Generic properties of measure preserving actions

Julien Melleray

Institut Camille Jordan (Université de Lyon)

Workshop on applications to Operator Algebras
Toronto, September 12, 2012
Definition

A *Polish space* is a topological space whose topology is induced by a complete separable metric.

A *Polish group* is a topological group whose topology is Polish.
Definition
A *Polish space* is a topological space whose topology is induced by a complete separable metric.
A *Polish group* is a topological group whose topology is Polish.

Examples

- The group $\text{Aut}(X, \mu)$ of measure-preserving bijections of a standard atomless probability space (X, μ) is a Polish group with the topology induced by the maps $T \mapsto \mu(T(A)\Delta A)$ (where A ranges over all measurable subsets of X).
Polish spaces and groups

Definition
A Polish space is a topological space whose topology is induced by a complete separable metric.
A Polish group is a topological group whose topology is Polish.

Examples

• The group Aut(X, µ) of measure-preserving bijections of a standard atomless probability space (X, µ) is a Polish group with the topology induced by the maps \(T \mapsto \mu(T(A) \Delta A) \) (where \(A \) ranges over all measurable subsets of \(X \)).

• Another example that will come up is the group \(L^0(\mathbb{T}) \), which is the unitary group of the abelian von Neumann algebra \(L^\infty(X, \mu) \).
Notation

Γ will always denote a countable discrete group, and G will stand for $\text{Aut}(X, \mu)$.

Definition

The space of homomorphisms $\text{Hom}(\Gamma, G)$ is a closed subset of $G \Gamma$, hence a Polish space.

We may think of $\text{Hom}(\Gamma, G)$ as the space of actions of Γ on (X, μ).

Question

What does a typical element of $\text{Hom}(\Gamma, G)$ look like? Which properties are generic in $\text{Hom}(\Gamma, G)$?
The space of actions

Notation
Γ will always denote a countable discrete group, and \(G \) will stand for \(\text{Aut}(X, \mu) \).

Definition
The space of homomorphisms \(\text{Hom}(\Gamma, G) \) is a closed subset of \(G^\Gamma \), hence a Polish space.
We may think of \(\text{Hom}(\Gamma, G) \) as the space of actions of \(\Gamma \) on \((X, \mu) \).
Notation
Γ will always denote a countable discrete group, and G will stand for Aut(\(X, \mu\)).

Definition
The space of homomorphisms Hom(\(\Gamma, G\)) is a closed subset of \(G^\Gamma\), hence a Polish space.
We may think of Hom(\(\Gamma, G\)) as the \textit{space of actions} of \(\Gamma\) on \((X, \mu)\).

Question
What does a typical element of Hom(\(\Gamma, G\)) look like? Which properties are \textit{generic} in Hom(\(\Gamma, G\))?
The conjugacy action

Definition

G naturally acts on $\text{Hom}(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}.$$
The conjugacy action

Definition
G naturally acts on $\text{Hom}(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g\pi(\gamma)g^{-1}.$$

- There exist dense conjugacy classes in $\text{Hom}(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).
The conjugacy action

Definition

G naturally acts on $\text{Hom}(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}.$$

- There exist dense conjugacy classes in $\text{Hom}(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of $\text{Hom}(\Gamma, G)$ must be either meager or comeager.
The conjugacy action

Definition

G naturally acts on $\text{Hom}(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}. $$

- There exist dense conjugacy classes in $\text{Hom}(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of $\text{Hom}(\Gamma, G)$ must be either meager or comeager.
- There exists a comeager conjugacy class in $\text{Hom}(\Gamma, G)$ whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).
Definition

G naturally acts on $\text{Hom}(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}.$$

- There exist dense conjugacy classes in $\text{Hom}(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of $\text{Hom}(\Gamma, G)$ must be either meager or comeager.
- There exists a comeager conjugacy class in $\text{Hom}(\Gamma, G)$ whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).
- It is an open problem whether conjugacy classes are meager for all infinite Γ.
Question
Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in $\text{Hom}(\Delta, G)$ relate to the generic properties in $\text{Hom}(\Gamma, G)$?
Does the restriction map preserve category?

