Option Hedging with Market Impact

Robert Almgren

New York University
Courant Institute of Mathematical Sciences

Fields Institute, October 2013
Outline

1. Background and previous work
2. The problem
3. Formulation
4. Solution
5. Examples and applications

Work with Tianhui Michael Li
Princeton: Bendheim Center and ORFE
Equity price swings on July 19, 2012
(one day prior to options expiration)

Marko Kolanovic, global head of derivatives and quantitative strategy at JPMorgan & Chase Co

The four stocks with repeating price patterns yesterday had the biggest net long options positions among S&P 500 index companies, according to JPMorgan’s calculations, Kolanovic said in a note to clients today. The amount traded in the stocks was also consistent with what traders would have had to buy or sell, indicating that the patterns could be “almost entirely explained” by their need to hedge, he wrote.

“We believe that the price pattern of KO, IBM, MCD and AAPL yesterday was caused by hedging of options by a computer algorithm,” Kolanovic said in the note that referred to the companies by their ticker symbols. “It was likely an experiment in automatically hedging large option positions with a time-weighted algorithm that has gone wrong for the hedger.”
What does the saw-tooth pattern on US markets on 19 July 2012 tell us about the price formation process

The saw-tooth patterns observed on four US securities on 19 July provide us with an opportunity to comment on common beliefs regarding the market impact of large trades; its usual smoothness and amplitude, the subsequent “reversal” phase, and the generic nature of market impact models.

This underscores the importance of taking into account the motivation behind a large trade in order to optimise it properly, as we already emphasised in *Navigating Liquidity* 6.

We used different intraday analytics to work out what happened: pattern-matching techniques, market impact models, order flow imbalances and PnL computations of potential stat. arb intraday strategies. After looking at open interests of derivatives on these stocks, we conclude that repetitive automated hedging of large-exposure derivatives lay behind this behaviour. This is an opportunity to understand how a very crude trading algorithm can impact the price formation process ten times more than is usually the case.

Charles-Albert LEHALLE
Global Head of Quantitative Research
clehalle@cheuvreux.com
(33) 1 41 89 80 16

Matthieu LASNIER
Market microstructure specialist, Quantitative Research, Paris

Paul BESSON
Index and Portfolio Research Specialist, Quantitative Research, Paris

Hamza HARTI
Trading specialist, Quantitative Research, Paris

Weiping HUANG
PhD student, Quantitative Research, Paris

Nicolas JOSEPH
Performance analysis specialist, Quantitative Research, London

Lionel MASSOULARD
Trading specialist, Quantitative Research, New-York
Chevreux: sawtooths caused by options hedging

For a very large open interest position encompassing a large gamma, a significant move in the stock price will have disastrous effects for a basic rudimental hedger such as the one described above.

- Repetitive delta hedging seems to be the most plausible explanation

Simplistic hedging of large gamma options is a plausible explanation for the "saw-tooth" trading pattern. This explanation is consistent with the main features of this phenomenon: timing, aggressiveness, impact, predictability and information leakage which is what characterises those "saw-tooth" patterns. Fortunately, large option positions are most often managed dynamically in a continuous way, and discrete archaic hedging processes have almost disappeared in modern-day markets.

(we show how to do this better)
A market-induced mechanism for stock pinning

Marco Avellaneda1 and Michael D Lipkin2

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
2 Katama Trading, LLC, American Stock Exchange, 2 Rector Street, New York, NY 10006, USA

E-mail: avellaneda@courant.nyu.edu and mike.katama@att.net

Received 18 March 2003, in final form 11 July 2003
Published 5 September 2003
Online at stacks.iop.org/Quant/3/417

Abstract

We propose a model to describe stock pinning on option expiration dates. We argue that if the open interest on a particular contract is unusually large, delta-hedging in aggregate by floor market-makers can impact the stock price and drive it to the strike price of the option. We derive a stochastic differential equation for the stock price which has a singular drift that accounts for the price-impact of delta-hedging. According to this model, the stock price has a finite probability of pinning at a strike. We calculate analytically and numerically this probability in terms of the volatility of the stock, the time-to-maturity, the open interest for the option under consideration and a ‘price elasticity’ constant that models price impact.
2. The model pinning probabilities.

