A surface-aware projection basis for oceanic flows

K S Smith1 J Vanneste2

1Courant Institute, New York University

2School of Mathematics and Maxwell Institute
University of Edinburgh
Motivation

High-resolution numerical modelling and satellite observations suggest ocean turbulence is in a surface quasi-geostrophic regime near the surface.

Surface vorticity

Baroclinic instability with $b_y \neq 0$ (left) and with $b_y = 0$ (right) (Roullet et al, JPO, 2012)
Recall quasi-geostrophic model:

\[\partial_t q + \partial(\psi, q) = 0, \quad \text{and} \quad \partial_t b + \partial(\psi, b) = 0 \quad \text{at} \quad z = z^\pm, \]

with the inversion

\[\partial_{xx} \psi + \partial_{yy} \psi + \partial_z \left(\frac{f^2}{N^2} \partial_z \psi \right) = q \quad \text{and} \quad \partial_z \psi = b/f \quad \text{at} \quad z = z^\pm. \]

Three dynamical variables:

- potential vorticity \(q(x, y, z, t) \),
- surface and bottom buoyancy \(b(x, y, z^\pm, t) \).

Simplified models:

- QG turbulence: \(b(x, y, z^\pm, t) = \text{const.} \),
- SQG turbulence: \(q = 0 \).
Interior and surface motion

Recall quasi-geostrophic model:

\[\partial_t q + \partial(\psi, q) = 0, \quad \text{and} \quad \partial_t b + \partial(\psi, b) = 0 \quad \text{at} \quad z = z^\pm, \]

with the inversion

\[\partial_{xx} \psi + \partial_{yy} \psi + \partial_z \left(\frac{f^2}{N^2} \partial_z \psi \right) = q \quad \text{and} \quad \partial_z \psi = b/f \quad \text{at} \quad z = z^\pm. \]

Three dynamical variables:

- potential vorticity \(q(x, y, z, t) \),
- surface and bottom buoyancy \(b(x, y, z^\pm, t) \).

Simplified models:

- QG turbulence: \(b(x, y, z^\pm, t) = \text{const.} \),
- SQG turbulence: \(q = 0 \).
Interior and surface motion

Predictions:

<table>
<thead>
<tr>
<th></th>
<th>QG</th>
<th>SQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy spectrum</td>
<td>k^{-3}</td>
<td>$k^{-5/3}$</td>
</tr>
<tr>
<td>SSH spectrum</td>
<td>k^{-5}</td>
<td>$k^{-11/3}$</td>
</tr>
<tr>
<td>Rossby number</td>
<td>k^0</td>
<td>$k^{2/3}$</td>
</tr>
</tbody>
</table>

Spectra in primitive equation simulations (Klein et al, JPO, 2009)
Interior and surface motion

Observed SSH: SQG $k^{-11/3}$ spectrum in energetic regions.

Le Traon et al (JPO, 2009)

Xu and Fu (JPO, 2011, 2012)
Interior and surface motion

Vertical structure of SQG motion:

$$\hat{q} = 0 \implies \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \implies \hat{\psi} \propto e^{N\kappa z/f}$$

for Fourier mode \((k, l)\) with \(\kappa^2 = k^2 + l^2\).

- **Exponential decay** from surface,
- **non-zero surface buoyancy** \(b(z^\pm) = f \partial_z \hat{\psi}(z^\pm) \neq 0\).

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic + baroclinic modes.
Interior and surface motion

Vertical structure of SQG motion:

\[
\hat{q} = 0 \implies \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \implies \hat{\psi} \propto e^{N\kappa z/f}
\]

for Fourier mode \((k, l)\) with \(\kappa^2 = k^2 + l^2\).

- Exponential decay from surface,
- non-zero surface buoyancy \(b(z^\pm) = f \partial_z \hat{\psi}(z^\pm) \neq 0\).

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic + baroclinic modes.
Modal expansion

Standard basis of baroclinic modes:

Eigenfunctions of

\[
\left(\frac{f^2}{N^2} \psi_n' \right)' = -\lambda_n^2 \psi_n, \quad \text{with} \quad \psi_n' = 0 \text{ at } z = 0, -H.
\]

For constant \(N \):
\[
\psi_n \sim \cos(n \pi z/H), \quad n = 0, 1, \ldots
\]

Advantages:
- orthogonal basis, \(\int_{-H}^{0} \psi_n \psi_m \, dz \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \, dz \propto \delta_{mn} \),
- diagonalise energy,
- describes (interior) QG dynamics with a few modes,
- mode structure independent of \(\kappa \).

Heavily used: projection of data, basis for simplified models...
Modal expansion

Standard basis of baroclinic modes:

Eigenfunctions of

\[
\left(\frac{f^2}{N^2} \psi'_n \right)' = -\lambda_n^2 \psi_n, \quad \text{with} \quad \psi'_n = 0 \quad \text{at} \quad z = 0, -H.
\]

For constant \(N \): \(\psi_n \sim \cos(n\pi z/H), \ n = 0, 1, \ldots \).

Advantages:

- orthogonal basis, \(\int_{-H}^{0} \psi_n \psi_m \, dz \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \, dz \propto \delta_{mn} \),
- diagonalise energy,
- describes (interior) QG dynamics with a few modes,
- mode structure independent of \(\kappa \).

Heavily used: projection of data, basis for simplified models...
Modal expansion

Standard basis

Difficulty:

- basis unsuitable to describe SQG-like motion since \(f \psi'_n = b = 0 \) at \(z = 0, -H \),
- non-uniform convergence for surface modes
 \[e^{N\kappa z/f} = \sum_n A_n \cos(n\pi z/H), \]
- many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode \(e^{-N\kappa z/f} \) to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to ‘Dirichlet basis’ satisfying \(\psi_n = 0 \) at \(z = 0 \).

