On the Universal Rigidity of Tensegrity Frameworks

A.Y. Alfakih
(joint work with Viet-Hang Nguyen)

Dept of Math and Statistics
University of Windsor

Workshop on Discrete Geometry, Optimization and Symmetry
Fields Institute, Nov 2013
A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.
Tensegrity Frameworks

Definition

A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

Definition

A tensegrity framework in \mathbb{R}^r, denoted by (G, p), is a tensegrity graph where each node i is mapped to a point p^i in \mathbb{R}^r.
A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

A tensegrity framework in \mathbb{R}^r, denoted by (G, p), is a tensegrity graph where each node i is mapped to a point p^i in \mathbb{R}^r. If $\dim(\text{affine hull of } p^1, \ldots, p^n) = k$, we say that tensegrity (G, p) is k-dimensional.
Tensegrity Frameworks

Definition
A tensegrity graph is a simple undirected graph G where each edge is labeled as either a **bar**, a **cable**, or a **strut**.

Definition
A tensegrity framework in \mathbb{R}^r, denoted by (G, p), is a tensegrity graph where each node i is mapped to a point p^i in \mathbb{R}^r.

If $\dim(\text{affine hull of } p^1, \ldots, p^n) = k$, we say that tensegrity (G, p) is k-dimensional.

A tensegrity framework has two aspects: a **geometric one** (p) and a **combinatorial one** (G).
Applications

tensegrities have important applications in:

1. Molecular conformation theory.
2. Wireless sensor network localization problem.
3. Art.
Tensegrity as an Artwork

Kenneth Snelson needle tower sculpture in Washington D.C.
Tensegrity as an Artwork Cont’d

Kenneth Snelson Indexer II sculpture at the University of Michigan, Ann Arbor
Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^s\) is said to be dominated by tensegrity \((G, p)\) in \(\mathbb{R}^r\) if

\[
\|q^i - q^j\| = \|p^i - p^j\| \quad \text{for all bar } \{i,j\}.
\]

\[
\|q^i - q^j\| \leq \|p^i - p^j\| \quad \text{for all cable } \{i,j\}.
\]

\[
\|q^i - q^j\| \geq \|p^i - p^j\| \quad \text{for all strut } \{i,j\}.
\]
Domination and Affine-Domination

Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^s\) is said to be **dominated by** tensegrity \((G, p)\) in \(\mathbb{R}^r\) if

\[
\| q_i - q_j \| = \| p_i - p_j \| \quad \text{for all bar } \{i, j\}.
\]

\[
\| q_i - q_j \| \leq \| p_i - p_j \| \quad \text{for all cable } \{i, j\}.
\]

\[
\| q_i - q_j \| \geq \| p_i - p_j \| \quad \text{for all strut } \{i, j\}.
\]

Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^r\) is said to be **affinely-dominated by** tensegrity \((G, p)\) in \(\mathbb{R}^r\) if \((G, q)\) is dominated by \((G, p)\) and

\[
q_i = Ap_i + b \quad \text{for all } i = 1, \ldots, n
\]

for some \(r \times r\) matrix \(A\) and an \(r\)-vector \(b\).
Dimensional and Universal Rigidities

Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^r\) is said to be congruent to tensegrity \((G, p)\) in \(\mathbb{R}^r\) if \(\|q^i - q^j\| = \|p^i - p^j\|\) for every \(i = 1, \ldots, n\).
Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^r\) is said to be **congruent** to tensegrity \((G, p)\) in \(\mathbb{R}^r\) if \(||q^i - q^j|| = ||p^i - p^j||\) for every \(i = 1, \ldots, n\).

Definition

An \(r\)-dimensional tensegrity \((G, p)\) in \(\mathbb{R}^r\) is said to be **dimensionally rigid** if no \(s\)-dimensional tensegrity \((G, q)\), for any \(s \geq r + 1\), is dominated by \((G, p)\).
Definition

Tensegrity \((G, q)\) in \(\mathbb{R}^r\) is said to be **congruent** to tensegrity \((G, p)\) in \(\mathbb{R}^r\) if \(\|q^i - q^j\| = \|p^i - p^j\|\) for every \(i = 1, \ldots, n\).

Definition

An \(r\)-dimensional tensegrity \((G, p)\) in \(\mathbb{R}^r\) is said to be **dimensionally rigid** if no \(s\)-dimensional tensegrity \((G, q)\), for any \(s \geq r + 1\), is dominated by \((G, p)\).