Including rigorous proofs of pinning and estimates for the institution.

\[\frac{\Delta S}{S} = EQ. \]

(1)

where \(Q \) represents the number of shares traded, \(S \) is the stock price, \(\Delta S \) is the change in stock price associated with a trade of size \(Q \) and \(E \) is a stock-specific proportionality constant.

Solution near expiration \(\Rightarrow \) pinning at strike

Figure 6. Cumulative probability distribution function computed by Monte Carlo simulation. The step corresponds to the fact that a finite fraction of the paths is pinned at the strike.
Modeling stock pinning

MARC JEANNIN*,†‡, GIULIA IORI§ and DAVID SAMUEL¶

†Department of Mathematics, King’s College London, The Strand, WC2Y 2LS London, UK
‡Models and Methodology Group, Nomura International plc, 1 St Martin’s-le-Grand, EC1A 4NP London, UK
§Department of Economics, City University, Northampton Square, EC1V 0HB London, UK
¶Royal Bank of Scotland, Global Banking and Markets, 135 Bishopsgate, EC2M 3UR London, UK

(Received 30 May 2006; in final form 30 November 2007)

This paper investigates the effect of hedging strategies on the so-called pinning effect, i.e. the tendency of stock’s prices to close near the strike price of heavily traded options as the expiration date nears. In the paper we extend the analysis of Avellaneda and Lipkin, who propose an explanation of stock pinning in terms of delta hedging strategies for long option positions. We adopt a model introduced by Frey and Stremme and show that, under the original assumptions of the model, pinning is driven by two effects: a hedging-dependent drift term that pushes the stock price toward the strike price and a hedging-dependent volatility term that constrains the stock price near the strike as it approaches it. Finally, we show that pinning can be generated by simulating trading in a double auction market. Pinning in the microstructure model is consistent with the Frey and Stremme model when both discrete hedging and stochastic impact are taken into account.
Jeannin, Iori, & Samuel 2008

\[dS(t) = n\hat{L}S(t) \frac{\partial \Delta}{\partial S} dS(t) + n\hat{L}S(t) \left(\frac{\partial \Delta}{\partial t} dt + \frac{1}{2} \frac{\partial^2 \Delta}{\partial S^2} d\langle S(t) \rangle \right) + \sigma S(t) dW(t), \]

The model further assumes that traders do not take into account feedback effects when rebalancing their portfolio.

Thus the stock price still follows a diffusion process,

\[dS(t) = b(t, S(t))S(t) dt + \nu(t, S(t))S(t) dW(t), \]

but with a new drift and volatility given by

\[
b(t, S(t)) = \frac{n\hat{L}}{1 - n\hat{L}S(t)(\partial \Delta/\partial S)}
\]

\[
\times \left\{ \frac{\partial \Delta}{\partial t} + \frac{1}{2} \frac{\partial^2 \Delta}{\partial S^2} \left[\sigma^2 S^2(t) \right] \right\},
\]

and

\[
\nu(t, S(t)) = \frac{\sigma}{1 - n\hat{L}S(t)(\partial \Delta/\partial S)}. \]

modified volatility
Other academic work

Frey & Stremme 1997
Sircar & Papanicolaou 1998
Schönbucher & Wilmott 2000

ad hoc impact model (permanent)
modified volatility
Closest related work

Rogers & Singh 2010

temporary impact only

no global effects

Lions & Lasry 2006,2007

permanent impact only

\[h = -\sigma \sqrt{\frac{S}{\varepsilon}} (H - \theta). \]

\[\bar{h} \equiv -\sigma \sqrt{\frac{S}{\varepsilon}} (H - \theta). \]

L. C. G. ROGERS
Surbjeet Singh

THE COST OF ILLIQUIDITY AND ITS EFFECTS ON HEDGING

Mathematical Finance, Vol. 20, No. 4 (October 2010), 597–615

Large investor trading impacts on volatility

Pierre-Louis Lions a,b,*, Jean-Michel Lasry c

the associated optimal strategy \(\alpha_t \) satisfies

\[d\alpha_t = -\frac{\sigma}{k + W} dB_t, \]

and the induced price dynamics are given by

\[dS_t = \sigma \frac{W}{k + W} dB_t. \]
Dealers’ Hedging of Interest Rate Options in the U.S. Dollar Fixed-Income Market

John E. Kambhu

John E. Kambhu is an assistant vice president at the Federal Reserve Bank of New York.

