Lecture II: Stochastic volatility modeling in energy markets

Fred Espen Benth

Centre of Mathematics for Applications (CMA)
University of Oslo, Norway

Fields Institute, 19-23 August 2013
Overview

1. Motivate and introduce a class of stochastic volatility models
2. Empirical example from UK gas prices
3. Comparison with the Heston model
4. Forward pricing
5. Discussion of generalizations to cross-commodity modelling
Stochastic volatility model
Motivation

- Annualized volatility of NYMEX sweet crude oil spot
 - Running five-day moving volatility
 - Plot from Hikspoors and Jaimungal 2008
- Stochastic volatility with fast mean-reversion
• Signs of stochastic volatility in financial time series
 • Heavy-tailed returns
 • Dependent returns
 • Non-negative autocorrelation function for squared returns

• Energy markets
 • Mean-reversion of (log-)spot prices
 • seasonality
 • Spikes
 • ... so, how to create reasonable stochastic volatility models?
The stochastic volatility model

- Simple one-factor Schwartz model
 - but with stochastic volatility

\[S(t) = \Lambda(t) \exp(X(t)), \quad dX(t) = -\alpha X(t) \, dt + \sigma(t) \, dB(t) \]

- \(\sigma(t) \) is a stochastic volatility (SV) process
 - Positive
 - Fast mean-reversion

- \(\Lambda(t) \) deterministic seasonality function (positive)
• Motivated by Barndorff-Nielsen and Shephard (2001):
 \(n \)-factor volatility model

\[
\sigma^2(t) = \sum_{j=1}^{n} \omega_j Y_j(t)
\]

where

\[
dY_j(t) = -\lambda_j Y_j(t) \, dt + dL_j(t)
\]

• \(\lambda_j \) is the speed of mean-reversion for factor \(j \)
• \(L_j \) are Lévy processes with only positive jumps
 • subordinators being driftless
 • \(Y_j \) are all positive!
• The positive weights \(\omega_j \) sum to one
• Simulation of a 2-factor volatility model
• Path of $\sigma^2(t)$
Stationarity of the log-spot prices

- After de-seasonalizing, the log-prices become stationary

\[X(t) = \ln S(t) - \ln \Lambda(t) \sim \text{stationary}, \quad t \to \infty \]

- The limiting distribution is a variance-mixture
 - Conditional normal distributed with zero mean

\[\ln S(t) - \ln \Lambda(t) | Z = z \sim N(0, z) \]

- \(Z \) is characterized by \(\sigma^2(t) \) and the spot-reversion \(\alpha \)
• Explicit expression the cumulant (log-characteristic function) of the stationary distribution of $X(t)$:

$$\psi_X(\theta) = \sum_{j=1}^{n} \int_{0}^{\infty} \psi_j \left(\frac{1}{2} i \theta^2 \omega_j \gamma(u; 2\alpha, \lambda_j) \right) du$$

• ψ_j cumulant of L_j

• The function $\gamma(u; a, b)$ defined as

$$\gamma(u; a, b) = \frac{1}{a - b} \left(e^{-bu} - e^{-au} \right)$$

• γ is positive, $\gamma(0) = \lim_{u \to \infty} \gamma(u) = 0$, and has one maximum.
• Each term in the limiting cumulant of $X(t)$ can be written as the cumulant of centered normal distribution with variance

$$\tilde{\psi}_X(\theta) = \int_0^\infty \psi_j (\theta \omega_j \gamma(u; 2\alpha, \lambda_j)) \, du$$

• One can show that $\tilde{\psi}_X(\theta)$ is the cumulant of the stationary distribution of

$$\int_0^t \gamma(t - u; 2\alpha, \lambda_j) \, dL_j(u)$$
• Recall the constant volatility model $\sigma^2(t) = \sigma^2$
 • The Schwartz model

• Explicit stationary distribution

$$\ln S(t) - \ln \Lambda(t) \sim \mathcal{N} \left(0, \frac{\sigma^2}{2\alpha} \right)$$

• SV model gives heavy-tailed stationary distribution
 • Special cases: Gamma distribution, inverse Gaussian distribution....
Probabilistic properties

- ACF of $X(t)$ is given as

$$
corr(X(t), X(t + \tau)) = \exp(-\alpha \tau)
$$

- No influence of the volatility on the ACF of log-prices
 - Energy prices have multiscale reversion
 - Above model is too simple, multi-factor models required
• Consider reversion-adjusted returns over \([t, t + \Delta]\)

\[R_\alpha(t, \Delta) := X(t) - e^{-\alpha \Delta} X(t-1) = \int_t^{t+\Delta} \sigma(s) e^{-\alpha(t+\Delta-s)} dB(s) \]

