The Correlation Structure of Commodity Prices and Exchange Rates

Nina Lange

Department of Finance, Copenhagen Business School

Workshop on Stochastic Games, Equilibrium, and Applications to Energy & Commodity Markets
Fields Institute, August 2013
Background for paper

- Why is this correlation an issue?
 - Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

- Are FX rates and commodity prices interlinked
 - Several studies show a link between commodity prices and FX rates

- How are the linked?
 - Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
Why is this correlation an issue?

Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

Are FX rates and commodity prices interlinked?

Several studies show a link between commodity prices and FX rates.

How are the linked?

Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
Background for paper

- **Whys is this correlation an issue?**
 - Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

- **Are FX rates and commodity prices interlinked**
 - Several studies show a link between commodity prices and FX rates

- **How are the linked?**
 - Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
Background for paper

- **Whys is this correlation an issue?**
 - Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

- **Are FX rates and commodity prices interlinked**
 - Several studies show a link between commodity prices and FX rates

- **How are the linked?**
 - Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
Whys is this correlation an issue?
- Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

Are FX rates and commodity prices interlinked
- Several studies show a link between commodity prices and FX rates

How are the linked?
- Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
Whys is this correlation an issue?

Participants in commodity markets will be exposed to both commodity price risk and FX risk. The valuation of portfolios, exposures etc. will depend on the relationship between the commodity price and the FX rate.

Are FX rates and commodity prices interlinked

Several studies show a link between commodity prices and FX rates

How are the linked?

Financial news often put “rising commodity prices” and “weakened dollar” in the same sentence and research mainly focuses on causality to which extent changes in one explains changes in the other.
The general perception is that the correlation is positive, i.e., there is less uncertainty in the value of the position measured in EUR.

Even in a simple BS-world: The value of oil measured in EUR depends on the constant parameters, including the correlation.

In the real world: Parameters are not constant and a pricing/hedging strategy based on such an assumption can go really wrong.
The general perception is that the correlation is positive, i.e., there is less uncertainty in the value of the position measured in EUR.

Even in a simple BS-world: The value of oil measured in EUR depends on the constant parameters, including the correlation.

In the real world: Parameters are not constant and a pricing/hedging strategy based on such an assumption can go really wrong.
The general perception is that the correlation is positive, i.e., there is less uncertainty in the value of the position measured in EUR.

Even in a simple BS-world: The value of oil measured in EUR depends on the constant parameters, including the correlation.

In the real world: Parameters are not constant and a pricing/hedging strategy based on such an assumption can go really wrong.
Correlation matters even in the most simple case:

- Consider a EUR-denominated investor in commodities. He is exposed to both commodity price changes (measured in USD) and to changes in the EURUSD rate (the cost of one EUR measured in USD).
- He holds one unit of the commodity and he wants to calculate his 1-year Value-at-Risk of the position.
- He sets up a simple Black-Scholes model: E_t denotes the commodity price and X_t is the spot FX rate. The returns are correlated by $\text{corr}(W^E_t, W^X_t) = \rho dt$ and the \mathbb{Q}^D-dynamics are:

$$dE_t = E_t \left[(r - c) \, dt + \sigma_E \, dW^E_t \right]$$
$$dX_t = X_t \left[(r - r^*) \, dt + \sigma_X \, dW^X_t \right]$$
A simple illustration of VaR

This implies
- positive correlation ⇒ narrow distribution, i.e., there is a certain degree of self-hedge
- negative correlation ⇒ wide distribution, i.e., more potential upside AND downside
- Thus; correlation matters!

Distribution of value of E_1/X_1 with

$\rho < 0$ (red line) $\rho > 0$ (blue line)
Content of paper

- Investigate the observed oil-FX correlation structure
- Introduce and estimate a model for the term structure of commodity prices and FX rates, that
 - allows for stochastic correlation
 - captures stochastic volatility
 - match futures/forward price curves
 - match option prices
- Currency basket that minimizes oil price volatility
- Application to derivatives pricing and hedging, such as quantos or compos.
Investigate the observed oil-FX correlation structure

Introduce and estimate a model for the term structure of commodity prices and FX rates, that
 - allows for stochastic correlation
 - captures stochastic volatility
 - match futures/forward price curves
 - match option prices

Currency basket that minimizes oil price volatility

Application to derivatives pricing and hedging, such as quantos or compos.

