Universality in classes of Banach spaces and compact spaces

Piotr Koszmider

Polish Academy of Sciences
Outline

A. Abstract nonsense
1. Types of universality
2. Mappings
3. Dualities
4. Associations between classes of compact spaces and classes of Banach spaces
5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Outline

A. Abstract nonsense
A. Abstract nonsense
 1. Types of universality
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings

B. The existence and non-existence of universal spaces
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities

B. The existence and non-existence of universal spaces
Outline

A. Abstract nonsense
1. Types of universality
2. Mappings
3. Dualities
4. Associations between classes of compact spaces and classes of Banach spaces
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1. ...
 2. ...
 3. ...
 4. ...
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
 10.

Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
 4.
 5.
 6.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
 4.
 5.
 6.
 7.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
 10.

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 2/26
Outline

A. Abstract nonsense
 1. Types of universality
 2. Mappings
 3. Dualities
 4. Associations between classes of compact spaces and classes of Banach spaces
 5. Examples of classes of compact and Banach spaces

B. The existence and non-existence of universal spaces
 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
 10.
Types of universality

Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps.

A structure $X \in C$ is called injectively universal iff for every $Y \in C$ there is an embedding $f: Y \to X$.

A structure $X \in C$ is called surjectively universal iff for every $Y \in C$ there is a quotient map $f: X \to Y$.

A structure $X \in C$ is called weakly universal iff for every $Y \in C$ there is $Z \in C$ and an embedding $f: X \to Z$ and a quotient $g: Y \to Z$.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12
3 / 26
Types of universality

- Consider a class of structures \mathcal{C} and two classes of mappings, some injections called embeddings and some surjections called quotient maps.
Types of universality

- Consider a class of structures \mathcal{C} and two classes of mappings, some injections called embeddings and some surjections called quotient maps

- **A structure** $X \in \mathcal{C}$ **is called injectively universal iff** for every $Y \in \mathcal{C}$ there is an embedding $f : Y \to X$
Types of universality

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps.

- A structure $X \in C$ is called injectively universal iff for every $Y \in C$ there is an embedding $f : Y \to X$.

- A structure $X \in C$ is called surjectively universal iff for every $Y \in C$ there is a quotient map $f : X \to Y$.

Types of universality

- Consider a class of structures \mathcal{C} and two classes of mappings, some injections called embeddings and some surjections called quotient maps.

- A structure $X \in \mathcal{C}$ is called injectively universal iff for every $Y \in \mathcal{C}$ there is an embedding $f : Y \to X$.

- A structure $X \in \mathcal{C}$ is called surjectively universal iff for every $Y \in \mathcal{C}$ there is a quotient map $f : X \to Y$.

- A structure $X \in \mathcal{C}$ is called weakly universal iff for every $Y \in \mathcal{C}$ there is $Z \in \mathcal{C}$ and an embedding $f : X \to Z$ and a quotient $g : Y \to Z$.
Types of universality

- Consider a class of structures \(C \) and two classes of mappings, some injections called embeddings and some surjections called quotient maps

- A structure \(X \in C \) is called injectively universal iff for every \(Y \in C \) there is an embedding \(f : Y \to X \)

- A structure \(X \in C \) is called surjectively universal iff for every \(Y \in C \) there is a quotient map \(f : X \to Y \)

- A structure \(X \in C \) is called weakly universal iff for every \(Y \in C \) there is \(Z \in C \) and an embedding \(f : X \to Z \) and a quotient \(g : Y \to Z \)
Types of universality

- Consider a class of structures \mathcal{C} and two classes of mappings, some injections called embeddings and some surjections called quotient maps.

- A structure $X \in \mathcal{C}$ is called injectively universal iff for every $Y \in \mathcal{C}$ there is an embedding $f : Y \to X$.

- A structure $X \in \mathcal{C}$ is called surjectively universal iff for every $Y \in \mathcal{C}$ there is a quotient map $f : X \to Y$.

