What is the minimal critical exponent of quasiperiodic words?

Gwenaël Richomme

Montpellier, France

April 22th, 2013
Workshop "Challenges in Combinatorics on Words"
Quasiperiodicity?

Definition

\(w \) is \(q \)-quasiperiodic if \(w \neq q \) (finite case) and \(w \) can be obtained by concatenations and overlaps of \(q \).
Quasiperiodicity?

Definition

\(w \) is \(q \)-quasiperiodic if \(w \neq q \) (finite case) and
\(w \) can be obtained by concatenations and overlaps of \(q \)

Examples

- \(k \)-powers: \(qq \ldots q \) \(k \)times
 \[abaabaabaaba \]

Definition

\[w \text{ is } q\text{-quasiperiodic if } w \neq q \text{ (finite case) and } \]
\[w \text{ can be obtained by concatenations and overlaps of } q \]

Examples

- \(k\)-powers: \(qq \ldots q \)
 - \(k\) times
 - \(abaabaabaaba \)
 - \(abaabaabaabaaba \)
Quasiperiodicity?

Definition

\(w \) is \(q \)-quasiperiodic if \(w \neq q \) (finite case) and
\(w \) can be obtained by concatenations and overlaps of \(q \)

Examples

- \(k \)-powers: \(qq \ldots q \) \[abaabaabaaba\]
 \[aba \overbrace{abaaba}aba \overbrace{abababa}aba\]
 \[abacaba \overbrace{abacaba}cab \overbrace{abacaba}\]

Critical exponent?

Fractional power

\[x^{\frac{p}{q}} = x^n y \text{ with } n = \lfloor \frac{p}{q} \rfloor, \quad q = |x| \text{ and } y \text{ prefix of } x \text{ of length } p - nq \]

\[
\begin{align*}
ababa &= (ab)^{5/2} \\
abaabaab &= (aba)^{8/3}
\end{align*}
\]
Critical exponent?

Fractional power

\[x^{\frac{p}{q}} = x^n y \text{ with } n = \lfloor \frac{p}{q} \rfloor, \ q = |x| \text{ and } y \text{ prefix of } x \text{ of length } p - nq \]

\[ababa = (ab)^{5/2} \]

\[abaabaab = (aba)^{8/3} \]

Critical exponent of \(w \)

\[E(w) = \sup\{ k \in \mathbb{Q} \mid w \text{ contains a } k\text{th power} \} \]

\[E(\text{Thue-Morse}) = 2 \]

\[E(\text{Fibonacci}) = 2 + \phi \]
Question

\[\min \{ E(w) \mid w \text{ quasiperiodic} \} ? \]
Reformulation of the question

Question

\[
\min \{ E(w) \mid w \text{ quasiperiodic} \}?
\]

Observation

\[w \text{ quasiperiodic } \Rightarrow E(w) > 2. \]
Indeed \(w \) contains an overlap of \(q \) or \(q^2 \).
For all $\epsilon > 0$, over a 3-letter alphabet, there exists an infinite word with critical exponent less than $2 + \epsilon$.

So the question holds only on binary alphabets:

Is the smallest exponent $\frac{7}{3}$? $\frac{5}{2}$? $\frac{8}{3}$? other?
For all $\epsilon > 0$, over a 3-letter alphabet, there exists an infinite word with critical exponent less than $2 + \epsilon$.

So the question holds only on binary alphabets: Is the smallest exponent $\frac{7}{3}$?

Recent idea (friday)

- to use Karhumäki, Shallit 1994 and their 21-uniform morphism:

$\Rightarrow \frac{7}{3}$
Ideas for the 7-letter alphabet

Step 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$\mapsto x y z x y x$</td>
</tr>
<tr>
<td>b</td>
<td>$\mapsto x y z x y$</td>
</tr>
<tr>
<td>c</td>
<td>$\mapsto x y x z$</td>
</tr>
</tbody>
</table>

For all infinite word w, $f(w)$ is $x y z x y x$-quasiperiodic.
Ideas for the 7-letter alphabet