Pilz, K. F. & Schlögl E.: ”A Hybrid Commodity and Interest Rate Market Model”

Several economic/econometrics papers on the link between FX and oil
Spot FX and closest (liquid) WTI futures contract
13-week rolling correlation (returns)

![Graph of 13-week rolling correlation (returns)]
Realized correlation and volatility relates
Cointegration and motivation for model

- Is there a cointegrating relation between the prices?
 - No. Reduced rank is rejected.
- Are there one or more cointegrating relations among the correlation and volatility processes?
 - Yes. Reduced rank is not rejected, indicating two driving factors for the correlation and volatility processes.
Cointegration and motivation for model

- Is there a cointegrating relation between the prices?
 - No. Reduced rank is rejected.

- Are there one or more cointegrating relations among the correlation and volatility processes?
 - Yes. Reduced rank is not rejected, indicating two driving factors for the correlation and volatility processes.
Cointegration and motivation for model

- Is there a cointegrating relation between the prices?
 - No. Reduced rank is rejected.
- Are there one or more cointegrating relations among the correlation and volatility processes?
 - Yes. Reduced rank is not rejected, indicating two driving factors for the correlation and volatility processes.
Cointegration and motivation for model

- Is there a cointegrating relation between the prices?
 - No. Reduced rank is rejected.

- Are there one or more cointegrating relations among the correlation and volatility processes?
 - Yes. Reduced rank is not rejected, indicating two driving factors for the correlation and volatility processes.
Model

Commodity price process

\[
\frac{dE_t}{E_t} = \delta_t E dt + \sigma_{E1} \sqrt{\nu_1 t} dW_{t,1}^E + \sigma_{E2} \sqrt{\nu_2 t} dW_{t,2}^E
\]
\[dy_t^E(T) = \mu_t^E(t, T) dt + \sigma_t^E(t, T) \sqrt{\nu_1 t} dW_{t,3}^E\]

FX rate

\[
\frac{dX_t}{X_t} = \delta_t X dt + \sigma_{X1} \sqrt{\nu_1 t} dW_{t,1}^X + \sigma_{X2} \sqrt{\nu_2 t} dW_{t,2}^X
\]
\[dy_t^X(T) = \mu_t^X(t, T) dt + \sigma_t^X(t, T) \sqrt{\nu_2 t} dW_{t,3}^X\]

Volatility terms for \((i, j) = (1, 2)\) and \((2, 1)\)

\[
d\nu_t^i = \left(\eta_i - \kappa_i \nu_t^i - \kappa_{ij} \nu_t^j\right) dt + \sigma_{\nu^i} \sqrt{\nu_t^i} dZ_t^i
\]

Nina Lange
Correlation Structure
The most important correlations are between the driving Brownian motions of the spot commodity and spot FX rate:

\[
\text{corr} \left(dW_{t}^{E,i}, dW_{t}^{X,i} \right) = \rho_{i}^{EX} \, dt \quad \text{with} \quad \rho_{1}^{EX} \rho_{2}^{EX} < 0
\]

I.e., the model yields the following instantaneous covariance of the returns:

\[
\text{cov}_{t} \left(\frac{dE_{t}}{E_{t}}, \frac{dX_{t}}{X_{t}} \right) = \left(\sigma_{E1} \sigma_{X1} \upsilon_{t}^{1} \rho_{1}^{EX} + \sigma_{E2} \sigma_{X2} \upsilon_{t}^{2} \rho_{2}^{EX} \right) dt
\]
Futures prices are affine

When $\sigma^i_y(t, T) = \alpha_i e^{-\gamma_i(T-t)}$, the futures price is affine in various state variables:

$$
\log F_t^i(T) = \log F_0^i(T) - \log F_0^i(t) + \log i_t \\
+ A_i(T - t) \phi_t^i + B_i(T - t) \phi_t^i \\
\log i_t = \log i_t^0 + \phi_t^i + \phi_t^i + \frac{1}{2} \sigma_1 \nu_t^1 - \frac{1}{2} \sigma_2 \nu_t^2 $$

$$
d(\log i_t) = \left[\gamma_0^i(t) + \varphi_t^i + \phi_t^i - \frac{1}{2} \sigma_1 \nu_t^1 - \frac{1}{2} \sigma_2 \nu_t^2 \right] dt \\
+ \sigma_1 \sqrt{\nu_t^1} dW_t^{1,1} + \sigma_2 \sqrt{\nu_t^2} dW_t^{1,2} \\
d\phi_t^E = \left(\left(\rho_{13} \sigma_{E1} + \frac{\alpha^2_E}{\gamma_E} \right) \nu_t^1 - \gamma_E \phi_t^E \right) dt + \alpha_E \sqrt{\nu_t^1} dW^{E,3} \\
d\phi_t^E = \left(\frac{\alpha^2_E}{\gamma_E} \nu_t^1 - 2 \gamma_E \phi_t^E \right) dt
$$
Option prices