We address two questions: First, are dealers’ hedge adjustments large enough to affect trading volume and liquidity in the most common hedging instruments? Second, what effects might potential hedging difficulties have on risk premia in options prices and the structure of the market for over-the-counter interest rate options?

Conclusion

Our analysis suggests that transaction volume in underlying markets is large enough for dealers to manage the price and liquidity risks they incur through the intermediation of price risk in selling interest rate options.
2. Option hedging (version 1)

Asset price P_t

$$P_t = P_0 + \sigma W_t + \langle \text{impact} \rangle$$

Hedge portfolio X_t shares

$$X_t = X_0 + \int_0^T \theta_s \, ds$$

Final mark-to-market value

$$g_0(P_T) + X_T P_T + \text{cash}$$

evaluate on mean and variance

option expiry or market close

time t
Option hedging (version 2)

Asset price P_t

$$P_t = P_0 + \sigma W_t + \langle \text{impact} \rangle$$

Hedge shares X_t

$$X_t = X_0 + \int_0^T \theta_s \, ds$$

Mark-to-market value

$$g_0(P_{T'}) + X_T P_{T'} + \text{cash}$$

$$X_{T'} = X_T$$

Close T

Open T'

Time t
Questions of this paper

1. What is a reasonable market model?
2. What are optimal hedge solutions?
3. How do they compare to Black-Scholes?
Applications

1. Broker execution algorithm:

 Client specifies Δ and Γ (possibly varying)

 Execute to achieve optimal hedge at close

 one direction trading (buy or sell)

2. What does option hedging do to market?

 Seller must hedge

 What does his hedging do to price process?
Market impact models

Two types of market impact (both active, both important):

• Permanent
due to information transmission
 affects public market price

• Temporary
due to finite instantaneous liquidity
 “private” execution price not reflected in market

Many richer structures are possible
Temporary vs. permanent market impact

- **Temporary impact (liquidity cost)** depends on the rate of execution.
- **Permanent impact (information)** is independent of execution strategy.

Instantaneous relaxation from temporary impact to permanent level

Jim Gatheral: richer time structures for decay
Large literature on market impact models: optimal execution of given trade program

\[k^2 = \frac{\lambda \sigma^2}{\eta} \]

Imposed trade size

Shares remaining to execute

Order entry time

Time constant

Time

Imposed end time

Efficient frontier

High urgency (immediate)
E large, V small

Low urgency (TWAP)
E small, V large

Expected cost

Variance of cost

Fast

VWAP
Permanent impact

\[X_t = X_0 + \int_0^T \theta_s \, ds \]

\[\theta_t = \text{instantaneous rate of trading} \]

\[dP_t = \sigma \, dW_t + G(\theta_t) \, dt \]

Linear to avoid round-trip arbitrage (Huberman & Stanzl, Gatheral)
(Schönbucher & Wilmott 2000: knock-out option--also need temporary impact)

\[G(\theta) = \nu \, \theta \]

\[P_t = P_0 + \sigma \, W_t + \nu (X_t - X_0) \]
(independent of path)

Cost to execute net \(X \) shares = \(\frac{1}{2} \nu X^2 \)
Temporary impact

We trade at $\tilde{P}_t \neq P_t$

\tilde{P}_t depends on instantaneous trade rate θ_t

$$\tilde{P}_t = P_t + H(\theta_t)$$

Require finite instantaneous trade rate
\Rightarrow imperfect hedging
Example: bid-ask spread

\[\tilde{P}_t = P_t + \frac{1}{2} s \, \text{sgn}(\theta_t) \]