Definition

An \(r\)-dimensional tensegrity \((G, p)\) in \(\mathbb{R}^r\) is said to be **universally rigid** if every \(s\)-dimensional tensegrity \((G, q)\), for any \(s\), that is dominated by \((G, p)\) is in fact congruent to \((G, p)\).
Example

Cable

Strut

1

3

4

2

Not universally rigid. It folds on the diagonal.
Example

Cable

Strut

universally rigid.

A.Y. Alfakih (joint work with Viet-H. Nguyen)

On the Universal Rigidity of Tensegrity Frameworks

Workshop on Discrete Geometry, Optimization and Symmetry
Fields Institute, Nov 2013

8/30
Example

Cable

Strut

universally rigid.

Not universally rigid. It folds on the diagonal.
Example

Cable

Strut

Universally rigid.

Not universally rigid. It folds on the diagonal.
Characterization of Universal Rigidity

Theorem

An r-dimensional Tensegrity (G, p) in \mathbb{R}^r is **universally rigid** if and only if

1. (G, p) is *dimensionally rigid*.
2. There does not exist an r-dimensional tensegrity (G, q) in \mathbb{R}^r affinely-dominated by, but not congruent to, (G, p).

Condition 2 is known as the “no conic at infinity” condition.
In This Talk, I’ll:

1. Present the well-known sufficient condition for dimensional rigidity.
In This Talk, I’ll:

1. Present the well-known sufficient condition for dimensional rigidity.
2. Present conditions under which the “no conic at infinity” holds.
A stress of a tensegrity \((G, p)\) is a real-valued function \(\omega\) on
\(E(G) = B \cup C \cup S\) such that:

\[
\sum_{j : \{i, j\} \in E(G)} \omega_{ij} (p^i - p^j) = 0 \text{ for all } i = 1, \ldots, n.
\]
Stress Matrices

- A stress of a tensegrity (G, p) is a real-valued function ω on $E(G) = B \cup C \cup S$ such that:

\[
\sum_{j: \{i, j\} \in E(G)} \omega_{ij}(p^i - p^j) = 0 \text{ for all } i = 1, \ldots, n.
\]

- A stress ω is proper if $\omega_{ij} \geq 0$ for every $\{i, j\} \in C$ and $\omega_{ij} \leq 0$ for every $\{i, j\} \in S$.
Stress Matrices

- A **stress** of a tensegrity \((G, p)\) is a real-valued function \(\omega\) on \(E(G) = B \cup C \cup S\) such that:

\[
\sum_{j : \{i, j\} \in E(G)} \omega_{ij}(p^i - p^j) = 0 \text{ for all } i = 1, \ldots, n.
\]

- A stress \(\omega\) is **proper** if \(\omega_{ij} \geq 0\) for every \(\{i, j\} \in C\) and \(\omega_{ij} \leq 0\) for every \(\{i, j\} \in S\).

- The **stress matrix** associated with stress \(\omega\) is the \(n \times n\) symmetric matrix \(\Omega\) where

\[
\Omega_{ij} = \begin{cases}
-\omega_{ij} & \text{if } (i, j) \in E(G), \\
0 & \text{if } (i, j) \notin E(G), \\
\sum_{k : \{i, k\} \in E(G)} \omega_{ik} & \text{if } i = j.
\end{cases}
\]
Example

\begin{align*}
\omega_{12} &= 1, \quad \omega_{14} = 1, \\
\omega_{13} &= -1.
\end{align*}

$$\begin{pmatrix}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{pmatrix}$$

\(\Omega\) is proper positive semidefinite of rank 1.
Theorem (Connelly ’82)

An r-dimensional Tensegrity (G, p) on n nodes in \mathbb{R}^r ($r \leq n - 2$) is dimensionally rigid if there exists a proper positive semidefinite stress matrix Ω of (G, p) of rank $n - r - 1$.
Example

- Bar
- Cable
- Strut

A dimensionally but not universally rigid tensegrity. The "No Conic at Infinity" Condition does not hold. In the sequel we concentrate on this condition.

A.Y. Alfakih (joint work with Viet-Hang Nguyen)
A dimensionally but not universally rigid tensegrity.
A dimensionally but not universally rigid tensegrity. The “No Conic at Infinity” Condition does not hold. In the sequel we concentrate on this condition.
A configuration $p = (p_1, \ldots, p^n)$ in \mathbb{R}^r is generic if the coordinates of p_1, \ldots, p^n are algebraically independent over the rationals, i.e., the coordinates of p_1, \ldots, p^n do not satisfy any nonzero polynomial with rational coefficients.
Generic Configurations

Definition

A configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^r \) is **generic** if the coordinates of \(p^1, \ldots, p^n \) are algebraically independent over the rationals, i.e., the coordinates of \(p^1, \ldots, p^n \) do not satisfy any nonzero polynomial with rational coefficients.