- A structure $X \in \mathcal{C}$ is called weakly universal iff for every $Y \in \mathcal{C}$ there is $Z \in \mathcal{C}$ and an embedding $f : X \to Z$ and a quotient $g : Y \to Z$.
Mappings

For classes of Boolean algebras

- Embeddings: injective Boolean homomorphisms
- Quotients: surjective Boolean homomorphisms

For classes of compact spaces

- Embeddings: injective continuous mappings
- Quotients: surjective continuous mappings

For classes of Banach spaces

- Isomorphic package:
 - Embeddings: injective linear continuous mappings
 - Quotients: surjective linear continuous mappings
- Isometric package:
 - Embeddings: linear isometries (norm preserving mappings)
 - Quotients: compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras

- Mappings for classes of compact spaces

- Mappings for classes of Banach spaces

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal

- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

For classes of Boolean algebras
- embeddings = injective Boolean homomorphisms
- quotients = surjective Boolean homomorphisms

For classes of compact spaces
- embeddings = injective continuous mappings

Terminology
- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

For classes of Boolean algebras

- embeddings = injective Boolean homomorphisms
- quotients = surjective Boolean homomorphisms

For classes of compact spaces

- embeddings = injective continuous mappings
- quotients = surjective continuous mappings

For classes of Banach spaces

- Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings

- Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

For classes of Boolean algebras
- embeddings = injective Boolean homomorphisms
- quotients = surjective Boolean homomorphisms

For classes of compact spaces
- embeddings = injective continuous mappings
- quotients = surjective continuous mappings

For classes of Banach spaces
- Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
- Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology
- For Boolean algebras and Banach spaces: universal = injectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

- For classes of Boolean algebras
 - embeddings = injective Boolean homomorphisms
 - quotients = surjective Boolean homomorphisms

- For classes of compact spaces
 - embeddings = injective continuous mappings
 - quotients = surjective continuous mappings

- For classes of Banach spaces
 - Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
 - Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology

- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Mappings

For classes of Boolean algebras
- embeddings = injective Boolean homomorphisms
- quotients = surjective Boolean homomorphisms

For classes of compact spaces
- embeddings = injective continuous mappings
- quotients = surjective continuous mappings

For classes of Banach spaces
- Isomorphic package
 - embeddings = injective linear continuous mappings
 - quotients = surjective linear continuous mappings
- Isometric package
 - embeddings = linear isometries (norm preserving mappings)
 - quotients = compositions of the quotient maps with isometries

Terminology
- For Boolean algebras and Banach spaces: universal = injectively universal
- For compact spaces: universal = surjectively universal
Dualities

The Stone duality

\[\text{K} \to \{ f \in C(K) \mid f : K \to \{0, 1\}\} = \text{Clop}(K) \]

\[\text{A} \to \{ h \in \text{hom}(A) \mid h : A \to \{0, 1\}\} = \text{Stone}(A) \]

\[[a] = \{ h \in K^A : h(a) = 1\} \]

\[\text{K} \to \text{Clop}(\text{Stone}(A)) \equiv A, \text{Stone}(\text{Clop}(K)) \equiv K \]

A similar construction

\[\text{K} \to \{ f \in C(K) \mid f : K \to \mathbb{R}\} = C(K) \]

\[\text{X} \to \{ h \in X^* \mid h : X \to \mathbb{R}, ||h|| \leq 1\} = B_{X^*} \]

Semidualities:

\[C(B_{X^*}) \supseteq X, B(C(K)^*) \supseteq K \]
Dualities

- The Stone duality
Dualities

The Stone duality

- $K \to \{ f \in C(K) | f : K \to \{0, 1\}\} = Clop(K)$
The Stone duality

- $K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \{0, 1\} \} = \text{Clop}(K)$
- $A \rightarrow \{ h \in \text{hom}(A) \mid h : A \rightarrow \{0, 1\} \} = \text{Stone}(A)$

$[a] = \{ h \in K_A : h(a) = 1 \}$
Dualities

The Stone duality

- $K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \{0, 1\} \} = \operatorname{Clop}(K)$
- $\mathcal{A} \rightarrow \{ h \in \operatorname{hom}(\mathcal{A}) \mid h : \mathcal{A} \rightarrow \{0, 1\} \} = \operatorname{Stone}(\mathcal{A})$

$$[a] = \{ h \in K_{\mathcal{A}} : h(a) = 1 \}$$

- $\operatorname{Clop}(\operatorname{Stone}(\mathcal{A})) \equiv \mathcal{A}, \operatorname{Stone}(\operatorname{Clop}(K)) \equiv K$
Dualities

The Stone duality

$K \rightarrow \{ f \in C(K) | f : K \rightarrow \{0, 1\}\} = \text{Clop}(K)$

$A \rightarrow \{ h \in \text{hom}(A) | h : A \rightarrow \{0, 1\}\} = \text{Stone}(A)$