• Approximately,

\[R_\alpha(t, \Delta) \approx \sqrt{\frac{1 - e^{-2\alpha \Delta}}{2\alpha}} \sigma(t) \Delta B(t) \]
• $R_\alpha(t, \Delta)$ is a variance-mixture model

$$R_\alpha(t, \Delta)|\sigma^2(t) \sim \mathcal{N}(0, \frac{1 - e^{-2\alpha \Delta}}{2\alpha} \sigma^2(t))$$

• Thus, knowing the stationary distribution of $\sigma^2(t)$, we can create distributions for $R_\alpha(t, \Delta)$
 • Based on empirical observations of $R_\alpha(t, \Delta)$, we can create desirable distributions from the variance mixture

• The reversion-adjusted returns are uncorrelated
• ...but squared reversion-adjusted returns are correlated

\[
corr(R_\alpha^2(t + \tau, \Delta), R_\alpha^2(t, \Delta)) = \sum_{j=1}^{n} \hat{\omega}_j e^{-\lambda_j \tau}
\]

• \(\hat{\omega}_j\) positive constants summing to one, given by the second moments of \(L_j\)
• ACF for squared reversion-adjusted returns given as a sum of exponentials
 • Decaying with the speeds \(\lambda_j\) of mean-reversions
• This can be used in estimation
Empirical example: UK gas prices
• NBP UK gas spot data from 06/02/2001 till 27/04/2004
 • 806 records, weekends and holidays excluded
• Seasonality modelled by a sine-function for log-spot prices
Estimate α by regressing $\ln \tilde{S}(t + 1)$ against $\ln \tilde{S}(t)$

$$\tilde{\alpha} = 0.127$$

Regression has $R^2 = 78$

Half-life: expected time until a shock is halfed in size

$$\text{half life} = \frac{\ln 2}{\tilde{\alpha}}$$

Half-life corresponding to 5.5 days
• Plot of residuals: histogram, ACF and ACF of squared residuals
 • Fitted speed of mean-reversion of volatility: $\hat{\lambda} = 1.1$.
The normal inverse Gaussian distribution

- The residuals are not reasonably modelled by the normal distribution
 - Peaky in the center, heavy tailed
- Motivated from finance, use the normal inverse Gaussian distribution (NIG)
- Four-parameter family of distributions
 - a: tail heaviness
 - δ: scale (or volatility)
 - β: skewness
 - μ: location
• Density of the NIG

\[
f(x; a, \beta, \delta, \mu) = c \exp(\beta(x - \mu)) \frac{K_1 \left(a\sqrt{\delta^2 + (x - \mu)^2} \right)}{\sqrt{\delta^2 + (x - \mu)^2}}
\]

where \(K_1 \) is the modified Bessel function of the third kind with index one

\[
K_1(x) = \frac{1}{2} \int_0^\infty \exp \left(-\frac{1}{2} x(z + z^{-1}) \right) \, dz
\]

• Explicit (log-)moment generating function

\[
\phi(u) := \ln \mathbb{E}[e^{uL}] = u\mu + \delta \left(\sqrt{a^2 - \beta^2} - \sqrt{a^2 - (\beta + u)^2} \right)
\]
• Fitted symmetric centered NIG using maximum likelihood

\[\hat{a} = 4.83, \quad \hat{\delta} = 0.071 \]
• Question: Does there exist SV driver L such that residuals become NIG distributed?

• Answer is YES!

• There exists L such that stationary distribution of $\sigma^2(t)$ is Inverse Gaussian distributed
 • Let Z be normally distributed
 • The positive part of $1/Z$ is then Inverse Gaussian

• Conclusion:
 • Choose L such that $\sigma^2(t)$ is Inverse Gaussian with specified parameters from the NIG estimation
 • Choose α, λ as estimated
 • Choose the seasonal function as estimated
 • Full specification of the SV volatility spot price dynamics
The Heston Model: a comparison
• Heston’s stochastic volatility: $\sigma^2(t) = Y(t)$,

$$dY(t) = \eta(\zeta - Y(t)) dt + \delta \sqrt{Y(t)} \, d\tilde{B}(t)$$

• \tilde{B} independent Brownian motion of $B(t)$
 • In general Heston, \tilde{B} correlated with B
 • Allows for leverage
• Y recognized as the Cox-Ingersoll-Ross dynamics
 • Ensures positive Y
• The cumulant of stationary Y is known (Cox, Ingersoll and Ross, 1981)

$$
\psi_Y(\theta) = \zeta c \ln \left(\frac{c}{c - i\theta} \right), \quad c = \frac{2\eta}{\delta^2}
$$