Lemma (Connelly ’05)

Let \((G, p)\) be an \(r \)-dimensional tensegerity. If configuration \(p \) is **generic** and every node of \(G \) has degree at least \(r \), then the “no conic at infinity” condition holds. Consequently, **dimensional rigidity implies universal rigidity**.
A configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r is in general position if every subset of $\{p^1, \ldots, p^n\}$ of cardinality $r + 1$ is affinely independent.
Configurations in General Position

Definition

A configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^r \) is **in general position** if every subset of \(\{p^1, \ldots, p^n\} \) of cardinality \(r + 1 \) is affinely independent.

Definition

A bar framework \((G, p)\) is a tensegrity framework where all the edges are bars, i.e., \(E(G) = B \) and \(C = S = \emptyset \).
Definitions

A configuration \(p = (p^1, \ldots, p^n) \) in \(\mathbb{R}^r \) is in general position if every subset of \(\{ p^1, \ldots, p^n \} \) of cardinality \(r + 1 \) is affinely independent.

A bar framework \((G, p)\) is a tensegrity framework where all the edges are bars, i.e., \(E(G) = B \) and \(C = S = \emptyset \).

Lemma (A. and Ye ’13)

Let \((G, p)\) be an \(r \)-dimensional bar framework. If \((G, p)\) admits a stress matrix \(\Omega \) of rank \(n - r - 1 \) and configuration \(p \) is in general position, then the “no conic at infinity” condition holds. Consequently, dimensional rigidity implies universal rigidity.
Let C^* and S^* be the sets of stressed cables and stressed struts respectively, i.e,

$C^* = \{ \{i, j\} \in C : \omega_{ij} \neq 0 \}$ and $S^* = \{ \{i, j\} \in S : \omega_{ij} \neq 0 \}$.
Let C^* and S^* be the sets of stressed cables and stressed struts respectively, i.e,
$C^* = \{\{i,j\} \in C : \omega_{ij} \neq 0\}$ and $S^* = \{\{i,j\} \in S : \omega_{ij} \neq 0\}$.

Theorem (A. and V-T Nguyen ’13)

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r. If the following conditions hold:

1. there exists a proper stress matrix Ω of (G, p) of rank $n - r - 1$.
2. for each node i, the set $\{p^i\} \cup \{p^j : \{i,j\} \in B \cup C^* \cup S^*\}$ affinely span \mathbb{R}^r.

Then the “no conic at infinity” condition holds. Consequently, dimensional rigidity implies universal rigidity.
Corollary (A. and V-T Nguyen ’13)

Let \((G, p)\) be an \(r\)-dimensional tensegrity in \(\mathbb{R}^r\). If the following conditions hold:

1. there exists a proper stress matrix \(\Omega\) of \((G, p)\) of rank \(n - r - 1\).
2. for each node \(i\), the set \(\{p^i\} \cup \{p^j : \{i, j\} \in B \cup C^* \cup S^*\}\) is in general position in \(\mathbb{R}^r\).

Then the “no conic at infinity” condition holds. Consequently, dimensional rigidity implies universal rigidity.
Theorem (A. and V-T Nguyen ’13)

Let \((G, p)\) be an \(r\)-dimensional bar framework in \(\mathbb{R}^r\). If the following conditions hold:

1. there exists a stress matrix \(\Omega\) of \((G, p)\) of rank \(n - r - 1\).
2. for each node \(i\), the set \(\{p^i\} \cup \{p^j : \{i, j\} \in E(G)\}\) affinely span \(\mathbb{R}^r\).

Then the “no conic at infinity” condition holds. Consequently, dimensional rigidity implies universal rigidity.
We use **Gram matrices** to represent configuration
\(p = (p_1, \ldots, p^n) \).
The Idea Behind the Proof

1. We use **Gram matrices** to represent configuration $p = (p^1, \ldots, p^n)$.

2. Let $P^T = [p^1 \cdots p^n]$. P is called the **configuration matrix**. Then the Gram matrix is PP^T.

A.Y. Alfakih (joint work with Viet-Hang Nguyen)

On the Universal Rigidity of Tensegrity Frameworks

Workshop on Discrete Geometry, Optimization,

Fields Institute, Nov 2013
We use Gram matrices to represent configuration $p = (p^1, \ldots, p^n)$.