Step 1

\[
f \begin{cases}
 a &\mapsto xyzxyzx \\
 b &\mapsto xyzzy \\
 c &\mapsto xyz
\end{cases}
\]

for all infinite word \(w\), \(f(w)\) is \(xyzxyzx\)-quasiperiodic

Step 2

Choose:

- \(w, y\) and \(z\) square-free
- \(x\) letter, \(x \notin \text{alph}(yz), \text{alph}(y) \cap \text{alph}(z) = \emptyset\)

Maximal runs of exponent > 2 are:

\[
xyxyx
\]

\[f(ba) = xyzxyzxyxzzxyx\]
Ideas for the 7-letter alphabet (continue)

Consequence of Step 2

\[E(w) = \max\left(2 + \frac{1}{1 + |y|}, 2 + \frac{1}{1 + \frac{|z|}{2 + |y|}}\right) \]

Final step

\(y\) and \(z\) can be chosen on disjoint 3-letter alphabets such that

\[E(w) \leq 2 + \epsilon \]
Use following square-free Brandenburg’s morphism (1983) twice:

\[
\begin{align*}
 a_1 & \mapsto aba\ cabins\ cac\ bab\ cba\ cbc \\
 a_2 & \mapsto aba\ cab\ cac\ bac\ aba\ cbc \\
 a_3 & \mapsto aba\ cab\ cac\ bca\ bcb\ abc \\
 a_4 & \mapsto aba\ cab\ cba\ cab\ acb\ abc \\
 a_5 & \mapsto aba\ cab\ cba\ cbc\ acb\ abc
\end{align*}
\]
from 7-letter alphabet to 3-letter alphabet

Use following square-free Brandenburg’s morphism (1983) twice:

\[
\begin{align*}
a_1 \mapsto & \ aba \ cab \ cac \ bab \ cba \ cbc \\
a_2 \mapsto & \ aba \ cab \ cac \ bac \ aba \ cbc \\
a_3 \mapsto & \ aba \ cab \ cac \ bca \ bcb \ abc \\
a_4 \mapsto & \ aba \ cab \ cba \ cab \ acb \ abc \\
a_5 \mapsto & \ aba \ cab \ cba \ cbc \ acb \ abc
\end{align*}
\]

with following extensions for the first time:

\[
\begin{align*}
a_6 \mapsto & \ dbd \ cdb \ cdc \ bdb \ cbd \ cbc, \\
a_7 \mapsto & \ ebe \ ceb \ cec \ beb \ cbe \ cbc
\end{align*}
\]
from 7-letter alphabet to 3-letter alphabet

Use following square-free Brandenburg’s morphism (1983) twice:

\[
\begin{align*}
 a_1 & \mapsto aba \ cab \ cac \ bab \ cba \ cbc \\
 a_2 & \mapsto aba \ cab \ cac \ bac \ aba \ cbc \\
 a_3 & \mapsto aba \ cab \ cac \ bca \ bcb \ abc \\
 a_4 & \mapsto aba \ cab \ cba \ cab \ acb \ abc \\
 a_5 & \mapsto aba \ cab \ cba \ cbc \ acb \ abc
\end{align*}
\]

with following extensions for the first time:

\[
\begin{align*}
 a_6 & \mapsto dbd \ cdb \ cdc \ bdb \ cbd \ cbc, \\
 a_7 & \mapsto ebe \ ceb \ cec \ beb \ cbe \ cbc
\end{align*}
\]

If \(w \) has a run of period \(p \) and exponent \(2 + \epsilon \) with \(\epsilon > 0 \), then \(f(w) \) has a run of exponent \(2 + \epsilon + 17/p \)
from 7-letter alphabet to 3-letter alphabet

Use following square-free Brandenburg’s morphism (1983) twice:
\[
\begin{align*}
 a_1 & \mapsto aba \enspace cab \enspace cac \enspace bab \enspace cba \enspace cbc \\
 a_2 & \mapsto aba \enspace cab \enspace cac \enspace bac \enspace aba \enspace cbc \\
 a_3 & \mapsto aba \enspace cab \enspace cac \enspace bca \enspace bcb \enspace abc \\
 a_4 & \mapsto aba \enspace cab \enspace cba \enspace cab \enspace acb \enspace abc \\
 a_5 & \mapsto aba \enspace cab \enspace cba \enspace cbc \enspace acb \enspace abc \\
\end{align*}
\]

with following extensions for the first time:
\[
\begin{align*}
 a_6 & \mapsto dbd \enspace cdb \enspace cdc \enspace bdb \enspace cbd \enspace cbc, \\
 a_7 & \mapsto ebe \enspace ceb \enspace cec \enspace beb \enspace cbe \enspace cbc \\
\end{align*}
\]