$[a] = \{ h \in K_A : h(a) = 1\}$

$\text{Clop}(\text{Stone}(A)) \equiv A$, $\text{Stone}(\text{Clop}(K)) \equiv K$

A similar construction
Dualities

- The Stone duality
 - $K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \{0, 1\}\} = \text{Clop}(K)$
 - $\mathcal{A} \rightarrow \{ h \in \text{hom}(\mathcal{A}) \mid h : \mathcal{A} \rightarrow \{0, 1\}\} = \text{Stone}(\mathcal{A})$

 $[a] = \{ h \in K_\mathcal{A} : h(a) = 1\}$

 - $\text{Clop}(\text{Stone}(\mathcal{A})) \equiv \mathcal{A}$, $\text{Stone}(\text{Clop}(K)) \equiv K$

- A similar construction
 - $K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \mathbb{R}\} = C(K)$
Dualities

- The Stone duality
 - $K \to \{ f \in C(K) \mid f : K \to \{0, 1\} \} = Clop(K)$
 - $\mathcal{A} \to \{ h \in hom(\mathcal{A}) \mid h : \mathcal{A} \to \{0, 1\} \} = Stone(\mathcal{A})$

 $$[a] = \{ h \in K_\mathcal{A} : h(a) = 1 \}$$

- $Clop(Stone(\mathcal{A})) \equiv \mathcal{A}$, $Stone(Clop(K)) \equiv K$

- A similar construction
 - $K \to \{ f \in C(K) \mid f : K \to \mathbb{R} \} = C(K)$
 - $X \to \{ h \in X^* \mid h : X \to \mathbb{R}, ||h|| \leq 1 \} = B_{X^*}$

 $$[f, r, \varepsilon] = \{ h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon) \}$$
Dualities

- **The Stone duality**
 - \(K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \{0, 1\} \} = \text{Clop}(K) \)
 - \(\mathcal{A} \rightarrow \{ h \in \text{hom}(\mathcal{A}) \mid h : \mathcal{A} \rightarrow \{0, 1\} \} = \text{Stone}(\mathcal{A}) \)

 \[[a] = \{ h \in K_\mathcal{A} : h(a) = 1 \} \]

- \(\text{Clop}(\text{Stone}(\mathcal{A})) \equiv \mathcal{A}, \text{Stone}(\text{Clop}(K)) \equiv K \)

- **A similar construction**
 - \(K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \mathbb{R} \} = C(K) \)
 - \(X \rightarrow \{ h \in X^* \mid h : X \rightarrow \mathbb{R}, ||h|| \leq 1 \} = B_{X^*} \)

 \[[f, r, \varepsilon] = \{ h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon) \} \]

- **Semidualities:** \(C(B_{X^*}) \supseteq X, B_{C(K)^*} \supseteq K \)
Dualities

- **The Stone duality**
 - $K \to \{ f \in C(K) | f : K \to \{0, 1\} \} = \text{Clop}(K)$
 - $\mathcal{A} \to \{ h \in \text{hom}(\mathcal{A}) | h : \mathcal{A} \to \{0, 1\} \} = \text{Stone}(\mathcal{A})$
 - $[a] = \{ h \in K_{\mathcal{A}} : h(a) = 1 \}$
 - $\text{Clop}(\text{Stone}(\mathcal{A})) \equiv \mathcal{A}, \text{Stone}(\text{Clop}(K)) \equiv K$

- **A similar construction**
 - $K \to \{ f \in C(K) | f : K \to \mathbb{R} \} = C(K)$
 - $X \to \{ h \in X^* | h : X \to \mathbb{R}, ||h|| \leq 1 \} = B_{X^*}$
 - $[f, r, \varepsilon] = \{ h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon) \}$

- **Semidualities:** $C(B_{X^*}) \supseteq X$, $B_{C(K)^*} \supseteq K$
The Stone duality

\[K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \{0, 1\} \} = \text{Clop}(K) \]
\[\mathcal{A} \rightarrow \{ h \in \text{hom}(\mathcal{A}) \mid h : \mathcal{A} \rightarrow \{0, 1\} \} = \text{Stone}(\mathcal{A}) \]

\[[a] = \{ h \in K_{\mathcal{A}} : h(a) = 1 \} \]

\[\text{Clop}(\text{Stone}(\mathcal{A})) \equiv \mathcal{A}, \quad \text{Stone}(\text{Clop}(K)) \equiv K \]

A similar construction

\[K \rightarrow \{ f \in C(K) \mid f : K \rightarrow \mathbb{R} \} = C(K) \]
\[X \rightarrow \{ h \in X^* \mid h : X \rightarrow \mathbb{R}, ||h|| \leq 1 \} = B_{X^*} \]

\[[f, r, \varepsilon] = \{ h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon) \} \]

Semidualities: \(C(B_{X^*}) \supseteq X, B_{C(K)^*} \supseteq K \)
Suppose that K and B as above are associated.