Question
Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in $\text{Hom}(\Delta, G)$ relate to the generic properties in $\text{Hom}(\Gamma, G)$?

Definition
Let $f : X \to Y$ be a continuous map. Say that f is *category-preserving* if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).
Question
Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in $\text{Hom}(\Delta, G)$ relate to the generic properties in $\text{Hom}(\Gamma, G)$?

Definition
Let $f : X \to Y$ be a continuous map. Say that f is \textit{category-preserving} if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).

Question (revisited)
Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map $\text{Res} : \text{Hom}(\Gamma, G) \to \text{Hom}(\Delta, G)$ category-preserving?

Note that the restriction map is obviously category-preserving when $\Delta = F_n \leq F_m = \Gamma$ (it is open).
Does the restriction map preserve category?

Question
Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in $\text{Hom}(\Delta, G)$ relate to the generic properties in $\text{Hom}(\Gamma, G)$?

Definition
Let $f : X \to Y$ be a continuous map. Say that f is \textit{category-preserving} if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).

Question (revisited)
Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map $\text{Res}: \text{Hom}(\Gamma, G) \to \text{Hom}(\Delta, G)$ category-preserving?

Note that the restriction map is obviously category-preserving when $\Delta = F_n \leq F_m = \Gamma$ (it is open).
Theorem (M.–Tsankov)

Let X, Y be Polish spaces, and $f : X \rightarrow Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X.
Theorem (M.–Tsankov)

Let X, Y be Polish spaces, and $f : X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X.
- $\{y \in Y : A \text{ is comeager in } f^{-1}({\{y\}})\}$ is comeager in Y.
Theorem (M.–Tsankov)

Let X, Y be Polish spaces, and $f : X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X.
- $\{y \in Y : A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in Y.

In symbols:

\[(\forall^* x \in X \ A(x)) \iff (\forall^* y \in Y \ \forall^* z \in f^{-1}(\{y\}) \ A(z)) \ . \]
Theorem (M.–Tsankov)
Let \(X, Y \) be Polish spaces, and \(f : X \to Y \) be a continuous, category-preserving map. Then the following are equivalent, for \(A \subseteq X \) Baire–measurable:

- \(A \) is comeager in \(X \).
- \(\{ y \in Y : A \text{ is comeager in } f^{-1}(\{y\}) \} \) is comeager in \(Y \).

In symbols:

\[
(\forall^* x \in X A(x)) \Leftrightarrow (\forall^* y \in Y \forall^* z \in f^{-1}(\{y\}) A(z)).
\]

The classical Kuratowski–Ulam theorem corresponds to the case where \(f \) is a projection map.
Restrictions of measure-preserving actions

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ-action extends to a free Γ-action.
Theorem (Ageev 2003)
Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ-action extends to a free Γ-action.

Corollary (equivalent reformulation of Ageev’s theorem)
Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, \text{Aut}(\mu)) \to \text{Hom}(\Delta, \text{Aut}(\mu))$ is category-preserving.
Theorem (Ageev 2003)
Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ-action extends to a free Γ-action.

Corollary (equivalent reformulation of Ageev’s theorem)
Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, \text{Aut}(\mu)) \to \text{Hom}(\Delta, \text{Aut}(\mu))$ is category-preserving.

Thus, under the above assumptions on $\Delta \leq \Gamma$, whenever a generic Δ action satisfies some property (P), the restriction to Δ of a generic Γ-action also satisfies property (P).
Ageev’s result is based on an earlier result of King, corresponding to the case when $\Gamma = \mathbb{Z}$ and $\Delta = n\mathbb{Z}$.
Ageev’s result is based on an earlier result of King, corresponding to the case when $\Gamma = \mathbb{Z}$ and $\Delta = n\mathbb{Z}$.

Theorem (King 2000)

The map $\phi_n : \begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \geq 1$ (In particular, a generic element of G admits roots of all orders).
Ageev’s result is based on an earlier result of King, corresponding to the case when $\Gamma = \mathbb{Z}$ and $\Delta = n\mathbb{Z}$.