\[P = E_t^Q \left(e^{- \int_t^{T_0} r_s ds} (K - F_{T_0}^i (T_1))^+ \right) \]

\[= P(t, T_0) (KG_{0,1}(\log K) - G_{1,1}(\log K)) \]

\[+ \text{cov}^Q \left(e^{- \int_t^{T_0} r_s ds}, (K - F_{T_0}^i (T_1))^+ \right) \]

where

\[G_{a,b}(y) = \frac{\psi(a, t, T_0, T_1)}{2} - \frac{1}{\pi} \int_0^\infty \text{Im} \left(\psi(a + iub, t, T_0, T_1) e^{-iuy} \right) \frac{du}{u} \]

and \(\psi(u, t, T_0, T_1) = E_t^Q \left(e^{u \log F_{T_0}^i (T_1)} \right) \) is determined by a system of ODEs involving the parameters in the model.
Available data

- **WTI crude oil**
 - Daily closing prices from January 1990 to March 2013
 - Futures contracts spanning all months for the next 5-6 years and semi-annual spanning three years after that
 - Using weekly observations of six monthly contracts, two quarterly and four annual contracts from 1999-2013

- **Exchange rate**
 - Spot EURUSD from January 1990 to March 2013
 - Futures contracts on EURUSD from 1998 to March 2013
 - Using weekly observations of five futures contracts spanning more than a year

- **Options**
 - (close to) ATM options with short time to maturity. (Not yet included in the estimation)
Selected parameter estimates (preliminary)

<table>
<thead>
<tr>
<th></th>
<th>Oil</th>
<th>FX</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{i1}</td>
<td>0.3682</td>
<td>0.0887</td>
</tr>
<tr>
<td>σ_{i2}</td>
<td>0.2026</td>
<td>0.2120</td>
</tr>
<tr>
<td>α_i</td>
<td>0.4262</td>
<td>0.0871</td>
</tr>
<tr>
<td>γ_i</td>
<td>0.5890</td>
<td>0.0725</td>
</tr>
<tr>
<td>κ_i</td>
<td>3.5125</td>
<td>5.9743</td>
</tr>
<tr>
<td>κ_{ij}</td>
<td>-2.1160</td>
<td>-0.1463</td>
</tr>
<tr>
<td>σ_{υ_i}</td>
<td>8.915</td>
<td>3.535</td>
</tr>
<tr>
<td>ρ^i</td>
<td>-0.7747</td>
<td>-0.0788</td>
</tr>
<tr>
<td>σ_{fut}</td>
<td>0.0059</td>
<td>0.0002</td>
</tr>
<tr>
<td>σ_{spot}</td>
<td>N/A</td>
<td>0.003</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{d i_t}{i_t} &= \delta_t^i dt + \sigma_{i1} \sqrt{\upsilon_t^1} dW_t^{i,1} \\
&+ \sigma_{i2} \sqrt{\upsilon_t^2} dW_t^{i,2} \\
dy_t^i(T) &= \ldots + \alpha_i e^{-\gamma_i(T-t)} \sqrt{\upsilon_t^i} dW_t^{i,3} \\
d\upsilon_t^i &= \left(\eta_i - \kappa_i \upsilon_t^i - \kappa_{ij} \upsilon_j^t\right) dt \\
&+ \sigma_{\upsilon^i} \sqrt{\upsilon_t^i} dZ_t^i
\end{align*}
\]

$\rho_{EX}^1 : 0.5478, \rho_{EX}^2 : -0.4686$
Selected RMSE plots

- Front month WTI
- 6 month WTI
- 4 year WTI
- SpotFX
- 1 year FX
Recap

- Even in a Black-Scholes world correlation matters.
- Correlation is not directly observable, but using realized correlation based on a rolling window, data shows a time changing correlation of both signs.
- The model captures stochastic correlation with changing signs as seen in the markets.
- With the model parameters, the simulated correlation picture seems suitable compared to historic correlation.
- The correlation surface plots shows numerically decreasing correlation in time to maturity similar to what is seen in data.
Thank you