“Linear” model: cost to trade \(\theta_t \Delta t \) shares

\[\frac{1}{2} s \, \text{sgn}(\theta_t) \cdot \theta_t \Delta t = \frac{1}{2} s |\theta_t| \Delta t \]
Solutions with bid-ask spread cost

Ideal Black-Scholes hedge

Target band (no-trade region)

Actual hedge holding

Davis & Norman, Shreve & Soner, Cvitanic, Cvitanic & Karatzas
Critique of linear cost model

independent of trade size
not suitable for large traders

in practice, effective execution near midpoint
spread cost not consistent with modern cost models
liquidity takers act as liquidity providers
Proportional temporary cost model

\[\tilde{P}_t = P_t + H(\theta_t) \]

\(H(0) = 0 \)

Concave (empirical)

Linear for simplicity

\[H(\theta) = \frac{1}{2} \lambda \theta \]

\[\Rightarrow \text{Quadratic cost: } H(\theta) \cdot \theta \Delta t = \frac{1}{2} \lambda \theta^2 \Delta t \]
Our solutions with proportional cost

Ideal Black-Scholes hedge

Gârleanu & Pedersen: investment with proportional cost

Actual hedge holding

Temporary impact: hedge strategy
Permanent impact: effect on underlying

\[\theta_t = -\kappa h(\kappa(T - t)) \cdot (X_t - \text{target}) \]
3. Formulation

Market model

Hedge holding: \[X_t = X_0 + \int_0^T \theta_s \, ds \]

Public market price: \[P_t = P_0 + \sigma W_t + \nu (X_t - X_0) \]

Private trade price: \[\tilde{P}_t = P_t + \frac{1}{2} \lambda \theta_t \]

\[\mathcal{F}_t = \text{filtration of } W_t \]

strategies measurable in \(\mathcal{F}_t \)
Black-Scholes option value

\[g(T, p) = g_0(p) \quad \text{Final value specified} \]

Intermediate values defined by Black-Scholes PDE

\[\dot{g} + \frac{1}{2} \sigma^2 g'' = 0 \]

Def: \[\Delta(t, p) = -g'(t, p) \quad \text{(what you want to hold to hedge)} \]

Def: \[\Gamma(t, p) = -\Delta'(t, p) = g''(t, p) \]
\[g(t,p) = \text{option payout to position holder} \]

\[\Delta(t, p) = -g'(t, p) \quad \Gamma(t, p) = -\Delta'(t, p) = g''(t, p) \]

- **Short call**
 - \(\Delta > 0 \)
 - \(\Gamma < 0 \)

- **Short put**
 - \(\Delta < 0 \)
 - \(\Gamma < 0 \)

- **Long call**
 - \(\Delta < 0 \)
 - \(\Gamma > 0 \)

- **Long put**
 - \(\Delta > 0 \)
 - \(\Gamma > 0 \)
\(\Gamma = \) sign and size of hedger’s option position

\(\Gamma > 0 \) (long the option)
- \(g' \) increasing in \(P \)
- \(\Delta \) decreasing in \(P \)
Permanent price impact pushes \(P \) toward you
Hedging is easy (unless you over-control)

\(\Gamma < 0 \) (short the option)
- \(g' \) decreasing in \(P \)
- \(\Delta \) increasing in \(P \)
Permanent price impact pushes \(P \) away from you
Hedging is hard
Final portfolio value

\[R_T = g(T, P_T) + X_T P_T - \int_0^T \tilde{P}_t \theta_t \, dt \]

Option value Portfolio value Cash spent

Mark to market without transaction costs

Should include permanent impact in liquidation cost: \[-\frac{1}{2} \nu X^2\]

We neglect: gives manipulation opportunities dominated by risk aversion
Integrate by parts

\[
R_T = R_0 + \int_0^T (X_t + g'(t, P_t)) \, dP_t - \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt
\]

\[
= R_0 + \int_0^T Y_t \, dP_t - \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt
\]

\[
= R_0 + \int_0^T Y_t \sigma \, dW_t + \int_0^T Y_t \nu \theta_t \, dt - \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt
\]

positive when \(Y_t, \theta_t \) same sign

Initial value: \(R_0 = g(0, P_0) + X_0 P_0 \) (constant)

