Universality in Geometric Graph Theory

Csaba D. Tóth
Cal State Northridge
University of Calgary
Tufts University
Outline

• Introduction: Geometric Graphs
• Counting Problems on \(n \) Points
 – Labeled Plane Graphs
 – Unlabeled Plane Graphs
• Universality
 – Configurations Compatible with Many Graphs
 Universal Point Sets, Universal Slope Sets, etc.
 – Graphs Compatible with Many Parameters
 Globally Rigid Graphs, Length Universal Graphs, etc.
• Open Problems
Geometric Graphs

A geometric graph is $G = (V, E)$, where V is the set of points in the plane, and E is the set of line segments between points in V.

Applications:

- Cartography (GIS, Navigation, etc.)
- Networks (VLSI Design, Optimization, etc.)
- Combinatorial Geometry (Incidences, Unit Distances, etc.)
- Rigidity (Robot arms, etc.)
Counting labeled plane graphs

Giménez and Noy (2009): The asymptotic number of (labeled) planar graphs on n vertices is $g \cdot n^{-7/2} \gamma^n n!$, where $\gamma \approx 27.22688$ and $g \approx 4.26 \cdot 10^{-6}$.

Fáry (1957): Every planar graph has an embedding in the plane as a geometric graph.

Ajtai, Chvátal, Newborn, & Szemerédi (1982): On any n points in \mathbb{R}^2, at most c^n labeled planar graphs can be embedded, where $c < 10^{13}$. Hoffmann et al. (2010): $c < 207.85$.
Counting labeled plane graphs

Giménez and Noy (2009): The asymptotic number of (labeled) planar graphs on n vertices is $g \cdot n^{-7/2}\gamma^n n!$ where $\gamma \approx 27.22688$ and $g \approx 4.26 \cdot 10^{-6}$.

Fáry (1957): Every planar graph has an embedding in the plane as a geometric graph.

Ajtai, Chvátal, Newborn, & Szemerédi (1982): On any n points in \mathbb{R}^2, at most c^n labeled planar graphs can be embedded, where $c < 10^{13}$. Hoffmann et al. (2010): $c < 207.85$.

Requiring straight-line edges is a real restriction.
How to bridge the gap between $n!$ and $\exp(n)$?

- Allow the edges to bend
- Allow graph isomorphisms
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.
How to bridge the gap between $n!$ and $\exp(n)$?

- **Allow the edges to bend**
- **Allow graph isomorphisms**

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with *curved* edges, or with polyline edges.

Pach & Wenger (2001): Every labeled planar graph can be embedded on any n points in \mathbb{R}^2 using polyline edges with a total of $O(n^2)$ bends. This bound is the best possible.
How to bridge the gap between $n!$ and $\exp(n)$?

- Allow the edges to bend
- Allow graph isomorphisms

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with curved edges, or with polyline edges.

Pach & Wenger (2001): Every labeled planar graph can be embedded on any n points in \mathbb{R}^2 using polyline edges with a total of $O(n^2)$ bends. This bound is the best possible.

Can we do anything with fewer bends?
How to bridge the gap between $n!$ and $\exp(n)$?

- Allow the edges to bend
- Allow graph isomorphisms

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with curved edges, or with polyline edges.

Pach & Wenger (2001): Every labeled planar graph can be embedded on any n points in \mathbb{R}^2 using polyline edges with a total of $O(n^2)$ bends. This bound is the best possible.

Thm. (2013): On any n-element point set in \mathbb{R}^2, at most $2^{O(kn)}$ labeled planar graphs can be embedded with k bends per edge.

Can we do anything with fewer bends?
How to bridge the gap between $n!$ and $\exp(n)$?

- Allow the edges to bend
- Allow graph isomorphisms

Given a set V of n points in the plane, we can embed every labeled planar graph $G = (V, E)$ with curved edges, or with polyline edges.

Pach & Wenger (2001): Every labeled planar graph can be embedded on any n points in \mathbb{R}^2 using polyline edges with a total of $O(n^2)$ bends. This bound is the best possible.

Thm. (2013): On any n-element point set in \mathbb{R}^2, at most $2^{O(kn)}$ labeled planar graphs can be embedded with k bends per edge.

Problem: Can this bound be improved to $2^{O(n \log k)}$?
Every n-vertex planar graph has a straight line embedding, but not all of them can be embedded on an arbitrary set of n points.