Let $P^T = [p^1 \cdots p^n]$. P is called the configuration matrix. Then the Gram matrix is PP^T.

Thus the universal rigidity problem becomes amenable to semi-definite programming.
The Idea Behind the Proof

1. We use **Gram matrices** to represent configuration $p = (p^1, \ldots, p^n)$.

2. Let $P^T = [p^1 \cdots p^n]$. P is called the **configuration matrix**. Then the Gram matrix is PP^T.

3. Thus the universal rigidity problem becomes amenable to semi-definite programming.

Theorem (A. and V-T Nguyen ’13)

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r and let Ω be a proper positive semidefinite stress matrix of (G, p). Then Ω is a proper stress matrix for all tensegrities (G, p') dominated by (G, p).
A Gale matrix of r-dimensional tensegrity (G, p) in \mathbb{R}^r is any $n \times (n - r - 1)$ matrix Z such that the columns of Z form a basis of the null space of:

$$
\begin{bmatrix}
p^1 & p^2 & \cdots & p^n \\
1 & 1 & \cdots & 1
\end{bmatrix} =
\begin{bmatrix}
P^T \\
e^T
\end{bmatrix}.
$$
Gale Matrices

- A **Gale matrix** of \(r \)-dimensional tensegrity \((G, p)\) in \(\mathbb{R}^r\) is any \(n \times (n - r - 1)\) matrix \(Z\) such that the columns of \(Z\) form a basis of the null space of:

\[
\begin{bmatrix}
p^1 & p^2 & \cdots & p^n \\
1 & 1 & \cdots & 1
\end{bmatrix}
= \begin{bmatrix}
P^T \\
e^T
\end{bmatrix}.
\]

- In Polytope theory, the **rows** of \(Z\) (\(z^1, \ldots, z^n\) in \(\mathbb{R}^{n-r-1}\)) are called **Gale transforms** of \(p^1, \ldots, p^n\).
A Gale matrix of r-dimensional tensegrity (G, p) in \mathbb{R}^r is any $n \times (n - r - 1)$ matrix Z such that the columns of Z form a basis of the null space of:

$$
\begin{bmatrix}
p^1 & p^2 & \cdots & p^n \\
1 & 1 & \cdots & 1
\end{bmatrix}
= \begin{bmatrix}
P^T \\
e^T
\end{bmatrix}.
$$

In Polytope theory, the rows of Z (z^1, \ldots, z^n in \mathbb{R}^{n-r-1}) are called Gale transforms of p^1, \ldots, p^n.

The Gale matrix Z encodes the affine dependencies among the points p^1, \ldots, p^n.
Theorem (A ‘07)

Let Ω and Z be, respectively, a stress matrix and a Gale matrix of (G, p). Then

$$\Omega = Z\Psi Z^T$$

for some symmetric matrix Ψ.

On the other hand, let Ψ' be any symmetric matrix such that

$$z^i \Psi' z^j = 0$$

for all $\{i, j\} \notin E$,

where z^i is the ith row of Z. Then $Z\Psi' Z^T$ is a stress matrix of (G, p).
Example

Gale matrix is

\[Z = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}. \]

and stress matrix \(\Omega = ZZ^T \).
Properties of Gale Transform

Lemma

Let \((G, p)\) be an \(r\)-dimensional tensegrity in \(\mathbb{R}^r\) and let \(z^1, \ldots, z^n\) be, respectively, Gale transforms of \(p^1, \ldots, p^n\). Let \(J \subseteq \{1, \ldots, n\}\) and assume that the set of vectors \(\{p^i : i \in J\}\) affinely span \(\mathbb{R}^r\). Then the set \(\{z^i : i \in \overline{J}\}\) is linearly independent, where \(\overline{J} = \{1, \ldots, n\} \setminus J\).
Let $F_{ij} = (e^i - e^j)(e^i - e^j)^T$, e^i is the ith standard unit vector in \mathbb{R}^n. Recall that the configuration matrix $P^T = [p^1 \ldots p^n]$.
Let $F_{ij} = (e^i - e^j)(e^i - e^j)^T$, e^i is the ith standard unit vector in \mathbb{R}^n. Recall that the configuration matrix $P^T = [p^1 \ldots p^n]$.