- If K is universal for K, then $C(K)$ is isometrically universal for B.
- If there is a universal Banach space X for B, then $B(X^*)$ is universal for B as well.
- If X is weakly universal for B, then $B(X^*)$ is weakly universal for K.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 6 / 26
Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

1. $\mathcal{K} \in \mathcal{K} \implies \mathcal{C}(\mathcal{K}) \in \mathcal{B}$
2. $X \in \mathcal{B} \implies \mathcal{B}X^* \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are \mathcal{K}-associated.

Suppose that \mathcal{K} and \mathcal{B} as above are associated.

1. If \mathcal{K} is universal for \mathcal{K}, then $\mathcal{C}(\mathcal{K})$ is isometrically universal for \mathcal{B}
2. If there is a universal Banach space X for \mathcal{B}, then $\mathcal{C}(\mathcal{B}X^*)$ is universal for \mathcal{B} as well.
3. If X is weakly universal for \mathcal{B}, then $\mathcal{B}X^*$ is weakly universal for \mathcal{K}.
Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff
\begin{itemize}
 \item $K \in \mathcal{K} \implies C(K) \in \mathcal{B}$
\end{itemize}
If \mathcal{K} is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}.
If there is a universal Banach space X for \mathcal{B}, then $C(BX^*)$ is universal for \mathcal{B} as well.
If X is weakly universal for \mathcal{B}, then BX^* is weakly universal for \mathcal{K}.
Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

- $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
- $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If \mathcal{K} is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}. If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well. If X is weakly universal for \mathcal{B}, then B_{X^*} is weakly universal for \mathcal{K}.
Associations

Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

- $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
- $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.
Associations

- Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff
 - $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
 - $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

- Suppose that \mathcal{K} and \mathcal{B} as above are associated.

- If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
- If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well.
- If X is weakly universal for \mathcal{B}, then B_{X^*} is weakly universal for \mathcal{K}.
Associations

- Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff
 - $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
 - $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

- Suppose that \mathcal{K} and \mathcal{B} as above are associated.
 - If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
Associations

Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

- $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
- $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

Suppose that \mathcal{K} and \mathcal{B} as above are associated.

- If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
- If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well.
Associations

- Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff
 - $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
 - $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

- Suppose that \mathcal{K} and \mathcal{B} as above are associated.
 - If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
 - If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well.
 - If X is weakly universal for \mathcal{B}, then B_{X^*} is weakly universal for \mathcal{K}
Associations

Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

- $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
- $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

Suppose that \mathcal{K} and \mathcal{B} as above are associated.

- If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
- If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well.
- If X is weakly universal for \mathcal{B}, then B_{X^*} is weakly universal for \mathcal{K}
Associations

Suppose \mathcal{K} is a class of compact spaces and \mathcal{B} is a class of Banach spaces. We say that they are associated iff

- $K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$
- $X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$

If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are K-associated.

Suppose that \mathcal{K} and \mathcal{B} as above are associated.

- If K is universal for \mathcal{K}, then $C(K)$ is isometrically universal for \mathcal{B}
- If there is a universal Banach space X for \mathcal{B}, then $C(B_{X^*})$ is universal for \mathcal{B} as well.
- If X is weakly universal for \mathcal{B}, then B_{X^*} is weakly universal for \mathcal{K}
Examples of associated classes

- UE_κ and $\overline{\mathcal{H}}_\kappa$ are κ-associated and are not strongly associated.

- WCG_κ and \mathcal{A}_κ are κ-associated and are not strongly associated.

- RN_κ and \mathcal{A}_κ are κ-associated, strongly associated if $\kappa < \beta$ and not strongly associated if $\kappa \geq \beta$.

Assuming MA$^+$ and not CH the classes \mathcal{C}_κ and WLD_κ are strongly associated for any uncountable cardinal κ.

