Dynamics, dimension and classification of \mathcal{C}^*-algebras

Wilhelm Winter

WWU Münster

Fields Institute, 10.9.2012
Dimension and C*-algebraic regularity

Dynamic versions of dimension and regularity
DEFINITION
Let X be locally compact and metrizable. We say X has dimension at most n, $\dim X \leq n$, if the following holds:
DEFINITION

Let X be locally compact and metrizable. We say X has dimension at most n, $\dim X \leq n$, if the following holds:

For any open cover \mathcal{V} of X, there is a finite open cover $(U_\lambda)_{\lambda \in \Lambda}$ such that $(U_\lambda)_{\lambda \in \Lambda}$ refines \mathcal{V} and for each $i \in \{0, \ldots, n\}$, the $(U_\lambda)_{\lambda \in \Lambda(i)}$ are pairwise disjoint.
DEFINITION
Let X be locally compact and metrizable. We say X has dimension at most n, $\dim X \leq n$, if the following holds:
For any open cover \mathcal{V} of X, there is a finite open cover $(U_\lambda)_{\lambda \in \Lambda}$ such that

$(U_\lambda)_{\lambda \in \Lambda}$ refines \mathcal{V}
DEFINITION

Let X be locally compact and metrizable. We say X has dimension at most n, $\dim X \leq n$, if the following holds:

For any open cover \mathcal{V} of X, there is a finite open cover $\left(U_\lambda \right)_{\lambda \in \Lambda}$ such that

- $\left(U_\lambda \right)_{\lambda \in \Lambda}$ refines \mathcal{V}
- $\Lambda = \Lambda^{(0)} \cup \ldots \cup \Lambda^{(n)}$ and for each $i \in \{0, \ldots, n\}$, the $\left(U_\lambda \right)_{\Lambda(i)}$ are pairwise disjoint.
DEFINITION (W–Zacharias)
Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\text{nuc}} A \leq n$, if the following holds:
DEFINITION (W–Zacharias)

Let A be a C^*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\text{nuc}} A \leq n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$
DEFINITION (W--Zacharias)
Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\text{nuc}} A \leq n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi = \mathcal{F, \varepsilon} \text{id}_A,$$
DEFINITION (W–Zacharias)
Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\text{nuc}} A \leq n$, if the following holds:

For any $F \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi = \mathcal{F}_{\varepsilon} \text{id}_A,$$

and such that F can be written as

$$F = F^{(0)} \oplus \ldots \oplus F^{(n)}$$

with c.p.c. order zero maps

$$\varphi^{(i)} := \varphi|_{F^{(i)}}.$$
DEFINITION (Kirchberg)
Let A be unital. A has covering number at most n, if the following holds:
DEFINITION (Kirchberg)
Let A be unital. A has covering number at most n, if the following holds:
For any $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$
\phi^{(i)} : M_k \oplus M_{k+1} \to A, \ i \in \{0, \ldots, n\},
$$

such that

$$
\sum_{i=0}^{n} \phi^{(i)} (1_k \oplus 1_{k+1}) \geq 1_A.
$$
DEFINITION/PROPOSITION (using Toms–W, Rørdam–W)
A C*-algebra A is \mathcal{Z}-stable if and only if for every $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$
\Phi : M_k \to A_\infty \cap A'
$$

and

$$
\Psi : M_2 \to A_\infty \cap A'
$$
DEFINITION/PROPOSITION (using Toms–W, Rørdam–W)
A C*-algebra A is \mathcal{Z}-stable if and only if for every $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$\Phi : M_k \to A_\infty \cap A'$$

and

$$\Psi : M_2 \to A_\infty \cap A'$$

such that

$$\Psi(e_{11}) = 1 - \Phi(1_{M_k})$$

and

$$\Phi(e_{11})\Psi(e_{22}) = \Psi(e_{22})\Phi(e_{11}) = \Psi(e_{22}).$$
DEFINITION

A unital simple C^*-algebra A has tracial m-comparison, if whenever $0 \neq a, b \in M_\infty(A)_+$ satisfy

$$d_\tau(a) < d_\tau(b)$$

for all $\tau \in T(A)$, then

$$a \precsim b^{\oplus m+1}.$$
THEOREM (by many hands)

Let

\[\mathcal{E} = \{ C(X) \rtimes_\alpha \mathbb{Z} \mid X \text{ compact, metrizable, infinite, } \alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}. \]
THEOREM (by many hands)

Let

\[E = \{ C(X) \rtimes_{\alpha} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \]
\[\alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \} . \]

For any \(A \in E \), \(\dim_{\text{nuc}} A < \infty \iff A \text{ is } \mathbb{Z}-\text{stable} \iff A \text{ has tracial } m\text{-comparison for some } m \in \mathbb{N} . \]
THEOREM (by many hands)

Let

\[\mathcal{E} = \{ \mathcal{C}(X) \rtimes_\alpha \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \]
\[\alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \} \].