- C_4 can be embedded on any 4 points in the plane.
- K_4 cannot be embedded on 4 points in convex position.
Counting unlabeled planar geometric graphs

- Allow the edges to bend
- Allow graph isomorphisms
Counting unlabeled planar geometric graphs

- Allow the edges to bend
- Allow graph isomorphisms
Counting unlabeled planar geometric graphs

- Allow the edges to bend
- Allow graph isomorphisms
Counting unlabeled planar geometric graphs

- Allow the edges to bend
- Allow graph isomorphisms
A point set $S \subset \mathbb{R}^2$ is \textbf{n-universal} if every n-vertex planar graph has an embedding such that the vertices map into S.

Cardinal, Hoffmann, & Kusters (2013):

- For $n = 1, \ldots, 10$, there is an n-element point set that can host all n-vertex planar graphs (by exhaustive search).
- For $n \geq 15$, there is no n-element point set that can accommodate all n-vertex planar graphs (by counting argument).
Universal point sets

A point set $S \subset \mathbb{R}^2$ is n-universal if every n-vertex planar graph has an embedding such that the vertices map into S.

De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990): An $(n - 1) \times (n - 1)$ section of the integer lattice is n-universal.

Methods:

- partial orders defined on the vertices
- three Schnyder trees (Schnyder wood)

One method is an incremental algorithm, the other embedding all vertices at once. They have turned out to be equivalent...
Universal point sets

A point set $S \subset \mathbb{R}^2$ is n-universal if every n-vertex planar graph has an embedding such that the vertices map into S.

De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990): An $(n - 1) \times (n - 1)$ section of the integer lattice is n-universal.

Methods:
- partial orders defined on the vertices
- three Schnyder trees (Schnyder wood)

One method is an incremental algorithm, the other embedding all vertices at once. They have turned out to be equivalent...

$\frac{n^2}{2}$ points suffice if we do not insist on a rectangular lattice.
Universality in Geometric Graphs

1. A structure is **universal** if it is “compatible” with every geometric graph from a certain family (e.g., universal point sets, universal slopes, etc.)

2. An abstract graph is **universal** if it has a geometric realization for any possible choice of certain parameters (e.g., globally rigid graphs, length-universal graphs, area universal floorplans).
Universal point sets

A point set $S \subset \mathbb{R}^2$ is n-universal if every n-vertex planar graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?

An $(n-1) \times (n-1)$ section of the integer lattice is n-universal.
Universal point sets

A point set $S \subset \mathbb{R}^2$ is n-universal if every n-vertex planar graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?

An $(n-1) \times (n-1)$ section of the integer lattice is n-universal.

Brandenburg (2008): An $\frac{4}{3}n \times \frac{2}{3}n$ section of the integer lattice is also n-universal.

Frati & Patrignani (2008): If a rectangular section of the integer lattice is n-universal, it must contain at least $\frac{n^2}{9}$ points.
Universal point sets

A point set $S \subset \mathbb{R}^2$ is \textit{n-universal} if every n-vertex planar graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?

An $(n - 1) \times (n - 1)$ section of the integer lattice is n-universal.

Brandenburg (2008): An $\frac{4}{3}n \times \frac{2}{3}n$ section of the integer lattice is also n-universal.

Frati & Patrignani (2008): If a rectangular section of the integer lattice is n-universal, it must contain at least $\frac{n^2}{9}$ points.

\textbf{Open Problem:} Find n-universal point sets of size $o(n^2)$.

Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. Planar 3-trees require $1.235n - o(n)$ points.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. **Planar 3-trees** require $1.235n - o(n)$ points.

Planar 3-trees can be constructed from a triangle $\Delta(abc)$ by successively inserting a new vertex into a triangular face, and connecting it to all three corners.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. Planar 3-trees require $1.235n - o(n)$ points.

Planar 3-trees can be constructed from a triangle $\Delta(abc)$ by successively inserting a new vertex into a triangular face, and connecting it to all three corners.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. Planar 3-trees require $1.235n - o(n)$ points.

Planar 3-trees can be constructed from a triangle $\Delta(abc)$ by successively inserting a new vertex into a triangular face, and connecting it to all three corners.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. Planar 3-trees require $1.235n - o(n)$ points.

Planar 3-trees can be constructed from a triangle $\Delta(abc)$ by successively inserting a new vertex into a triangular face, and connecting it to all three corners.
Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-universal set is at least $1.235n - o(n)$. Planar 3-trees require $1.235n - o(n)$ points.

Planar 3-trees can be constructed from a triangle $\Delta(abc)$ by successively inserting a new vertex into a triangular face, and connecting it to all three corners.

\[G \]

\[T(G) \]

1. Planar 3-trees require $1.235n - o(n)$ points.
Universal point sets in special classes

Gritzman et al. (1991): Every n-element point set in general position is n-universal for outerplanar graphs.