- UE_κ and \mathcal{B}_κ are strongly associated.
Examples of associated classes

- \mathcal{UE}_κ and \mathcal{H}_κ are \mathcal{K}-associated and are not strongly associated.
- \mathcal{E}_κ and \mathcal{WCG}_κ, are \mathcal{K}-associated and are not strongly associated.
Examples of associated classes

- UE_κ and $\overline{\mathcal{H}}_\kappa$ are K-associated and are not strongly associated.
- E_κ and \mathcal{WCG}_κ, are K-associated and are not strongly associated.
- RN_κ and $\overline{\mathcal{A}}_\kappa$ are K-associated, strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
Examples of associated classes

- UE_κ and \overline{H}_κ are K-associated and are not strongly associated.
- E_κ and \mathcal{WCG}_κ, are K-associated and are not strongly associated.
- RN_κ and \overline{A}_κ are K-associated, strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
- Assuming $\text{MA} + \neg \text{CH}$ the classes C_κ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
Examples of associated classes

- UE_κ and $\overline{\mathcal{H}}_\kappa$ are K-associated and are not strongly associated.
- $\overline{\mathcal{E}}_\kappa$ and \mathcal{WCG}_κ, are K-associated and are not strongly associated.
- $\overline{\mathcal{R}}N_\kappa$ and $\overline{\mathcal{A}}_\kappa$ are K-associated, strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
- Assuming $\text{MA}+\neg\text{CH}$ the classes \mathcal{C}_κ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- K_κ and B_κ are strongly associated.
Examples of associated classes

- UE_κ and \overline{H}_κ are K-associated and are not strongly associated.
- E_κ and \mathcal{WCG}_κ, are K-associated and are not strongly associated.
- RN_κ and \overline{A}_κ are K-associated, strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
- Assuming $\text{MA} + \neg \text{CH}$ the classes \mathcal{C}_κ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- K_κ and \mathcal{B}_κ are strongly associated.
Examples of associated classes

- UE_κ and \overline{H}_κ are K-associated and are not strongly associated.
- \mathcal{E}_κ and \mathcal{WCG}_κ, are K-associated and are not strongly associated.
- \mathcal{RN}_κ and \overline{A}_κ are K-associated, strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
- Assuming $\text{MA}+\neg\text{CH}$ the classes \mathcal{C}_κ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- \mathcal{K}_κ and \mathcal{B}_κ are strongly associated.
Compact Hausdorff spaces of weight $\kappa (\mathbb{K}_\kappa)$ and Banach spaces of density $\leq \kappa (\mathbb{B}_\kappa)$
Compact Hausdorff spaces of weight $\kappa (\mathbb{K}_\kappa)$ and Banach spaces of density $\leq \kappa (\mathbb{B}_\kappa)$

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in \mathbb{K}_κ for each cardinal number κ and so there is isometrically universal Banach space in each \mathbb{B}_κ.

- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in \mathbb{K}_{2^ω} and so $\ell_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in \mathbb{B}_{2^ω}.

- Let κ be a cardinal. $[0,1]_\kappa$ is injectively universal in \mathbb{K}_{2^ω}. In particular, any space that maps onto $[0,1]_{2^\omega}$, and so, \mathbb{N}^*, is weakly universal in \mathbb{K}_{2^ω}. In particular ℓ_∞/c_0 is isometrically weakly universal for \mathbb{B}_{2^ω}.

- (Dow, Hart; 2001) It is consistent that there is no universal compact space for \mathbb{K}_{2^ω}.

- (Shelah, Usvyatsov; 2006) It is consistent that there is no isometrically universal Banach space in \mathbb{B}_{2^ω} or in \mathbb{B}_{ω^1}.

- (Brech, Koszmider; 2012) It is consistent that there is no isomorphically universal Banach space in \mathbb{B}_{2^ω} or in \mathbb{B}_{ω^1}.
Compact Hausdorff spaces of weight κ (K_κ) and Banach spaces of density $\leq \kappa$ (B_κ)

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in K_κ for each cardinal number κ and so there is isometrically universal Banach space in each B_κ.

- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in $K_{2\omega}$ and so $l_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in $B_{2\omega}$.

(Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 8 / 26)
Compact Hausdorff spaces of weight κ (K_κ) and Banach spaces of density $\leq \kappa$ (B_κ)

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in K_κ for each cardinal number κ and so there is isometrically universal Banach space in each B_κ.

- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in K_{2^ω} and so $l_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in B_{2^ω}.