• Cumulant of a $\Gamma(c, \zeta c)$-distribution
• Can obtain the same stationary distribution from our SV-model
• Choose a one-factor model $\sigma^2(t) = Y(t)$

$$dY(t) = -\lambda Y(t)\,dt + dL(t)$$

• $L(t)$ a compound Poisson process with exponentially distributed jumps with expected size $1/c$

• Choose λ and the jump frequency ρ such that $\rho/\lambda = \zeta c$

• Stationary distribution of Y is $\Gamma(c, \zeta c)$.
• Question: what is the stationary distribution of $X(t)$ under the Heston model?

• Expression for the cumulant at time t

$$\psi_{X}(t, \theta) = i\theta X(0)e^{-\alpha t} + \ln \mathbb{E} \left[\exp \left(-\frac{1}{2} \theta^2 \int_0^t Y(s)e^{-2\alpha(t-s)} \, ds \right) \right]$$

• An expression for the last expectation is unknown to us
 • The cumulant can be expressed as an affine solution
 • Coefficients solutions of Riccati equations, which are not analytically solvable
 • ...at least not to me....

• In our SV model the same expression can be easily computed
Application to forward pricing
• Forward price at time t an delivery at time T

$$F(t, T) = \mathbb{E}_Q [S(T) | \mathcal{F}_t]$$

• Q an equivalent probability, \mathcal{F}_t the information filtration
• Incomplete market
 • No buy-and-hold strategy possible in the spot
 • Thus, no restriction to have S as Q-martingale after discounting
• Choose Q by a Girsanov transform

$$dW(t) = dB(t) - \frac{\theta(t)}{\sigma(t)} \, dt$$

• $\theta(t)$ bounded measurable function
 • Usually simply a constant
 • Known as the *market price of risk*

• Novikov’s condition holds since

$$\sigma^2(t) \geq \sum_{j=1}^{n} \omega_j Y_j(0)e^{-\lambda_j t}$$
The Q dynamics of $X(t)$, the deseasonalized log-spot price

$$dX(t) = (\theta(t) - \alpha X(t)) \, dt + \sigma(t) \, dW(t)$$

For simplicity it is supposed that there is no market price of volatility risk

- No measure change of the L_j's

Esscher transform could be applied

- Exponential tilting of the Lévy measure, preserving the Lévy property
- Will make big jumps more or less pronounced
- Scale the jump frequency
• Analytical forward price available (suppose one-factor SV for simplicity)

\[
F(t, T) = \Lambda(T)H_\theta(t, T)\exp\left(\frac{1}{2}\gamma(T - t; 2\alpha, \lambda)\sigma^2(t)\right) \\
\times \left(\frac{S(t)}{\Lambda(t)}\right)^{\exp(-\alpha(T-t))}
\]

• Recall the scaling function

\[
\gamma(u; 2\alpha, \lambda) = \frac{1}{2\alpha - \lambda} \left(e^{-\lambda u} - e^{-2\alpha u} \right)
\]
• H_θ is a risk-adjustment function

$$\ln H_\theta(t, T) = \int_t^T \theta(u) e^{-\alpha(T-s)} ds + \int_0^{T-t} \psi\left(-i\frac{1}{2}\gamma(u; 2\alpha, \lambda)\right) du$$

• Here, ψ being cumulant of L
• Note: Forward price may jump, although spot price is continuous
 • The volatility is explicitly present in the forward dynamics
• Recall $\gamma(0; 2\alpha, \lambda) = \lim_{u \to \infty} \gamma(u; 2\alpha, \lambda) = 0$
 - In the short and long end of the forward curve, the SV-term will not contribute

• Scale function has a maximum in
 $u^* = (\ln 2\alpha - \ln \lambda)/(2\alpha - \lambda)$
 - Increasing for $u < u^*$, and decreasing thereafter
 - Gives a hump along the forward curve
 - Hump size is scaled by volatility level $Y(t)$