For any \(A \in \mathcal{E} \), \(\dim_{\text{nuc}} A < \infty \iff A \text{ is } \mathbb{Z}\text{-stable} \iff A \text{ has tracial } m\text{-comparison for some } m \in \mathbb{N} \).

Moreover, the regularity properties ensure classification by ordered \(K \)-theory in this case.
THEOREM (by many hands)

Let

\[\mathcal{E} = \{ C(X) \rtimes_\alpha \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \]
\[\alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}. \]

For any \(A \in \mathcal{E} \), \(\dim_{\text{nuc}} A < \infty \iff A \text{ is } \mathbb{Z}\text{-stable} \iff A \text{ has tracial } m\text{-comparison for some } m \in \mathbb{N}. \)

Moreover, the regularity properties ensure classification by ordered \(K \)-theory in this case. (Countable structures are sufficient for classification since \(T(A) \) is a singleton for each \(A \).)
DEFINITION
Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action.
DEFINITION

Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \actson X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most n, $\dim_{\text{Rok}} (X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any $L \in \mathbb{N}$, there is a system $(U(i)_l | i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})$ of open subsets such that $\alpha_1(U(i)_l) = U(i)_l + 1$ for $i \in \{0, \ldots, n\}$, $l \in \{1, \ldots, L - 1\}$ for each fixed $i \in \{0, \ldots, n\}$ the sets $U(i)_l$ are pairwise disjoint $(U(i)_l | i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})$ is an open cover of X.
DEFINITION
Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most n, $\dim_{\text{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:
For any $L \in \mathbb{N}$, there is a system

$$(U_{l}^{(i)} \mid i \in \{0, \ldots, n\}, \ l \in \{1, \ldots, L\})$$

of open subsets
DEFINITION
Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most n, $\dim_{\text{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:
For any $L \in \mathbb{N}$, there is a system
\[
(U_i^l \mid i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})
\]
of open subsets such that
\[\alpha_1(U_i^l) = U_{i+1}^l \text{ for } i \in \{0, \ldots, n\}, l \in \{1, \ldots, L-1\}\]
DEFINITION
Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most n, $\dim_{\text{Rok}} (X, \mathbb{Z}, \alpha) \leq n$, if the following holds:
For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})$$

of open subsets such that

- $\alpha_1(U_l^{(i)}) = U_{l+1}^{(i)}$ for $i \in \{0, \ldots, n\}, l \in \{1, \ldots, L - 1\}$
- for each fixed $i \in \{0, \ldots, n\}$ the sets $U_l^{(i)}$ are pairwise disjoint
DEFINITION
Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most n, $\dim_{\text{Rok}} (X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})$$

of open subsets such that

- $\alpha_1(U_l^{(i)}) = U_{l+1}^{(i)}$ for $i \in \{0, \ldots, n\}$, $l \in \{1, \ldots, L - 1\}$
- for each fixed $i \in \{0, \ldots, n\}$ the sets $U_l^{(i)}$ are pairwise disjoint
- $(U_l^{(i)} \mid i \in \{0, \ldots, n\}, l \in \{1, \ldots, L\})$ is an open cover of X.
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action.
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$\left(U_{k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\} \right)$$

of open subsets
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})$$

of open subsets such that

- $\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$ for $i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L - 1\}$
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U^{(i)}_{k,l} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})$$

of open subsets such that

1. $\alpha_1(U^{(i)}_{k,l}) = U^{(i)}_{k,l+1}$ for $i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L-1\}$
2. for each fixed $i \in \{0, \ldots, n\}$ the sets $U^{(i)}_{k,l}$ are pairwise disjoint.
DEFINITION Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})$$

of open subsets such that

- $\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$ for $i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L - 1\}$
- For each fixed $i \in \{0, \ldots, n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint
- $(U_{k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})$ is an open cover of X refining \mathcal{U}.
DEFINITION Let \(X \) be compact, metrizable, infinite, and \(\alpha : \mathbb{Z} \acts X \) an action. We say \((X, \mathbb{Z}, \alpha)\) has dynamic dimension at most \(n \),\n\(\dim(X, \mathbb{Z}, \alpha) \leq n \), if the following holds:

For any open cover \(\mathcal{U} \) of \(X \) and any \(L \in \mathbb{N} \), there is a system

\[
(U^{(i)}_{k,l} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})
\]

of open subsets such that

- \(\alpha_1(U^{(i)}_{k,l}) = U^{(i)}_{k,l+1} \) for

 \(i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L - 1\} \)

- for each fixed \(i \in \{0, \ldots, n\} \) the sets \(U^{(i)}_{k,l} \) are pairwise disjoint

- \((U^{(i)}_{k,l} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})\) is an open cover of \(X \) refining \(\mathcal{U} \).

REMARK We think of \(n + 1 \) as the number of colors, of \(K^{(i)} \) as the number of towers of color \(i \), and of \(L \) as the length of the towers.
DEFINITION

Let \((X, Z, \alpha)\) be a compact dynamical system, \(m \in \mathbb{N}\) and \(U, V \subset X\) open subsets.

We say \(U \preceq_m V\), if the following holds:

For any compact subset \(Y \subset U\), there are a system of open subsets of \(Y\)
\[
(U_i^k)_{i \in \{0, \ldots, m\}, k \in \{1, \ldots, K(i)\}}
\]
and a system of open subsets of \(V\)
\[
(V_i^k)_{i \in \{0, \ldots, m\}, k \in \{1, \ldots, K(i)\}}
\]
such that

\[
\text{for each } i, k \text{ there is } r(i)^k \text{ with } \alpha^{r(i)^k}(U_i^k) \subset V_i^k
\]

\[
\text{for each fixed } i, \text{ the sets } V_i^k \text{ are pairwise disjoint}
\]

\[
\text{the } U_i^k \text{ cover all of } Y.
\]
DEFINITION

Let \((X, Z, \alpha)\) be a compact dynamical system, \(m \in \mathbb{N}\) and \(U, V \subset X\) open subsets.
We say \(U\) is \(m\)-dominated by \(V\), \(U \preceq_m V\), if the following holds:

For any compact subset \(Y \subset U\), there are a system of open subsets of \(Y\) \((U(i)_k | i \in \{0, \ldots, m\}, k \in \{1, \ldots, K(i)_k\})\) and a system of open subsets of \(V\) \((V(i)_k | i \in \{0, \ldots, m\}, k \in \{1, \ldots, K(i)_k\})\) such that:

1. For each \(i, k\), there is \(r(i)_k\) with \(\alpha r(i)_k(U(i)_k) \subset V(i)_k\)
2. For each fixed \(i\), the sets \(V(i)_k\) are pairwise disjoint
3. The \(U(i)_k\) cover all of \(Y\).
DEFINITION

Let \((X, Z, \alpha)\) be a compact dynamical system, \(m \in \mathbb{N}\) and \(U, V \subset X\) open subsets. We say \(U\) is \(m\)-dominated by \(V\), \(U \preceq_m V\), if the following holds: For any compact subset \(Y \subset U\), there are a system of open subsets of \(Y\)

\[
(U_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})
\]

and a system of open subsets of \(V\)

\[
(V_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})
\]
DEFINITION

Let \((X, Z, \alpha)\) be a compact dynamical system, \(m \in \mathbb{N}\) and \(U, V \subset X\) open subsets.
We say \(U\) is \(m\)-dominated by \(V\), \(U \preceq_m V\), if the following holds:
For any compact subset \(Y \subset U\), there are a system of open subsets of \(Y\)
\[(U^{(i)}_k \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\}) \]
and a system of open subsets of \(V\)
\[(V^{(i)}_k \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\}) \]
such that
- for each \(i, k\) there is \(r^{(i)}_k\) with \(\alpha^{(i)}_r(U^{(i)}_k) \subset V^{(i)}_k\)
DEFINITION

Let (X, Z, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say U is m-dominated by V, $U \preceq_m V$, if the following holds:

For any compact subset $Y \subset U$, there are a system of open subsets of Y

$$(U_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})$$

and a system of open subsets of V

$$(V_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})$$

such that

- for each i, k there is $r_k^{(i)}$ with $\alpha_{r_k^{(i)}}(U_k^{(i)}) \subset V_k^{(i)}$
- for each fixed i, the sets $V_k^{(i)}$ are pairwise disjoint
DEFINITION
Let (X, Z, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.
We say U is m-dominated by V, $U \preceq_m V$, if the following holds:
For any compact subset $Y \subset U$, there are a system of open subsets of Y
\[(U_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})\]
and a system of open subsets of V
\[(V_k^{(i)} \mid i \in \{0, \ldots, m\}, k \in \{1, \ldots, K^{(i)}\})\]
such that
▶ for each i, k there is $r_k^{(i)}$ with $\alpha_r^{(i)}(U_k^{(i)}) \subset V_k^{(i)}$
▶ for each fixed i, the sets $V_k^{(i)}$ are pairwise disjoint
▶ the $U_k^{(i)}$ cover all of Y.
DEFINITION

We say \((X, \mathbb{Z}, \alpha)\) (\(\alpha\) minimal) has dynamic \(m\)-comparison, if, whenever \(U, V \subset X\) are open subsets with \(\mu(U) < \mu(V)\) for any regular invariant Borel probability measure \(\mu\) on \(X\), then \(U \preceq_m V\).
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems \((V_j, k | j, k \in \{1, \ldots, K\})\) and \((U_k | k \in \{1, \ldots, K\})\) of open subsets of \(X\) such that:

1. The sets \(\bigcup k V_j, k\) are pairwise disjoint for \(1 \leq j \leq K\).
2. \(\alpha_1(V_j, k) = \alpha_1(V_j, k + 1)\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\).
3. \(\alpha_1(U_k) = \alpha_1(U_{k+1})\) for each \(1 \leq k \leq K - 1\),
4. \(V_j, k \sim V_{j+1}, k\) for each \(1 \leq j \leq K - 1\) and \(1 \leq k \leq K\).

Thus, \(X = \bigcup j V_j, k \cup U_k \triangleright U_1 \preceq V_1, 1\).
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathcal{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[
(V_{j,k} \mid j, k \in \{1, \ldots, K\}) \quad \text{and} \quad (U_k \mid k \in \{1, \ldots, K\})
\]

of open subsets of \(X\)
DEFINITION
Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[(V_{j,k} \mid j, k \in \{1, \ldots, K\}) \text{ and } (U_k \mid k \in \{1, \ldots, K\}) \]

of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
DEFINITION
Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system.
We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[
(V_{j,k} \mid j, k \in \{1, \ldots, K\}) \text{ and } (U_k \mid k \in \{1, \ldots, K\})
\]

of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
- \(\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\)
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[
(V_{j,k} \mid j, k \in \{1, \ldots, K\}) \text{ and } (U_k \mid k \in \{1, \ldots, K\})
\]

of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
- \(\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\)
- \(\alpha_1(U_k) = \alpha_1(U_{k+1})\) for each \(1 \leq k \leq K - 1\)
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems \((V_{j,k} \mid j, k \in \{1, \ldots, K\})\) and \((U_k \mid k \in \{1, \ldots, K\})\) of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
- \(\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\)
- \(\alpha_1(U_k) = \alpha_1(U_{k+1})\) for each \(1 \leq k \leq K - 1\)
- \(V_{j,k} \sim V_{j+1,k}\) for each \(1 \leq j \leq K - 1\) and \(1 \leq k \leq K\)
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system. We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[
(V_{j,k} \mid j, k \in \{1, \ldots, K\}) \text{ and } (U_k \mid k \in \{1, \ldots, K\})
\]

of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
- \(\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\)
- \(\alpha_1(U_k) = \alpha_1(U_{k+1})\) for each \(1 \leq k \leq K - 1\)
- \(V_{j,k} \sim V_{j+1,k}\) for each \(1 \leq j \leq K - 1\) and \(1 \leq k \leq K\)
- for each fixed \(k\), \(X = \bigcup_j V_{j,k} \cup U_k\)
DEFINITION

Let \((X, \mathbb{Z}, \alpha)\) be a compact dynamical system.
We say \((X, \mathbb{Z}, \alpha)\) is dynamically \(\mathbb{Z}\)-stable, if the following holds:

For any \(K \in \mathbb{N}\), there are systems

\[(V_{j,k} \mid j, k \in \{1, \ldots, K\})\] and \((U_k \mid k \in \{1, \ldots, K\})\)

of open subsets of \(X\) such that

- the sets \(\bigcup_k V_{j,k}\) are pairwise disjoint for \(1 \leq j \leq K\)
- \(\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})\) for each \(1 \leq j \leq K\) and \(1 \leq k \leq K - 1\)
- \(\alpha_1(U_k) = \alpha_1(U_{k+1})\) for each \(1 \leq k \leq K - 1\)
- \(V_{j,k} \sim V_{j+1,k}\) for each \(1 \leq j \leq K - 1\) and \(1 \leq k \leq K\)
- for each fixed \(k\), \(X = \bigcup_j V_{j,k} \cup U_k\)
- \(U_1 \preceq V_{1,1}\).
THEOREM

Let \(X \) be compact, metrizable, infinite, and \(\alpha : \mathbb{Z} \curvearrowright X \) minimal.
THEOREM

Let X be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ minimal. If (X, \mathbb{Z}, α) is dynamically \mathbb{Z}-stable, then $C(X) \rtimes_{\alpha} \mathbb{Z}$ is \mathbb{Z}-stable.
THEOREM

Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal.

For the proof, one has to construct invariant measures from a system of open coverings of the form \(U(i)_k, l\) \(i \in \{0, \ldots, n\}, k \in \{1, \ldots, K(i)\}, l \in \{1, \ldots, L\}\) (as in the definition of dynamic dimension), which become finer and finer, and for which \(L\) becomes larger and larger.

For \(V \subset X\) open, \(\mu(V)\) is then defined as a limit along some ultrafilter of expressions like \(\sharp\{l | U(i)_k, l \subset V\}^L\).
THEOREM
Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal. If \(\dim(X, \mathbb{Z}, \alpha) \leq m\), then \((X, \mathbb{Z}, \alpha)\) has \(m\)-comparison.
THEOREM

Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal. If \(\dim(X, \mathbb{Z}, \alpha) \leq m\), then \((X, \mathbb{Z}, \alpha)\) has \(m\)-comparison.

For the proof, one has to construct invariant measures from a system of open coverings of the form

\[
(U_{i,k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})
\]

(as in the definition of dynamic dimension), which become finer and finer, and for which \(L\) becomes larger and larger.
THEOREM
Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal. If \(\dim(X, \mathbb{Z}, \alpha) \leq m\), then \((X, \mathbb{Z}, \alpha)\) has \(m\)-comparison.

For the proof, one has to construct invariant measures from a system of open coverings of the form

\[
(U_{k,l}^{(i)} \mid i \in \{0, \ldots, n\}, k \in \{1, \ldots, K^{(i)}\}, l \in \{1, \ldots, L\})
\]

(as in the definition of dynamic dimension), which become finer and finer, and for which \(L\) becomes larger and larger.

For \(V \subset X\) open, \(\mu(V)\) is then defined as a limit along some ultrafilter of expressions like

\[
\frac{\#\{l \mid U_{k,l}^{(i)} \subset V\}}{L}.
\]
THEOREM (Hirshberg–W–Zacharias, 2011)
Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal. Suppose \(X\) is finite dimensional.

\[\dim \text{Rok}(X, \mathbb{Z}, \alpha) \leq 2(\dim X + 1) - 1 \]
\[\dim (X, \mathbb{Z}, \alpha) \leq 2(\dim X + 1) - 2 \]
THEOREM (Hirshberg–W–Zacharias, 2011)
Let \((X, \mathbb{Z}, \alpha)\) be compact, metrizable, and minimal. Suppose \(X\) is finite dimensional.

Then,

\[
\dim_{\text{Rok}} (X, \mathbb{Z}, \alpha) \leq 2(\dim X + 1) - 1
\]
THEOREM (Hirshberg–W–Zacharias, 2011)
Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. Suppose X is finite dimensional.

Then,

$$\dim_{Rok}(X, \mathbb{Z}, \alpha) \leq 2(\dim X + 1) - 1$$

and

$$\dim(X, \mathbb{Z}, \alpha) \leq 2(\dim X + 1)^2 - 1.$$
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L \}$ by $\{1, \ldots, L \}^d$ in the definition of $\dim \text{Rok}(X, \mathbb{Z}^d, \alpha)$. In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$C^*\text{(Penrose tiling)} \cong MC(X) \rtimes \alpha \mathbb{Z}^2$, where X is the Cantor set and α is free and minimal. $(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal.