- Let κ be a cardinal. $[0,1]^\kappa$ is injectively universal in K_{2^ω}. In particular, any space that maps onto $[0,1]^{2^\omega}$, and so, \mathbb{N}^*, is weakly universal in K_{2^ω}. In particular l_∞/c_0 is isometrically weakly universal for B_{2^ω}.
Compact Hausdorff spaces of weight $\kappa \ (\mathbb{K}_\kappa)$ and Banach spaces of density $\leq \kappa \ (\mathcal{B}_\kappa)$

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in \mathbb{K}_κ for each cardinal number κ and so there is isometrically universal Banach space in each \mathcal{B}_κ.
- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in $\mathbb{K}_{2\omega}$ and so $l_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in $\mathcal{B}_{2\omega}$.
- Let κ be a cardinal. $[0, 1]^\kappa$ is injectively universal in $\mathbb{K}_{2\omega}$. In particular, any space that maps onto $[0, 1]^{2\omega}$, and so, \mathbb{N}^*, is weakly universal in $\mathbb{K}_{2\omega}$. In particular l_∞/c_0 is isometrically weakly universal for $\mathcal{B}_{2\omega}$.
- (Dow, Hart; 2001) It is consistent that there is no universal compact space for $\mathbb{K}_{2\omega}$.

(Delah, Hart; 2001) It is consistent that there is no universal compact space for $\mathbb{K}_{2\omega}$.
Compact Hausdorff spaces of weight $\kappa \left(K_\kappa \right)$ and Banach spaces of density $\leq \kappa \left(B_\kappa \right)$

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in K_κ for each cardinal number κ and so there is isometrically universal Banach space in each B_κ.

- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in $K_{2\omega}$ and so $l_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in $B_{2\omega}$.

Let κ be a cardinal. $[0, 1]^{\kappa}$ is injectively universal in $K_{2\omega}$. In particular, any space that maps onto $[0, 1]^{2\omega}$, and so, \mathbb{N}^*, is weakly universal in $K_{2\omega}$. In particular l_∞/c_0 is isometrically weakly universal for $B_{2\omega}$.

- (Dow, Hart; 2001) It is consistent that there is no universal compact space for $K_{2\omega}$.

- (Shelah, Usvyatsov; 2006) It is consistent that there is no isometrically universal Banach space in $B_{2\omega}$ or in B_{ω_1}.
Compact Hausdorff spaces of weight $\kappa (\mathbb{K}_\kappa)$ and Banach spaces of density $\leq \kappa (B_\kappa)$

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in \mathbb{K}_κ for each cardinal number κ and so there is isometrically universal Banach space in each B_κ.

- (Parovichenko; 1963) Assume CH. Then \mathbb{N}^* is universal in \mathbb{K}_{2^ω} and so $l_\infty/c_0 \equiv C(\mathbb{N}^*)$ is isometrically universal in B_{2^ω}.

- Let κ be a cardinal. $[0, 1]^\kappa$ is injectively universal in \mathbb{K}_{2^ω}. In particular, any space that maps onto $[0, 1]^{2^\omega}$, and so, \mathbb{N}^*, is weakly universal in \mathbb{K}_{2^ω}. In particular l_∞/c_0 is isometrically weakly universal for B_{2^ω}.

- (Dow, Hart; 2001) It is consistent that there is no universal compact space for \mathbb{K}_{2^ω}.

- (Shelah, Usvyatsov; 2006) It is consistent that there is no isometrically universal Banach space in B_{2^ω} or in B_{ω_1}.

- (Brech, Koszmider; 2012) It is consistent that there is no isomorphically universal Banach space in B_{2^ω} or in B_{ω_1}.
Questions

Are any of the statements below equivalent in ZFC:

- There is a universal Banach space of density \(\leq 2^\omega \).
- There is an isometrically universal Banach space of density \(\leq 2^\omega \).
- There is a universal compact space of weight \(\leq 2^\omega \).

Is every universal Banach space of density \(\leq 2^\omega \) isomorphic to an isometrically universal Banach space of density \(\leq 2^\omega \)? Is it isometrically universal itself?

Is there a property \(P \) of norms such that:

- If \((X, ||||)\) has \(P \) and \(Y \) is a closed subspace of \(X \), then \((Y, ||||\rbrack Y)\) has \(P \) as well.
- Not all norms on Banach spaces of density \(\leq 2^\omega \) have \(P \).
- \(C(K) \) spaces have equivalent norm with property \(P \).

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12
Questions

Are any of the statements below equivalent in ZFC:

- There is a universal Banach space of density $\leq 2^{\omega}$.
- There is an isometrically universal Banach space of density $\leq 2^{\omega}$.
- There is a universal compact space of weight $\leq 2^{\omega}$?

Is every universal Banach space of density $\leq 2^{\omega}$ isomorphic to an isometrically universal Banach space of density $\leq 2^{\omega}$? Is it isometrically universal itself?