Lemma

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r. Then the “no conic at infinity” holds iff there does not exist a nonzero symmetric matrix Φ such that:

- $\text{trace}(F_{ij}(P\Phi P^T)) = 0$ for all $\{i, j\} \in B$.
- $\text{trace}(F_{ij}(P\Phi P^T)) \leq 0$ for all $\{i, j\} \in C$.
- $\text{trace}(F_{ij}(P\Phi P^T)) \geq 0$ for all $\{i, j\} \in S$.
Affine-Domination

E_{ij} is the matrix with 1s in the ijth and jith entries and 0’s elsewhere.
Affine-Domination

E_{ij} is the matrix with 1s in the ijth and jith entries and 0’s elsewhere.

Lemma

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r and let Z be a Gale matrix of (G, p). Then the “no conic at infinity” holds iff there does not exist a nonzero $y = (y_{ij}) \in \mathbb{R}^{\bar{E} + |C| + |S|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \geq 0$ for all $\{i, j\} \in C$ and $y_{ij} \leq 0$ for all $\{i, j\} \in S$ such that:

$$\mathcal{E}(y)Z = e\xi^T,$$

where $\mathcal{E}(y) = \sum_{\{i,j\} \in \bar{E} \cup C \cup S} y_{ij}E_{ij}$.
Affine-Domination when a proper Ω is Known

The following are equivalent:

1. the ‘no conic at infinity” holds.

2. (Whiteley unpublished) \exists symmetric $\Phi \neq 0$ such that:

 \[\text{trace}(F_{ij}(P\Phi P^T)) = 0 \text{ for all } \{i, j\} \in B \cup C^* \cup S^*. \]

 \[\text{trace}(F_{ij}(P\Phi P^T)) \leq 0 \text{ for all } \{i, j\} \in C^0. \]

 \[\text{trace}(F_{ij}(P\Phi P^T)) \geq 0 \text{ for all } \{i, j\} \in S^0. \]

3. $\exists y = (y_{ij}) \neq 0 \in \mathbb{R}^{|\bar{E}|+|C^0|+|S^0|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \geq 0 \ \forall \ \{i, j\} \in C^0$ and $y_{ij} \leq 0 \ \forall \ \{i, j\} \in S^0$ such that:

 \[E^0(y)Z = e\xi^T, \]

 where $E^0(y) = \sum_{\{i,j\} \in \bar{E} \cup C^0 \cup S^0} y_{ij}E_{ij}$.

A.Y. Alfakih (joint work with Viet-Hung Nguyen)

Dept of Math and Statistics University of Windsor

Workshop on Discrete Geometry, Optimization and Symmetry
Fields Institute, Nov 2013

27/30
Lemma

Assume that $\Omega = Z\Psi Z^T$ is a proper stress matrix of (G, p) of rank $n - r - 1$. Then the following are equivalent:

1. the “no conic at infinity” holds
2. $\forall y = (y_{ij}) \neq 0 \in \mathbb{R}^{|\tilde{E}|+|C^0|+|S^0|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \geq 0$ for all $\{i, j\} \in C^0$ and $y_{ij} \leq 0$ for all $\{i, j\} \in S^0$ such that:

$$\mathcal{E}^0(y)Z = 0,$$

where $\mathcal{E}^0(y) = \sum_{\{i,j\} \in \tilde{E} \cup C^0 \cup S^0} y_{ij} E_{ij}$.
Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

\[\mathcal{E}^0(y)Z = 0 \]

is the trivial solution \(y = 0 \). Hence, the “no conic at infinity” condition holds.
Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

$$E^0(y)Z = 0$$ \hspace{1cm} (1)

is the trivial solution $y = 0$. Hence, the “no conic at infinity” condition holds.

Equation (1) can be written as

$$\sum_{j=1}^{n} (E^0(y))_{ij} z^i = 0$$ for all $i = 1, \ldots, n$.

which reduces to

$$\sum_{j: \{i,j\} \in E \cup C^0 \cup S^0} (E^0(y))_{ij} z^i = 0.$$
Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

$$E^0(y)Z = 0 \quad (1)$$

is the trivial solution $y = 0$. Hence, the “no conic at infinity” condition holds.

Equation (1) can be written as

$$\sum_{j=1}^{n} (E^0(y))_{ij} z^i = 0 \text{ for all } i = 1, \ldots, n.$$

which reduces to

$$\sum_{j : \{i, j\} \in \bar{E} \cup C^0 \cup S^0} (E^0(y))_{ij} z^i = 0.$$

Thus the result follows from the linear independence of

$$\{z^i : \{i, j\} \in \bar{E} \cup C^0 \cup S^0\}.$$
Thank You