Mis-hedge: \(Y_t = X_t - \Delta(t, P_t) = X_t + g'(t, P_t) \)
Mean-variance evaluation

\[R_T = R_0 + \int_0^T Y_t \sigma \, dW_t + \nu \int_0^T Y_t \theta_t \, dt - \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt \]

mis-hedge \[Y_t = X_t + g'(t, P_t) \neq 0 \]

smooth infinite variation

\(R_T \) is random: optimize expectation and variance

\[\mathbb{E}R_T = R_0 + \nu \, \mathbb{E} \int_0^T Y_t \theta_t \, dt - \frac{1}{2} \lambda \, \mathbb{E} \int_0^T \theta_t^2 \, dt \]

\[\text{Var } R_T = \text{complicated} \]
Variance of R_T

Neglect uncertainty of market impact term in comparison with price uncertainty

$$\text{Var } R_T \approx V \equiv \text{Var} \int_0^T \sigma Y_t \, dW_t = \sigma^2 \mathbb{E} \int_0^T Y_t^2 \, dt$$

Small portfolio size, or “market power”

$$\mu = \frac{\lambda X / T}{\sigma \sqrt{T}}$$

(“Mean-quadratic-variation” Forsyth et al 2012)
Mean-“variance” objective

Risk aversion $\frac{1}{2} \gamma$

$$\inf_{\theta \in \Theta} \mathbb{E} \left[\frac{1}{2} \gamma \sigma^2 \int_0^T Y_t^2 \, dt - \nu \int_0^T Y_t \theta_t \, dt + \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt \right]$$

Running mishedge Permanent impact Temporary impact

$(T = \text{option expiration})$
Version 2: Overnight risk

\[T = \text{market close today} \]
\[T' = \text{market open tomorrow} \]

\[R_{T'} = g(T', P_{T'}) + X_T P_{T'} - \int_0^T \tilde{P}_t \theta_t \, dt \]

\[= R_T + Y_T (P_{T'} - P_T) + \int_T^{T'} \left[g'(t, P_t) - g'(T, P_T) \right] dP_t \]

\[= R_T + Y_T \Delta P_T - \xi \]

\(\Delta P_T, \xi \) have mean zero
Version 2 objective function

Random variables

\[\xi \text{ distribution depends only on } P_T \]
\[\Delta P_T \text{ mean 0, independent of } F_T \]

\[
\inf_{\theta \in \Theta} \mathbb{E} \left[\frac{1}{2} y \left(Y_T \Delta P_T - \xi \right)^2 \right]

+ \frac{1}{2} y \sigma^2 \int_0^T Y_t^2 \, dt - \nu \int_0^T Y_t \theta_t \, dt + \frac{1}{2} \lambda \int_0^T \theta_t^2 \, dt \]
4. Solution

Value function: time t, price p, mis-hedge y

$$J(t, p, y) = \inf_{\theta_s : t \leq s \leq T} \mathbb{E} \left[\frac{1}{2} y \left(Y_T \Delta P_T - \xi \right)^2 \right]$$

$$+ \frac{1}{2} y \sigma^2 \int_t^T Y_s^2 \, ds - \nu \int_t^T Y_s \theta_s \, ds + \frac{1}{2} \lambda \int_t^T \theta_s^2 \, ds$$

$$\left| \begin{array}{l} P_t = p, \ Y_t = y \end{array} \right.$$
Dynamic programming