Angelini et al. (2011): There is an n-universal point set of size $O(n(\log n / \log \log n)^2)$ for simply nested planar graphs.

Bannister et al. (2013): There is an n-universal point set of size $O(n \log n)$ for simply nested planar graphs, and of size $O(n \text{polylog } n)$ for planar graphs of bounded pathwidth.
Thm. (2013): There is an n-universal point set of size $O(n^{3/2} \log n)$ for planar 3-trees.

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:
1. sparsening,
2. stretching.
Thm. (2013): There is an n-universal point set of size $O(n^{3/2} \log n)$ for planar 3-trees.

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:

1. sparsening,
2. stretching.

Sparsening:

Suppose $\sqrt{n} \in \mathbb{N}$.

Pick all points (i, j) were \sqrt{n} divides $i \cdot j$.
Thm. (2013): There is an n-universal point set of size $O(n^{3/2} \log n)$ for planar 3-trees.

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:

1. sparsening,
2. stretching.

Sparsening:

Suppose $\sqrt{n} \in \mathbb{N}$.
Pick all points (i,j) were \sqrt{n} divides $i \cdot j$.

Add the forward and backward diagonals of $\sqrt{n} \times \sqrt{n}$ “squares.”
Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:

1. sparsening,
2. stretching.

Sparsening:

Suppose $\sqrt{n} \in \mathbb{N}$. Pick all points (i, j) were \sqrt{n} divides $i \cdot j$.

Add the forward and backward diagonals of $\sqrt{n} \times \sqrt{n}$ “squares.”

Total: $O(n^{3/2} \log n)$ points.
Construction for planar 3-trees

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Stretching
Construction for planar 3-trees

Our \(n\)-universal point set for planar 3-trees is constructed from an \(14n \times 14n\) section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Stretching
Construction for planar 3-trees

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:

1. sparsening,
2. stretching.

Stretching
Transformation $(x, y) \rightarrow (x, (28n)^y)$
Construction for planar 3-trees

Our n-universal point set for planar 3-trees is constructed from an $14n \times 14n$ section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Stretching
Transformation $(x, y) \rightarrow (x, (28n)^y)$

Objective: The slope of an edge between rows i and j is larger than the slope of any other edge among rows $1..j - 1$.
Construction for planar 3-trees

Our \(n \)-universal point set for planar 3-trees is constructed from an \(14n \times 14n \) section of the integer lattice in two steps:

1. sparsening,
2. stretching.

Stretching

Transformation \((x, y) \rightarrow (x, (28n)y)\)

Objective: The slope of an edge between rows \(i \) and \(j \) is larger than the slope of any other edge among rows \(1, 2, \ldots, j - 1 \).

When we pull back the stretched grid to the integer grid, the straight-line edges become \(\Gamma \)-shaped curves.
Embedding algorithm

Every n-vertex planar 3-tree can be embedded such that the vertices are remapped into our point set.
Embedding algorithm

Every n-vertex planar 3-tree can be embedded such that the vertices are remapped into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Every n-vertex planar 3-tree can be embedded such that the vertices are remapped into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Every n-vertex planar 3-tree can be embedded such that the vertices are remapped into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Every n-vertex planar 3-tree can be embedded such that the vertices are remapped into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Any given an n-vertex planar 3-tree can be embedded into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Any given an \(n \)-vertex planar 3-tree can be embedded into our point set.

In a top-down traversal of \(T(G) \), we allocate a rectangular region to each subtree (triangle).
Embedding algorithm

Any given an n-vertex planar 3-tree can be embedded into our point set.

In a top-down traversal of $T(G)$, we allocate a rectangular region to each subtree (triangle).

When a new vertex is inserted, the rectangle is subdivided into four rectangles: **left**, **right**, and **bottom** rectangles.
Embedding algorithm

If a “large” rectangle $R(\Delta)$ is allocated to a subgraph lying in a triangle Δ, then we can complete the embedding with the algorithm of de Fraysseix, Pach, & Pollack (1990).

This is possible when k points has to be embedded in a triangle Δ, and the full rows or full columns in the rectangle $R(\Delta)$ form a $k \times k$ grid.
Universal Point Sets: Summary

Problem: Is our point set universal for all planar graphs?

For all planar graphs, the currently best bounds are $1.235n - o(n)$ (Kurowski) and $n^2/4$ (Bannister et al.).

Open Problem: Find n-universal point sets of size $o(n^2)$.
Universal Point Sets: Summary

Problem: Is our point set universal for all planar graphs?

For all planar graphs, the currently best bounds are $1.235n - o(n)$ (Kurowski) and $n^2/4$ (Bannister et al.).