From the preceding theorem we get $\dim \text{Rok}(X, \mathbb{Z}^2, \alpha) < \infty$, hence $\dim \text{Rok}(X, \mathbb{Z}^2, \alpha) < \infty$ and $\dim \text{nuc}(C^*\text{(Penrose tiling)}) < \infty$.

We do not know, however, whether this ensures classifiability.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$C^\ast(\text{Penrose tiling}) \cong M_{C^\ast(X)} \rtimes \alpha \mathbb{Z}^2$, where X is the Cantor set and α is free and minimal. $(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal.

From the preceding theorem we get $\dim_{\text{Rok}}(X, \mathbb{Z}^2, \alpha) < \infty$, hence $\dim_{\text{Rok}}(X, \mathbb{Z}^2, \alpha) < \infty$ and $\dim_{\text{nuc}}(C^\ast(\text{Penrose tiling})) < \infty$.

We do not know, however, whether this ensures classifiability.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}} (X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_{\text{M}} C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}} (X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.

$(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{Rok}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.

$(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get $\dim_{Rok}(X, \mathbb{Z}^2, \alpha) < \infty$, where \dim_{Rok} is the Rokhlin dimension.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}} (X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_\alpha \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.

$(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get $\dim_{\text{Rok}} (X, \mathbb{Z}^2, \alpha) < \infty$, hence $\dim_{\text{Rok}} (X, \mathbb{Z}^2, \alpha) < \infty$.

What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\text{Rok}} (X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_{M} C(X) \rtimes_\alpha \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.

$(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get $\dim_{\text{Rok}} (X, \mathbb{Z}^2, \alpha) < \infty$, hence $\dim_{\text{Rok}} (X, \mathbb{Z}^2, \alpha) < \infty$ and $\dim_{\text{nuc}} (C^*(\text{Penrose tiling})) < \infty$.
What about more general groups?

For \mathbb{Z}^d, replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{Rok}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don’t have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where X is the Cantor set and α is free and minimal.

$(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get $\dim_{Rok}(X, \mathbb{Z}^2, \alpha) < \infty$, hence $\dim_{Rok}(X, \mathbb{Z}^2, \alpha) < \infty$ and $\dim_{nuc}(C^*(\text{Penrose tiling})) < \infty$.

We do not know, however, whether this ensures classifiability.
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$.
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)
Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

\[\begin{align*}
\text{Let } G &\text{ be a hyperbolic group acting on its Rips complex } \bar{X} \\
&\text{(} G \text{ acts freely, } \bar{X}/G \text{ is compact, } \bar{X} \text{ is contractible).}
\end{align*} \]
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)

Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying
Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice relative result:

THEOREM (Bartels–Lück–Reich)

Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying:

$\triangleright \mathcal{U}$ has covering number (or dimension) at most d
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice relative result:

THEOREM (Bartels–Lück–Reich)
Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:
For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)

Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$

(This plays a crucial role in their proof of the Farrell–Jones conjecture for hyperbolic groups.)
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)
Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:
For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, either $gU = U$ or $gU \cap U = \emptyset$
For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice relative result:

THEOREM (Bartels–Lück–Reich)

Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, either $gU = U$ or $gU \cap U = \emptyset$
- for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is virtually cyclic (contains a cyclic subgroup with finite index).

(This plays a crucial role in their proof of the Farrell–Jones conjecture for hyperbolic groups.)
Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)
Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, either $gU = U$ or $gU \cap U = \emptyset$
- for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is virtually cyclic (contains a cyclic subgroup with finite index).

(This plays a crucial role in their proof of the Farrell–Jones conjecture for hyperbolic groups.)
In this picture, our result can be rephrased as follows:
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X. Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover U of $G \times X$ satisfying $\bigcup U$ has covering number (or dimension) at most d for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$ for every $0 \neq g \in G$ and $U \in \mathcal{U}$, $gU \cap U = \emptyset$, i.e., for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G | gU = U\}$ is trivial.
In this picture, our result can be rephrased as follows:

THEOREM
Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds:
For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds:
For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite-dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying:

- \mathcal{U} has covering number (or dimension) at most d,
- for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$,
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$,
- for every $0 \neq g \in G$ and $U \in \mathcal{U}$, $gU \cap U = \emptyset$.
In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space X.

Then, there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- for every $0 \neq g \in G$ and $U \in \mathcal{U}$, $gU \cap U = \emptyset$, i.e.,
 - for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is trivial.