Theorem (King 2000)

The map $\phi_n: \begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \geq 1$ (In particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\text{Hom}(\mathbb{Z}^d, G)$ to $\text{Hom}(\mathbb{Z}, G)$ preserves category).
Ageev’s result is based on an earlier result of King, corresponding to the case when $\Gamma = \mathbb{Z}$ and $\Delta = n\mathbb{Z}$.

Theorem (King 2000)

The map $\phi_n : \begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \geq 1$ (In particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\text{Hom}(\mathbb{Z}^d, G)$ to $\text{Hom}(\mathbb{Z}, G)$ preserves category).

How far can these results be pushed?
Using the structure theorem for finitely-generated abelian groups, and the extension of the Kuratowski–Ulam theorem mentioned above, one can prove the following.

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, G) \to \text{Hom}(\Delta, G)$ is category-preserving.

Question

Can one remove the assumption that Δ is finitely generated in the previous theorem?

O. Ageev has recently announced a negative answer.
Using the structure theorem for finitely-generated abelian groups, and the extension of the Kuratowski–Ulam theorem mentioned above, one can prove the following.

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, G) \to \text{Hom}(\Delta, G)$ is category-preserving.
Using the structure theorem for finitely-generated abelian groups, and the extension of the Kuratowski–Ulam theorem mentioned above, one can prove the following.

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, G) \rightarrow \text{Hom}(\Delta, G)$ is category-preserving.

Question

Can one remove the assumption that Δ is finitely generated in the previous theorem?
Using the structure theorem for finitely-generated abelian groups, and the extension of the Kuratowski–Ulam theorem mentioned above, one can prove the following.

Theorem (M.)
Let Γ be a countable abelian group and Δ be a *finitely generated* subgroup. Then the restriction map $\text{Res}: \text{Hom}(\Gamma, G) \to \text{Hom}(\Delta, G)$ is category-preserving.

Question
Can one remove the assumption that Δ is finitely generated in the previous theorem?

O. Ageev has recently announced a negative answer.
What about non-abelian groups?
What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ-action does not extend to a measure-preserving Γ-action.
What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ-action does not extend to a measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.
What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ-action does not extend to a measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.

The proof of the above observation depends on another result of King (1986): the closed subgroup generated by a generic element of G is maximal abelian; equivalently, the centralizer of a generic element g of G is equal to the closure of $\{g^n : n \in \mathbb{Z}\}$.
Now we describe a simple proof of King’s result on centralizers of generic elements (note: King’s original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.
Now we describe a simple proof of King’s result on centralizers of generic elements (note: King’s original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation

For H a Polish group, we identify $\text{Hom}(\mathbb{Z}^2, H)$ with

$$C(H) = \{(a, b) \in H : ab = ba\}.$$

For $h \in H$ $C(h)$ denotes the centralizer of h.

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H) : b \in \langle a \rangle\}$ is dense in $C(H)$. Then the map $\pi : \{C(H) \to H : (a, b) \mapsto a\}$ is category-preserving.
A new proof of King’s result on centralizers of generic elements I.

Now we describe a simple proof of King’s result on centralizers of generic elements (note: King’s original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation
For H a Polish group, we identify $\text{Hom}(\mathbb{Z}^2, H)$ with

$$C(H) = \{(a, b) \in H : ab = ba\}.$$

For $h \in H$ $C(h)$ denotes the centralizer of h.

Lemma
Let H be a Polish group such that $\{(a, b) \in C(H) : b \in \langle a \rangle\}$ is dense in $C(H)$. Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.
Lemma
Let \(H \) be a Polish group such that \(\{ (a, b) \in C(H) : b \in \langle a \rangle \} \) is dense in \(C(H) \). Then the map \(\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases} \) is category-preserving.
Lemma
Let H be a Polish group such that $\{(a, b) \in C(H) : b \in \langle a \rangle\}$ is dense in $C(H)$. Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.
Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g. that

$$O = \{(a, b) \in C(H) : a \in O_1 \land b \in O_2\}.$$
Lemma
Let H be a Polish group such that $\{(a, b) \in C(H): b \in \langle a \rangle\}$ is dense in $C(H)$. Then the map $\pi: \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.
Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g that

$$O = \{(a, b) \in C(H): a \in O_1 \land b \in O_2\}.$$

There exists $(a, b) \in O$ such that $b \in \langle a \rangle$; hence there exists $a \in O_1$ and n such that $a^n \in O_2$. Fix such an n; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$.