HJB PDE:

\[
0 = \inf_\theta \left\{ \frac{1}{2} \gamma \sigma^2 \gamma^2 - \gamma \nu \theta + \frac{1}{2} \lambda \theta^2 + J_t + (1 + \nu \Gamma) \theta J_\gamma + \nu \theta J_p \right\} \\
+ \frac{1}{2} \sigma^2 J_{pp} + \sigma^2 \Gamma J_{p\gamma} + \frac{1}{2} \sigma^2 \Gamma^2 J_{\gamma\gamma} \\
= \frac{1}{2} \gamma \sigma^2 \gamma^2 - \frac{1}{2\lambda} \left[\nu (\gamma - J_p) - (1 + \nu \Gamma) J_\gamma \right]^2 \\
+ J_t + \frac{1}{2} \sigma^2 J_{pp} + \sigma^2 \Gamma J_{p\gamma} + \frac{1}{2} \sigma^2 \Gamma^2 J_{\gamma\gamma}
\]

optimal control

\[
\theta = \frac{1}{\lambda} \left(\nu \gamma - (1 + \nu \Gamma) J_\gamma - \nu J_p \right)
\]
Ansatz: quadratic in y

\[
J(t, p, y) = \frac{1}{2} A_2(T - t) y^2 + A_1(T - t, p) y + A_0(T - t, p)
\]

- \(A_2 \) independent of price
- not consistent unless \(A_1 \) constant in \(p \)

\[
\dot{A}_2 = y \sigma^2 - \frac{1}{\lambda} \left[\nu (1 - A'_1) - (1 + \nu \Gamma) A_2 \right]^2
\]

\[
\dot{A}_1 = \frac{\sigma^2}{2} A''_1 + \frac{1}{\lambda} \left[\nu (1 - A'_1) - (1 + \nu \Gamma) A_2 \right] \\
\quad \cdot \left[\nu A'_0 + (1 + \nu \Gamma) A_1 \right]
\]

\[
\dot{A}_0 = -\frac{1}{2\lambda} \left[\nu A'_0 + (1 + \nu \Gamma) A_1 \right]^2 \\
+ \sigma^2 \Gamma A'_1 + \frac{\sigma^2}{2} \left[\Gamma^2 A_2 + A''_0 \right]
\]
Solvable in 2 special cases

(A) Constant gamma

\[g'(t, P_t) = g'(t, P_0) + \Gamma (P_t - P_0) \]
\[\Gamma \text{ measures position size and size} \]

(B) No permanent impact

\[\nu = 0 \]
(no feedback)
(A) **Constant Γ**

$$A_1 = 0, \quad A_0(T - t, p) = A_0(T_t)$$

$$\theta_t = -\kappa h \left(\kappa (1 + \nu \Gamma)(T - t) \right) Y_t$$

- **rate coefficient**
- **function of time remaining**
- **Instantaneous mishedge**
- **time constant**
- **$\kappa = \sqrt{\frac{y \sigma^2}{\lambda}}$**
- **risk / temporary impact**
- **same as for optimal execution**
\[G = 1 + \nu \Gamma \quad \quad h_0 = \frac{Gy\sigma_T^2 - \nu}{\lambda K} \]

Need \(G \geq 0 \) and \(h_0 \geq -1 \)

Permanent impact \(\nu \) not too big

\[h(x) = \begin{cases}
\tanh(x + \tanh^{-1}(h_0)), & -1 < h_0 < 1 \\
1, & h_0 = 1 \\
\coth(x + \coth^{-1}(h_0)), & h_0 > 1
\end{cases} \]

\[h_0 \]

\[\text{trade rate / mishedge} \]

When \(h < 0 \), trade to increase mishedge (near expiration when risk is low)
Summary of hedge strategy

Far from expiration, $h=1$

$$\theta_t = -\kappa Y_t$$

Near expiration

h increases if overnight risk large

$$\theta_t = -\kappa h Y_t$$

h decreases if overnight risk small

h becomes negative (!) if no overnight risk
What happens to price process?

constant Γ

$$\Delta(t, P_t) = \Delta_0 - \Gamma(P_t - P_0)$$

$$Y_t = X_t - \Delta$$
$$= X_t - X_0 + \Gamma(P_t - P_0)$$

dynamic hedge

$$\theta_t = -\kappa Y_t \quad (h = 1)$$

$$dX_t = \theta_t \, dt$$

$$dP_t = \sigma \, dW_t + \nu \theta_t \, dt$$
Mis-hedge \[dY_t = dX_t + \Gamma \, dP_t \]
\[= -\kappa (1 + \nu \Gamma) \, Y_t \, dt + \sigma \, \Gamma \, dW_t \]

\[Y_t = \sigma \Gamma \int_{-\infty}^{t} e^{-\kappa (1 + \nu \Gamma)(t-s)} \, dW_s \]