Is there a property P of norms such that:

- If $(X, \|\|\|)$ has P and Y is a closed subspace of X, then $(Y, \|\|\|\restriction Y)$ has P as well.

- Not all norms on Banach spaces of density $\leq 2^{\omega}$ have P.

- $C(K)$ spaces have equivalent norm with property P.
Questions

Are any of the statements below equivalent in ZFC:

▶ there is a universal Banach space of density \(\leq 2^\omega \),

▶ there is an isometrically universal Banach space of density \(\leq 2^\omega \),

▶ there is a universal compact space of weight \(\leq 2^\omega \)?

Is every universal Banach space of density \(\leq 2^\omega \) isomorphic to an isometrically universal Banach space of density \(\leq 2^\omega \)? Is it isometrically universal itself?

Is there a property \(P \) of norms such that:

▶ If \((X, ||||)\) has \(P \) and \(Y \) is a closed subspace of \(X \), then \((Y, |||| \upharpoonright Y)\) has \(P \) as well

▶ Not all norms on Banach spaces of density \(\leq 2^\omega \) have \(P \)

▶ \(C(K) \) spaces have equivalent norm with property \(P \)
Questions

Are any of the statements below equivalent in ZFC:

- there is a universal Banach space of density \(\leq 2^\omega \),
- there is an isometrically universal Banach space of density \(\leq 2^\omega \),
- is every universal Banach space of density \(\leq 2^\omega \) isomorphic to an isometrically universal Banach space of density \(\leq 2^\omega \)?

Is it isometrically universal itself?

Is there a property \(P \) of norms such that:

- If \((X, ||||)\) has \(P \) and \(Y \) is a closed subspace of \(X \), then \((Y, ||||\mid Y)\) has \(P \) as well
- Not all norms on Banach spaces of density \(\leq 2^\omega \) have \(P \)
- \(C(K) \) spaces have equivalent norm with property \(P \)
Questions

Are any of the statements below equivalent in ZFC:

- there is a universal Banach space of density \(\leq 2^{\omega} \),
- there is an isometrically universal Banach space of density \(\leq 2^{\omega} \),
- there is a universal compact space of weight \(\leq 2^{\omega} \)?
Questions

- Are any of the statements below equivalent in ZFC:
 - there is a universal Banach space of density $\leq 2^{\omega}$,
 - there is an isometrically universal Banach space of density $\leq 2^{\omega}$,
 - there is a universal compact space of weight $\leq 2^{\omega}$?

- Is every universal Banach space of density $\leq 2^{\omega}$ isomorphic to an isometrically universal Banach space of density $\leq 2^{\omega}$?
 Is it isometrically universal itself?

- Is there a property P of norms such that:
 - If $(X, ||||)$ has P and Y is a closed subspace of X, then $(Y, ||||\mid Y)$ has P as well
 - Not all norms on Banach spaces of density $\leq 2^{\omega}$ have P
 - $C(K)$ spaces have equivalent norm with property P
Questions

- Are any of the statements below equivalent in ZFC:
 - there is a universal Banach space of density \(\leq 2^\omega \),
 - there is an isometrically universal Banach space of density \(\leq 2^\omega \),
 - there is a universal compact space of weight \(\leq 2^\omega \) ?

- Is every universal Banach space of density \(\leq 2^\omega \) isomorphic to an isometrically universal Banach space of density \(\leq 2^\omega \)? Is it isometrically universal itself?

- Is there a property \(P \) of norms such that:
 - If \((X, \|\|)\) has \(P \) and \(Y \) is a closed subspace of \(X \), then \((Y, \|\|_\restriction Y)\) has \(P \) as well
 - Not all norms on Banach spaces of density \(\leq 2^\omega \) have \(P \)
 - \(C(K) \) spaces have equivalent norm with property \(P \)
Questions

Are any of the statements below equivalent in ZFC:

- there is a universal Banach space of density $\leq 2^\omega$,
- there is an isometrically universal Banach space of density $\leq 2^\omega$,
- there is a universal compact space of weight $\leq 2^\omega$?

Is every universal Banach space of density $\leq 2^\omega$ isomorphic to an isometrically universal Banach space of density $\leq 2^\omega$? Is it isometrically universal itself?

Is there a property P of norms such that:

- If $(X, \|\|\|)$ has P and Y is a closed subspace of X, then $(Y, \|\|\|\upharpoonright Y)$ has P as well

- Not all norms on Banach spaces of density $\leq 2^\omega$ have P

- $C(K)$ spaces have equivalent norm with property P
Questions

- Are any of the statements below equivalent in ZFC:
 - there is a universal Banach space of density $\leq 2^\omega$,
 - there is an isometrically universal Banach space of density $\leq 2^\omega$,
 - there is a universal compact space of weight $\leq 2^\omega$?