But, non-orthogonal, overcomplete bases.
Modal expansion

Standard basis

Difficulty:

- basis unsuitable to describe SQG-like motion since
 \[f \psi_n' = b = 0 \text{ at } z = 0, -H, \]
- non-uniform convergence for surface modes
 \[e^{N_\kappa z/f} = \sum_n A_n \cos(n\pi z/H), \]
- many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode \(e^{-N_\kappa z/f} \) to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to ‘Dirichlet basis’ satisfying \(\psi_n = 0 \) at \(z = 0 \).

But, non-orthogonal, overcomplete bases.
Difficulties:

- basis unsuitable to describe SQG-like motion since $f\psi'_n = b = 0$ at $z = 0, -H$,
- non-uniform convergence for surface modes $e^{N_k z/f} = \sum_n A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode $e^{-N_k z/f}$ to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to ‘Dirichlet basis’ satisfying $\psi_n = 0$ at $z = 0$.

But, non-orthogonal, overcomplete bases.
We derive new surface-aware, orthogonal bases.

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and ‘generalised enstrophy’,

$$\int_{-H}^{0} |\nabla \psi|^2 dz \quad \text{and} \quad \int_{-H}^{0} q^2 dz + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.$$

Family of bases parameterised by α_\pm.
New bases

We derive new surface-aware, orthogonal bases.

Idea:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and ‘generalised enstrophy’,

$$\int_{-H}^{0} |\nabla \psi|^2 \, dz \quad \text{and} \quad \int_{-H}^{0} q^2 \, dz + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.$$

Family of bases parameterised by α_\pm.
We derive new surface-aware, orthogonal bases.

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T Ax$ and $x^T Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and ‘generalised enstrophy’,

$$\int_{-H}^{0} |\nabla \psi|^2 \, dz \quad \text{and} \quad \int_{-H}^{0} q^2 \, dz + \alpha_+ (b^+)^2 + \alpha_- (b^-)^2.$$

Family of bases parameterised by α_{\pm}.

Notes:

- **New bases**
- **Modal expansion**
- **Modal expansion**
- **Introduction**
- **Conclusion**

New bases

We derive new surface-aware, orthogonal bases.

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $A x = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and ‘generalised enstrophy’,

$$
\int_{-H}^{0} |\nabla \psi|^2 \, dz \quad \text{and} \quad \int_{-H}^{0} q^2 \, dz + \alpha_+ (b^+)^2 + \alpha_- (b^-)^2.
$$

Family of bases parameterised by α_{\pm}.
New bases

We derive new surface-aware, orthogonal bases.

Ideas:
- Think of \(Q = (q, b^+, b^-) \) not \(\psi \) as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms \(x^T A x \) and \(x^T B x \) (solve \(A x = \lambda B x \)),
- Choose as quadratic form conserved quantities: energy and ‘generalised enstrophy’,

\[
\int_{-H}^{0} |\nabla \psi|^2 \, dz \quad \text{and} \quad \int_{-H}^{0} q^2 \, dz + \alpha_+ (b^+)^2 + \alpha_- (b^-)^2.
\]

Family of bases parameterised by \(\alpha_{\pm} \).
New bases

Basis vectors: eigenfunctions of

$$\left(\frac{f^2}{N^2} \psi_n' \right)' = -\lambda_n^2 \psi_n, \quad \text{with} \quad \frac{f^2}{N^2} \psi_n' = \pm \frac{\lambda_n^2 + \kappa^2}{\alpha_\pm} \psi_n \quad \text{at} \quad z = 0, -H.$$

Limiting cases:

- $\alpha_\pm \to \infty$: reduces to standard baroclinic basis for $n = O(1)$,
- $\alpha_\pm \to 0$: ‘Dirichlet basis’ with $\psi_n = 0$ at $z = 0, -H$
 + 2 SQG modes ($q = 0$) and imaginary λ_n.

![Graphs showing basis functions](attachment:graph.png)
New bases

Basis vectors: eigenfunctions of

\[
\left(\frac{f^2}{N^2} \psi_n' \right)' = -\lambda_n^2 \psi_n, \quad \text{with} \quad \frac{f^2}{N^2} \psi_n' = \pm \frac{\lambda_n^2 + \kappa^2}{\alpha_{\pm}} \psi_n \quad \text{at} \quad z = 0, -H.
\]

Limiting cases:

\(\alpha_{\pm} \to \infty \): reduces to standard baroclinic basis for \(n = O(1) \),

\(\alpha_{\pm} \to 0 \): ‘Dirichlet basis’ with \(\psi_n = 0 \) at \(z = 0, -H \)

+ 2 SQG modes \((q = 0) \) and imaginary \(\lambda_n \).
New bases

Application

3 QG simulations of baroclinic instability:
(1) interior BC1,
(2) surface Eady,
(3) mixed Ocean.

$\alpha_\rightarrow \infty$
New bases

Choosing α_+: maximise energy content of first 2 modes
Conclusion

- Effects of surface buoyancy gradients cannot be ignored in ocean turbulence,
- Eddies have rich, surface-intensified vertical structure that is not well-represented by standard vertical modes,
- New bases presented can capture most energy in such flows with a small truncation set,
- New bases can be very simple:

\[
\psi_0 \propto \cosh \left[N \kappa (z + H)/f \right], \quad \psi_n \propto \sin \left[(n - 1/2) \pi z/H \right].
\]

- New bases depend on \(\kappa \): coupling of horizontal and vertical structures.