If \(w \) has a run of period \(p \) and exponent \(2 + \epsilon \) with \(\epsilon > 0 \), then \(f(w) \) has a run of exponent \(2 + \epsilon + 17/p \)

(In the construction on 7 letter alphabet, we can prove periods of repetitions of exponent at least 2 are \(> |xyz| \).)
Recent idea to go from 3-letter alphabet to 2-letter alphabet

Use paper by Karhumäki and Shallit in 1994 and their morphism:

\[
\begin{align*}
 a & \mapsto 011010011001001101001 \\
 b & \mapsto 100101100100110010110 \\
 c & \mapsto 100101100110110010110 \\
 d & \mapsto 011010011011001101001
\end{align*}
\]

KS1994: If \(w \) is square-free:

- \(f(w) \) contains no square \(yy \) with \(|y| > 13 \);
- \(f(w) \) contains no \(\frac{7}{3}^+ \)-powers.

It seems that taking suitable \(w \) quasiperiodic over \(\{a, b, c\} \) with exponent \(2 < E(w) < \frac{7}{3} \), we can get \(E(f(w)) = \frac{7}{3} \).
Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α-powers, with $2 < \alpha \leq \frac{7}{3}$. Let μ be the Thue–Morse morphism. Then there exist u, v with $u, v \in \{\varepsilon, 01, 00, 11\}$ and a word y avoiding α-powers, such that $x = u\mu(y)v$.
Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α-powers, with $2 < \alpha \leq \frac{7}{3}$.
Let μ be the Thue–Morse morphism.
Then there exist u, v with $u, v \in \{\varepsilon, 01, 00, 11\}$ and a word y
avoiding α-powers, such that $x = u\mu(y)v$.

Consequence:
for w infinite avoiding such α-powers, $n \geq a$, $w = u\mu^n(w')$ with w'.
w q-quasiperiodic + n such that $3|q| \leq |\mu^n(a)|$: contradiction.
Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α-powers, with $2 < \alpha \leq \frac{7}{3}$. Let μ be the Thue–Morse morphism. Then there exist u, v with u, $v \in \{\varepsilon, 01, 00, 11\}$ and a word y avoiding α-powers, such that $x = u\mu(y)v$.

Consequence:
for w infinite avoiding such α-powers, $n \geq a$, $w = u\mu^n(w')$ with w'. w q-quasiperiodic + n such that $3|q| \leq |\mu^n(a)|$: contradiction.

$E(w) \geq \frac{7}{3}$
Characterization of quasiperiodic-free morphism?
That is \(w \) non-quasiperiodic \(\Rightarrow f(w) \) non-quasiperiodic.
Another problem

Characterization of quasiperiodic-free morphism?
That is w non-quasiperiodic $\Rightarrow f(w)$ non-quasiperiodic.

They are prefix and suffix.
Another problem

<table>
<thead>
<tr>
<th>Question</th>
<th>Characterization of quasiperiodic-free morphism?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>That is w non-quasiperiodic $\Rightarrow f(w)$ non-quasiperiodic.</td>
</tr>
</tbody>
</table>

They are prefix and suffix.

| Question | If f does not preserve non-quasiperiodic words, then exists uv^ω non-quasiperiodic with $f(uv^\omega)$ non-quasiperiodic? |

Gwenaël Richomme
Quasiperiodic infinite words
Characterization of quasiperiodic-free morphism?
That is w non-quasiperiodic $\Rightarrow f(w)$ non-quasiperiodic.

They are prefix and suffix.

If f does not preserve non-quasiperiodic words, then exists $uv\omega$ non-quasiperiodic with $f(uv\omega)$ non-quasiperiodic?

What about bounds on $|u|$ and $|v|$?