you for your attention!


