Reducing the structural group by using stabilizers in general position

Mark L. MacDonald

Lancaster University

13 June 2013

Motivation: Essential dimension

How many independent parameters do you need to describe a generic object of the following types?

Motivation: Essential dimension

How many independent parameters do you need to describe a generic object of the following types?

> | Octonion algebra | $3 \leq \mathrm{ed}\left(G_{2}\right) \leq 3$ |
| :---: | :---: |
| Albert algebra | $5 \leq \mathrm{ed}\left(F_{4}\right) \leq 7$ |
| Freudenthal triple system | $7 \leq \operatorname{ed}\left(E_{7}\right) \leq 17$ |

Key techniques for finding upper bounds

Let G be a smooth linear algebraic group over a field F, and V a linear representation.

Theorem 1

If V is generically free that $\operatorname{ed}(G) \leq \operatorname{dim} V-\operatorname{dim} G$.

Key techniques for finding upper bounds

Let G be a smooth linear algebraic group over a field F, and V a linear representation.

Theorem 1

If V is generically free that $\operatorname{ed}(G) \leq \operatorname{dim} V-\operatorname{dim} G$.
"Theorem 2"
If the stabilizers of points in general position (in V) are all conjugate to the same $H \subset G$ subgroup, then

$$
H^{1}\left(L, N_{G}(H)\right) \rightarrow H^{1}(L, G)
$$

is surjective for all fields L / F. Hence, $\operatorname{ed}(G) \leq e d\left(N_{G}(H)\right)$.

Classifying torsors

Given a G-torsor π and an L-rational point α of the base we can form the pullback torsor over $\operatorname{Spec}(L)$:

Classifying torsors

Given a G-torsor π and an L-rational point α of the base we can form the pullback torsor over $\operatorname{Spec}(L)$:

Definition

A G-torsor is classifying if for all infinite fields L / F and all G-torsors T over L, the following set is dense in X / G :

$$
\left\{\alpha \in(X / G)(L) \quad \mid \quad X_{\alpha} \cong T\right\}
$$

Classifying torsors

Given a G-torsor π and an L-rational point α of the base we can form the pullback torsor over $\operatorname{Spec}(L)$:

Definition

A G-torsor is classifying if for all infinite fields L / F and all G-torsors T over L, the following set is dense in X / G :

$$
\left\{\alpha \in(X / G)(L) \quad \mid \quad X_{\alpha} \cong T\right\}
$$

Example

If $G \subset G L_{n}$, then the G-torsor $G L_{n} \rightarrow \mathrm{GL}_{n} / G$ is classifying.

Sketch proof of Theorem 2

Assume $W \rightarrow W / G$ is a classifying G-torsor induced from a generically free representation, and $U \subset V$ is an open dense on which the stabilizers are conjugate to H.
If T is any G-torsor over L, then we have an N-torsor T^{\prime} over L :

Then $\left[T^{\prime}\right] \mapsto\left[\left(G \times T^{\prime}\right) / N\right]=[T]$.

F_{4} and $E_{7}^{s c}$

$$
\begin{aligned}
5 \leq \operatorname{ed}\left(F_{4}\right) & \leq \operatorname{ed}\left(N_{F_{4}}\left(\operatorname{Spin}_{8}\right)\right) \\
& \leq \operatorname{ed}\left(N_{N_{F_{4}}\left(\operatorname{Spin}_{8}\right)}\left(\mathrm{SL}_{3}\right)\right) \\
& \leq 17-10=7
\end{aligned}
$$

Theorem 2
Theorem 2
Theorem 1

$$
\begin{aligned}
5 \leq \operatorname{ed}\left(F_{4}\right) & \leq \operatorname{ed}\left(N_{F_{4}}\left(\operatorname{Spin}_{8}\right)\right) \\
& \leq \operatorname{ed}\left(N_{N_{F_{4}}\left(\text { Spin }_{8}\right)}\left(\mathrm{SL}_{3}\right)\right) \\
& \leq 17-10=7
\end{aligned}
$$

Theorem 2
Theorem 2
Theorem 1
E_{n} will denote the split simply connected group

$$
\begin{array}{rlr}
7 \leq \operatorname{ed}\left(E_{7}\right) & \leq \operatorname{ed}\left(N_{E_{7}}\left(E_{6}\right)\right) & \\
& \leq \operatorname{ed}\left(N_{N_{E_{7}}\left(E_{6}\right)}\left(\text { Spin }_{8}\right)\right) & \\
& & \text { Theorem 2 } \\
& \leq 48-31=17 & \\
\text { Theorem 1 }
\end{array}
$$

Thanks!

