Reducing the structural group by using stabilizers in general position

Mark L. MacDonald

Lancaster University

13 June 2013

How many independent parameters do you need to describe a generic object of the following types?

How many independent parameters do you need to describe a generic object of the following types?

 $\begin{array}{lll} & \text{Octonion algebra} \\ & \text{Albert algebra} \\ & \text{Freudenthal triple system} \end{array} \begin{array}{lll} 3 \leq \operatorname{ed}(G_2) \leq 3 \\ 5 \leq \operatorname{ed}(F_4) \leq 7 \\ 7 \leq \operatorname{ed}(E_7) \leq 17 \end{array}$

Key techniques for finding upper bounds

Let G be a smooth linear algebraic group over a field F, and V a linear representation.

Theorem 1

If V is generically free that $ed(G) \leq \dim V - \dim G$.

Let G be a smooth linear algebraic group over a field F, and V a linear representation.

Theorem 1

If V is generically free that $ed(G) \leq \dim V - \dim G$.

"Theorem 2"

If the stabilizers of points in general position (in V) are all conjugate to the same $H \subset G$ subgroup, then

$$H^1(L, N_G(H)) \rightarrow H^1(L, G)$$

is surjective for all fields L/F. Hence, $ed(G) \le ed(N_G(H))$.

Classifying torsors

Given a *G*-torsor π and an *L*-rational point α of the base we can form the pullback torsor over Spec(*L*):

э

Classifying torsors

Given a *G*-torsor π and an *L*-rational point α of the base we can form the pullback torsor over Spec(*L*):

Definition

A *G*-torsor is **classifying** if for all infinite fields L/F and all *G*-torsors *T* over *L*, the following set is *dense* in X/G:

$$\{ \alpha \in (X/G)(L) \mid X_{\alpha} \cong T \}$$

A B A A B A

Classifying torsors

Given a *G*-torsor π and an *L*-rational point α of the base we can form the pullback torsor over Spec(*L*):

Definition

A *G*-torsor is **classifying** if for all infinite fields L/F and all *G*-torsors *T* over *L*, the following set is *dense* in X/G:

$$\{ \alpha \in (X/G)(L) \mid X_{\alpha} \cong T \}$$

Example

If $G \subset GL_n$, then the *G*-torsor $GL_n \rightarrow GL_n / G$ is classifying.

Assume $W \to W/G$ is a classifying *G*-torsor induced from a generically free representation, and $U \subset V$ is an open dense on which the stabilizers are conjugate to *H*.

If T is any G-torsor over L, then we have an N-torsor T' over L:

Then $[T'] \mapsto [(G \times T')/N] = [T].$

$$\begin{array}{ll} 5 \leq \operatorname{ed}(F_4) & \leq \operatorname{ed}(N_{F_4}(\operatorname{Spin}_8)) & \text{Theorem 2} \\ & \leq \operatorname{ed}(N_{N_{F_4}}(\operatorname{Spin}_8)(\operatorname{SL}_3)) & \text{Theorem 2} \\ & \leq 17 - 10 = 7 & \text{Theorem 1} \end{array}$$

æ

・聞き ・ ほき・ ・ ほき

$$\begin{array}{lll} 5 \leq \operatorname{ed}(F_4) & \leq \operatorname{ed}(N_{F_4}(\operatorname{Spin}_8)) & \text{Theorem 2} \\ & \leq \operatorname{ed}(N_{N_{F_4}}(\operatorname{Spin}_8)(\operatorname{SL}_3)) & \text{Theorem 2} \\ & \leq 17 - 10 = 7 & \text{Theorem 1} \end{array}$$

E_n will denote the split simply connected group

∃ ► < Ξ.</p>

æ

Thanks!

æ

'문 ► ★ 문