• Many factors in the SV model gives possibly several humps

• Observe that the term $(S(t)/\Lambda(t))^{\exp(-\alpha(T-t))}$ gives
 - backwardation when $S(t) > \Lambda(t)$
 - Contango otherwise
• Shapes from the “deseasonalized spot”-term in $F(t, T)$ (top) and SV term (bottom)
• The hump is produced by the scale function γ
• Parameters chosen as estimated for the UK spot prices
Forward price dynamics

\[
\frac{dF(t, T)}{F(t-, T)} = \sigma(t)e^{-\alpha(T-t)} \, dW(t)
\]

\[
+ \sum_{j=1}^{n} \int_{0}^{\infty} \{ e^{\omega_{j} \gamma(T-t;2\alpha,\lambda_{j}) z/2} - 1 \} \, \tilde{N}_{j}(dz, dt)
\]

- \(\tilde{N}\) compensated Poisson random measure of \(L_{j}\)
- Samuelson effect in \(dW\)-term. The jump term goes to zero as \(t \to T\)
Comparison with the Heston model

- Forward price dynamics

\[F(t, T) = \Lambda(T) G_\theta(t, T) \exp\left(\xi(T - t) Y(t)\right) \left(\frac{S(t)}{\Lambda(t)}\right)^{\exp(-\alpha(T-t))} \]

where

\[\ln G_\theta(t, T) = \int_t^T \theta(u)e^{-\alpha(T-u)} du + \eta \zeta \int_0^{T-t} \xi(u) du \]
• $\xi(u)$ solves a Riccati equation

$$\xi'(u) = \delta \left(\xi(u) - \frac{\eta}{2\delta} \right)^2 - \frac{\eta^2}{4\delta} + \frac{1}{2} e^{-2\alpha u}$$

• Initial condition $\xi(0) = 0$
• It holds $\lim_{u \to \infty} \xi(u) = 0$ and ξ has one maximum for $u = u^* > 0$
 • Shape much like $\gamma(u; 2\alpha, \lambda)$
Extensions of the SV model
Spikes and inverse leverage

- **Spikes**: sudden large price increase, which is rapidly killed off
 - sometimes also negative spikes occur
- **Inverse leverage**: volatility increases with increasing prices
 - Effect argued for by Geman, among others
 - Is it an effect of the spikes?
• Spot price model

\[S(t) = \Lambda(t) \exp \left(X(t) + \sum_{i=1}^{m} Z_i(t) \right) \]

where

\[dZ_i(t) = (a_i - b_i Z_i(t)) \, dt + d\tilde{L}_i(t) \]

• Spikes imply that \(b_i \) are fast mean-reversions
• Typically, \(\tilde{L}_i \) are time-inhomogeneous jump processes, with only positive jumps
 • Negative spikes: must choose \(\tilde{L}_i \) having negative jumps
• Inverse leverage: Let $\tilde{L}_i = L_i$ for one or more of the jump processes

• A spike in the spot price will drive up the vol as well
 • Or opposite, an increase in volatility leads to an increase (spike) in the spot

• Spot model analytically tractable
 • Stationary, with analytical cumulant
 • Probabilistic properties available
 • Forward prices analytical in terms of cumulants of the noises
Cross-commodity modelling

- Suppose that $X(t)$ and $Z_i(t)$ are vector-valued Ornstein-Uhlenbeck processes.
- The volatility structure follows Stelzer’s multivariate extension of the BNS SV model.

\[dX(t) = AX(t)\, dt + \Sigma(t)^{1/2} \, dW(t) \]

- A is a matrix with eigenvalues having negative real parts
 - ...to ensure stationarity
- $\Sigma(t)$ is a matrix-valued process, W is a vector-Brownian motion.
• The volatility process:

\[\Sigma(t) = \sum_{j=1}^{n} \omega_j Y_j(t) \]

where

\[dY_j(t) = \left(C_j Y_j(t) + Y_j(t) C_j^T \right) dt + dL_j(t) \]

• \(C_j \) are matrices with eigenvalues having negative real part
 • ...again to ensure stationarity
• \(L_j \) are matrix-valued subordinators
• The structure ensures that \(\Sigma(t) \) becomes positive definite
• Modelling approach allows for
 • Marginal modelling as above
 • Analyticity in forward pricing, say
 • Flexibility in linking different commodities

• However...not easy to estimate on data
Conclusions

- Proposed an SV model for power/energy markets
- Discussed probabilistic properties, and compared with the Heston model
- Forward pricing, and hump-shaped forward curves
- Extensions to cross-commodity and multi-factor models
- Empirical example from UK gas spot prices
Coordinates

- fredb@math.uio.no
- folk.uio.no/fredb
- www.cma.uio.no