Open Problem: Find n-universal point sets of size $o(n^2)$.

Generalization:
A point set S is **universal for** a family of graphs \mathcal{G} if every graph $G \in \mathcal{G}$ has a geometric realization with $cr(G)$ crossings such that all vertices are mapped into S.

Open Problem: Find n-universal point sets for all graphs.

...might be elusive:
—computing the crossing number, $cr(G)$, is NP-hard,
—no optimal embedding is known for the complete graph K_n.
Universal Slope Sets

Keszegh et al. (2008):

- Every (abstract) graph with maximum degree 3 has a geometric realization with 5 distinct slopes.
- Every graph with vertices of both degree 2 and 3 has a geometric realization with 4 slopes,
- A set S of 4 slopes is universal for all such graphs iff $S = \{ \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{a} + \overrightarrow{b} \}$.

Keszegh et al. (2010): There is a function $f : \mathbb{N} \to \mathbb{N}$ such that every planar graph G with maximum degree d admits a geometric embedding with at most $f(d)$ different slopes.
Universal Slope Sets

Keszegh et al. (2008):

- Every (abstract) graph with maximum degree 3 has a geometric realization with 5 distinct slopes.
- Every graph with vertices of both degree 2 and 3 has a geometric realization with 4 slopes,
- A set S of 4 slopes is universal for all such graphs iff $S = \{ \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{a} + \overrightarrow{b} \}$.

Keszegh et al. (2010): There is a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every planar graph G with maximum degree d admits a geometric embedding with at most $f(d)$ different slopes.

Open Problem: Which slope sets are universal for all planar graphs of maximum degree d?
Universality in Geometric Graphs

1. A structure is universal if it is “compatible” with every geometric graph from a certain family (e.g., universal point sets, universal slopes, etc.)

2. An abstract graph is universal if it has a geometric realization for any possible choice of certain parameters (e.g., globally globally rigid graphs, length-universal graphs, area universal floorplans).
Globally Rigid Graphs

A geometric graph $G = (V, E)$ is (locally) **rigid** if every small motion of the vertices that preserves all edge lengths is an isometry.
Globally Rigid Graphs

A geometric graph $G = (V, E)$ is (locally) **rigid** if every small motion of the vertices that preserves all edge lengths is an isometry.

Def.: An (abstract) graph $G = (V, E)$ is **generically globally rigid** if every realization as a geometric graph with vertices in general position is **rigid**.
Globally Rigid Graphs

A geometric graph $G = (V, E)$ is (locally) **rigid** if every small motion of the vertices that preserves all edge lengths is an isometry.

Def.: An (abstract) graph $G = (V, E)$ is **generically globally rigid** if every realization as a geometric graph with vertices in general position is rigid.

Jackson & Jordán (2005): A graph G is generically globally rigid iff
- either $G = K_n$, $n \leq 3$,
- or G is 3-connected and redundantly rigid.
Length Universal Graphs: An Easy Exercise

A graph $G = (V, E)$ is **length universal** if it admits a geometric embedding for all length assignments $\ell : E \to \mathbb{R}^+$.
Length Universal Graphs: An Easy Exercise

A graph $G = (V, E)$ is **length universal** if it admits a geometric embedding for all length assignments $\ell : E \rightarrow \mathbb{R}^+$. E.g., a star is realizable with arbitrary positive edge lengths.
Length Universal Graphs: An Easy Exercise

A graph $G = (V, E)$ is length universal if it admits a geometric embedding for all length assignments $\ell : E \to \mathbb{R}^+$. E.g., a star is realizable with arbitrary positive edge lengths.

But the edges of a cycle must satisfy the triangle inequality. The edge lengths cannot be chosen arbitrarily.
Length Universal Graphs: An Easy Exercise

A graph $G = (V, E)$ is length universal if it admits a geometric embedding for all length assignments $\ell : E \to \mathbb{R}^+$. E.g., a star is realizable with arbitrary positive edge lengths.

But the edges of a cycle must satisfy the triangle inequality. The edge lengths cannot be chosen arbitrarily.

Observation: A graph is length universal iff it is a forest.
Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is **free in** H if for every function $\ell : E \rightarrow \mathbb{R}^+$, H has a geometric embedding such that every $e \in E$ has length $\ell(e)$.
Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is **free in** H if for every function $\ell : E \to \mathbb{R}^+$, H has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

A star is realizable with arbitrary positive edge lengths.
Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is free in H if for every function $\ell : E \to \mathbb{R}^+$, H has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

A star is realizable with arbitrary positive edge lengths.

But a star with $n \geq 5$ vertices cannot have arbitrary positive edge lengths in a triangulation H.

Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is free in H if for every function $\ell : E \to \mathbb{R}^+$, H has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

Thm.: A graph G is free in every planar H, $G \subseteq H$, iff G is

- a matching
- a forest with at most 3 edges, or
- two disjoint paths of length 2.
Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a **perfect matching** in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a **perfect matching** in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a **perfect matching** in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e)$, $e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.
Free Graphs

Lemma: If \(G = (V, E) \) is a perfect matching in a triangulation \(H \), then all positive lengths \(\ell(e), e \in E \), can be realized in an embedding of \(H \).

Naïve idea:
1. Contract all edges \(e \in E \) of the matching;
2. Embed the graph with “giant” edges;
3. Expand all \(e \in E \) to the required lengths.

Main technical difficulty: separating triangles.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the graph with "giant" edges;
3. Expand all $e \in E$ to the required lengths.

Main technical difficulty:
separating triangles.
Free Graphs

Lemma: If $G = (V, E)$ is a perfect matching in a triangulation H, then all positive lengths $\ell(e), e \in E$, can be realized in an embedding of H.

Naïve idea:
1. Contract all edges $e \in E$ of the matching;
2. Embed the graph with “giant” edges;
3. Expand all $e \in E$ to the required lengths.

Main technical difficulty: separating triangles.
A recursion on the hierarchy of separating triangles and separating 4-cycles works, using an appropriate linear transformation in each step.
Extrinsically Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is extrinsically free in H if whenever if G has a geometric embedding with edge lengths $\ell(e), e \in E$, then H also has a geometric embedding such that every $e \in E$ has length $\ell(e)$.
Extrinsically Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is extrinsically free in H if whenever if G has a geometric embedding with edge lengths $\ell(e)$, $e \in E$, then H also has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

A triangle $G = C_3$, and every triangulation $G = T$ is extrinsically free, since $H = G$.
Extrinsically Free Graphs

Let \(G = (V, E) \) be a subgraph of a planar graph \(H \). Graph \(G \) is extrinsically free in \(H \) if whenever if \(G \) has a geometric embedding with edge lengths \(\ell(e) \), \(e \in E \), then \(H \) also has a geometric embedding such that every \(e \in E \) has length \(\ell(e) \).

A triangle \(G = C_3 \), and every triangulation \(G = T \) is extrinsically free, since \(H = G \).

The 4-cycle \(C_4 \) is not extrisically free: if all four edges have unit length, then \(C_4 \) is a rhombus (i.e., convex), and cannot have an external diagonal.
Extrinsically Free Graphs
Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is **extrinsically free in** H if whenever if G has a geometric embedding with edge lengths $\ell(e)$, $e \in E$, then H also has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

Thm.: A graph G is extrinsically free in every planar H, $G \subseteq H$, iff G is
- a matching
- a forest with at most 3 edges,
- two disjoint paths of length 2,
- a triangulation, or
- a triangle and one edge.
Extrinsically Free Graphs

Let $G = (V, E)$ be a subgraph of a planar graph H. Graph G is extrinsically free in H if whenever if G has a geometric embedding with edge lengths $\ell(e), e \in E$, then H also has a geometric embedding such that every $e \in E$ has length $\ell(e)$.

Thm.: A graph G is extrinsically free in every planar H, $G \subseteq H$, iff G is
- a matching
- a forest with at most 3 edges,
- two disjoint paths of length 2,
- a triangulation, or
- a triangle and one edge.

No cycle $C_k, k \geq 4$, is extrinsically free:
“Triangulated” Carpenter’s Rule

Connelly et al. (2003): Every simple polygonal cycle (with fixed edge lengths) can be continuously unfolded into convex position (i.e., its configuration space is connected).
“Triangulated” Carpenter’s Rule

Connelly et al. (2003): Every simple polygonal cycle (with fixed edge lengths) can be continuously unfolded into convex position (i.e., its configuration space is connected).

The unfolding algorithm by Streinu maintains a triangulation of C': The edges of the interior triangulation are preserved, and the edges of the exterior triangulation vanish.
“Triangulated” Carpenter’s Rule

Given a simple polygonal cycle C and an arbitrary curvilinear triangulation H, does H admit a straight-line embedding such that the cycle C keeps its given edge lengths?
“Triangulated” Carpenter’s Rule

Given a simple polygonal cycle C and an arbitrary curvilinear triangulation H, does H admit a straight-line embedding such that the cycle C keeps its given edge lengths?

Thm. (Abel et al., 2013): “Yes” if the edge lengths are nondegenerate, that is, if the cycle cannot be “flattened” into 1D in two different ways with the given edge lengths.
Thank you!