J. Melleray
Generic properties of measure-preserving actions
Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \langle a \rangle\}$ is dense in $C(H)$. Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.

Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g. that

$$O = \{(a, b) \in C(H): a \in O_1 \land b \in O_2\}.$$

There exists $(a, b) \in O$ such that $b \in \langle a \rangle$; hence there exists $a \in O_1$ and n such that $a^n \in O_2$. Fix such an n; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$.

Then pick $c \in O_1 \cap A$: we have $(c, c^n) \in O$ and $\pi(c, c^n) = c \in A$. \qed
Theorem
Assume again that H is a Polish group such that
\{$(a,b) \in C(H): b \in \langle a \rangle$\} is dense in $C(H)$. Then the centralizer of a
generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied
when $H = \text{Aut}(X,\mu)$.

Proof.
We have $\forall (a,b) \in C(H)$ $b\in \langle a \rangle$.
Applying the fact that $(a,b) \mapsto a$ is category-preserving from
$C(H)$ to H, we obtain $\forall a \in H$ $(\forall b \in C(a)$ $b\in \langle a \rangle)$.
Since $\langle a \rangle$ is obviously closed in $C(a)$, we get $C(a) = \langle a \rangle$ for a generic
$a \in H$.

J. Melleray
Generic properties of measure-preserving actions
Theorem
Assume again that H is a Polish group such that
$\{(a, b) \in C(H): b \in \langle a \rangle\}$ is dense in $C(H)$. Then the centralizer of a
generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied
when $H = \text{Aut}(X, \mu)$.
Theorem
Assume again that H is a Polish group such that
\[\{(a, b) \in \mathcal{C}(H) : b \in \langle a \rangle \} \] is dense in $\mathcal{C}(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = \text{Aut}(X, \mu)$.

Proof.
We have $\forall^* (a, b) \in \mathcal{C}(H) \ b \in \langle a \rangle$.
Applying the fact that $(a, b) \mapsto a$ is category-preserving from $\mathcal{C}(H)$ to H, we obtain
A new proof of King’s result on centralizers of generic elements III.

Theorem
Assume again that H is a Polish group such that
\[\{(a, b) \in C(H) : b \in \langle a \rangle \} \] is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = \text{Aut}(X, \mu)$.

Proof.
We have $\forall^* (a, b) \in C(H) \ b \in \langle a \rangle$.
Applying the fact that $(a, b) \mapsto a$ is category-preserving from $C(H)$ to H, we obtain
\[\forall^* a \in H \left(\forall^* b \in C(a) \ b \in \langle a \rangle \right) . \]
A new proof of King’s result on centralizers of generic elements III.

Theorem
Assume again that H is a Polish group such that
\{ $(a, b) \in C(H) : b \in \langle a \rangle$ \} is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = \text{Aut}(X, \mu)$.

Proof.
We have $\forall^* (a, b) \in C(H) \ b \in \langle a \rangle$.
Applying the fact that $(a, b) \mapsto a$ is category-preserving from $C(H)$ to H, we obtain
\[\forall^* a \in H \left(\forall^* b \in C(a) \ b \in \langle a \rangle \right) . \]

Since $\langle a \rangle$ is obviously closed in $C(a)$, we get $C(a) = \langle a \rangle$ for a generic $a \in H$. \qed
The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma

Let M be a separable von Neumann algebra. Then

$$\{ (a, b) \in \mathbb{C} \left(\mathcal{U}(M) \right) : b \in \langle a \rangle \}$$

is dense in $\mathbb{C} \left(\mathcal{U}(M) \right)$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.

Of course, a maximal abelian subgroup of $\mathcal{U}(M)$ must be the unitary group of a masa.
The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma

Let M be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)) : b \in \langle a \rangle\}$ is dense in $C(U(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.