\(\langle Y_t^2 \rangle = \frac{\sigma^2 \Gamma^2}{2\kappa (1 + \nu \Gamma)} = \frac{\sigma^2 \Gamma^2}{2(1 + \nu \Gamma) \sqrt{\frac{\lambda}{\gamma \sigma^2}}} \)

Mean mis-hedge \(\propto (\text{temporary impact } \lambda)^{1/4} \)

Total liquidity cost \(= \int_0^T \lambda \, \theta_t^2 \, dt = \int_0^T \lambda \, \kappa^2 \, Y_t^2 \, dt \)

\(\sim \lambda \, \kappa^2 \, T \, \frac{\sigma^2 \Gamma^2}{\kappa} \sim T \, \sigma^3 \, \Gamma^2 \, \gamma^{1/2} \, \lambda^{1/2} \)

As \(\lambda \to 0 \), perfect hedge, cost \(\to 0 \)
What happens to price process?

\[
\text{def: } Z_t = -\nu (X_t - X_0) + (P_t - P_0) \\
dZ_t = \sigma \, dW_t \quad \text{same as in } P_t
\]

\[
P_t = P_0 + \frac{1}{1 + \nu \Gamma} (\nu Y_t + Z_t)
\]

\[
= P_0 + \frac{\sigma}{1 + \nu \Gamma} \left(W_t + \nu \Gamma \int_0^t e^{-\kappa(1+\nu \Gamma)(t-s)} \, dW_s \right)
\]

\[
\Gamma < 0: \text{ hedger is short the option} \\
\Gamma > 0: \text{ hedger is long the option}
\]

\[
\Gamma \approx \frac{1}{\sqrt{\kappa}}
\]

\[
\Gamma < 0: \text{ overreaction, increased volatility} \\
\Gamma > 0: \text{ underreaction, reduced volatility}
\]
“Signature plot”

unconditional (\mathcal{F}_0)

$$\frac{1}{s-t} \mathbb{E}(P_s - P_t)^2 =$$

$$= \left(\frac{\sigma}{1 + \nu \Gamma} \right)^2 \left(1 + (2 + \nu \Gamma) \nu \Gamma \frac{1 - e^{-\tilde{\kappa}(s-t)}}{\tilde{\kappa}(s-t)} \right)$$

\[\tilde{\kappa} = (1 + \nu \Gamma) \kappa\]

Volatility measured on time interval Δt
Nondimensional parameter

\[1 + \nu \Gamma \]

\[\nu = \frac{\text{price change due to market impact}}{\text{shares executed}} \]

\[\Gamma = \frac{\text{shares needed to adjust hedge}}{\text{market price change}} \]

Problems unless \(|\nu \Gamma| \leq 1 \)
Extensions

(B) General Γ, no permanent impact

$$\theta_t = -\kappa h(T - t) Y_t + \text{bias term}$$

Restriction on sign of trading

$$\inf_{\theta \in \Theta^+} \left\{ \ldots \right\}$$

solve numerically
Restricted sign

Unrestricted strategy

Restricted strategy
5. Applications
Price pinning to strike near expiration
if hedgers are net long Γ
local asymptotics near strike and expiry

Intraday volume patterns
hedge near open and close

Empirical

Model
Discrete-time hedging

• If evaluate at start of interval Δt

 trade rate \[\theta = \frac{\nu - (1 + \nu \Gamma)GA_2}{\lambda} \]

 leads to overshoot and sawtooth pattern

• Full optimization gives “implicit” scheme

\[\theta = \frac{\nu - (1 + \nu \Gamma)GA_2}{\lambda + (1 + \nu \Gamma)^2A_2\Delta t} \]
Conclusions

Simple market impact model
 temporary/permanent
 linear model
Explicit solution (at least for constant Γ)
 hedge position tracks toward Black-Scholes
Large hedger can change volatility
 market impact on implied and realized volatility