Of course, a maximal abelian subgroup of $U(M)$ must be the unitary group of a masa.
The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma

Let M be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)) : b \in \langle a \rangle \}$ is dense in $C(U(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.
The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma
Let M be a separable von Neumann algebra. Then
\[\{(a, b) \in C(U(M)) : b \in \langle a \rangle\}\] is dense in $C(U(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma
Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.
The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma

Let M be a separable von Neumann algebra. Then
\[
\{(a, b) \in C(U(M)) : b \in \langle a \rangle\}
\]
is dense in $C(U(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.

Of course, a maximal abelian subgroup of $U(M)$ must be the unitary group of a masa.
To sum up:

Theorem (Le Maître)

Let M be a diffuse separable von Neumann algebra; a generic element of $\mathcal{U}(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X, \mu)$.

The same result holds for $\mathcal{U}(\ell^2)$; this was originally proved by Todor Tsankov and myself, but one can give a simpler proof based on the technique discussed above and the notion of extreme amenability.
To sum up:

Theorem (Le Maître)

Let M be a diffuse separable von Neumann algebra; a generic element of $\mathcal{U}(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X, \mu)$.

The same result holds for $\mathcal{U}(\ell_2)$; this was originally proved by Todor Tsankov and myself, but one can give a simpler proof based on the technique discussed above and the notion of extreme amenability.
Extreme amenability is a G_δ property.

Definition
Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

\[\{ \pi \in \text{Hom}(\Gamma, H) : \pi(\Gamma) \text{ is extremely amenable} \} \]

is G_δ in $\text{Hom}(\Gamma, H)$.

Theorem (M.–Tsankov)
In both $\text{Aut}(X, \mu)$ and $U(\ell^2)$, a generic element generates an extremely amenable subgroup.

Corollary (M.–Tsankov)
A generic element of $U(\ell^2)$ generates a closed subgroup isomorphic to $L^0(X, \mu)$.
Extreme amenability is a $G_δ$ property.

Definition
Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let $Γ$ be a countable group, and H be a Polish group. Then

$$\{\pi \in \text{Hom}(Γ, H) : \overline{\pi(Γ)} \text{ is extremely amenable}\}$$

is $G_δ$ in $\text{Hom}(Γ, H)$.
Extreme amenability is a G_δ property.

Definition
Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

$$\{\pi \in \text{Hom}(\Gamma, H) : \overline{\pi(\Gamma)} \text{ is extremely amenable}\}$$

is G_δ in $\text{Hom}(\Gamma, H)$.

Theorem (M.–Tsankov)
In both $\text{Aut}(X, \mu)$ and $U(\ell^2)$, a generic element generates an extremely amenable subgroup.
Extreme amenability is a $G_δ$ property.

Definition
Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let $Γ$ be a countable group, and H be a Polish group. Then

$$\{π ∈ \text{Hom}(Γ, H) : \overline{π(Γ)} \text{ is extremely amenable}\}$$

is $G_δ$ in $\text{Hom}(Γ, H)$.

Theorem (M.–Tsankov)
In both $\text{Aut}(X, μ)$ and $U(ℓ_2)$, a generic element generates an extremely amenable subgroup.

Corollary (M.–Tsankov)
A generic element of $U(ℓ_2)$ generates a closed subgroup isomorphic to $L^0(X, μ)$.

J. Melleray
Generic properties of measure-preserving actions
What about $\text{Aut}(X, \mu)$?

We saw that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.
What about $\text{Aut}(X, \mu)$?

We saw that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is known:

Theorem (Solecki)

For a generic $g \in \text{Aut}(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.
What about $\text{Aut}(X, \mu)$?

We saw that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is known:

Theorem (Solecki)

For a generic $g \in \text{Aut}(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X, \mu)$?
What about $\text{Aut}(X, \mu)$?

We saw that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is known:

Theorem (Solecki)

For a generic $g \in \text{Aut}(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $\text{Aut}(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X, \mu)$?

Thank you for your attention!