- Is every universal Banach space of density $\leq 2^\omega$ isomorphic to an isometrically universal Banach space of density $\leq 2^\omega$? Is it isometrically universal itself?

- Is there a property P of norms such that:
 - If $(X, \|\|\|)$ has P and Y is a closed subspace of X, then $(Y, \|\|\| \upharpoonright Y)$ has P as well
 - Not all norms on Banach spaces of density $\leq 2^\omega$ have P
Questions

Are any of the statements below equivalent in ZFC:
- there is a universal Banach space of density $\leq 2^\omega$,
- there is an isometrically universal Banach space of density $\leq 2^\omega$,
- there is a universal compact space of weight $\leq 2^\omega$?

Is every universal Banach space of density $\leq 2^\omega$ isomorphic to an isometrically universal Banach space of density $\leq 2^\omega$? Is it isometrically universal itself?

Is there a property P of norms such that:
- If $(X, |||)$ has P and Y is a closed subspace of X, then $(Y, ||| \restriction Y)$ has P as well
- Not all norms on Banach spaces of density $\leq 2^\omega$ have P
- $C(K)$ spaces have equivalent norm with property P
Questions

- Are any of the statements below equivalent in ZFC:
 - there is a universal Banach space of density $\leq 2^\omega$,
 - there is an isometrically universal Banach space of density $\leq 2^\omega$,
 - there is a universal compact space of weight $\leq 2^\omega$?

- Is every universal Banach space of density $\leq 2^\omega$ isomorphic to an isometrically universal Banach space of density $\leq 2^\omega$? Is it isometrically universal itself?

- Is there a property P of norms such that:
 - If $(X, ||||)$ has P and Y is a closed subspace of X, then $(Y, |||| \upharpoonright Y)$ has P as well
 - Not all norms on Banach spaces of density $\leq 2^\omega$ have P
 - $C(K)$ spaces have equivalent norm with property P
Questions

Are any of the statements below equivalent in ZFC:
- there is a universal Banach space of density $\leq 2^\omega$,
- there is an isometrically universal Banach space of density $\leq 2^\omega$,
- there is a universal compact space of weight $\leq 2^\omega$?

Is every universal Banach space of density $\leq 2^\omega$ isomorphic to an isometrically universal Banach space of density $\leq 2^\omega$? Is it isometrically universal itself?

Is there a property P of norms such that:
- If $(X, \|\|\|\|)$ has P and Y is a closed subspace of X, then $(Y, \|\|\|\| \upharpoonright Y)$ has P as well
- Not all norms on Banach spaces of density $\leq 2^\omega$ have P
- $C(K)$ spaces have equivalent norm with property P
Universality and non-universality of $N^* = \beta \mathbb{N} \setminus \mathbb{N}$

The following spaces are always continuous images of N^*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω_1
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2\omega$

The following spaces always isometrically embed into ℓ_∞ / c_0:

- Banach spaces with weakly \ast separable dual ball, in particular, all HI spaces
- Banach spaces of density ω_1
Universality and non-universality of $\mathcal{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$

- The following spaces are always continuous images of \mathcal{N}^*:
Universality and non-universality of $N^* = \beta\mathbb{N} \setminus \mathbb{N}$

- The following spaces are always continuous images of N^*:
 - separable spaces
Universality and non-universality of $\mathcal{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$

The following spaces are always continuous images of \mathcal{N}^*:
- separable spaces
- (Parovichenko; 1963) spaces of weight ω_1
Universality and non-universality of $\mathcal{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$

- The following spaces are always continuous images of \mathcal{N}^*:
 - separable spaces
 - (Parovichenko; 1963) spaces of weight ω_1
 -
Universality and non-universality of $N^* = \beta N \setminus N$

The following spaces are always continuous images of N^*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω_1
-
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2^\omega$
Universality and non-universality of \(N^* = \beta \mathbb{N} \setminus \mathbb{N} \)

- The following spaces are always continuous images of \(N^* \):
 - separable spaces
 - (Parovichenko; 1963) spaces of weight \(\omega_1 \)
 -
 - (Bell, Shapiro, Simon; 1996) polyadic spaces of weight \(\leq 2^\omega \)

- The following spaces always isometrically embed into \(\ell_\infty / c_0 \):

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 10 / 26
Universality and non-universality of $N^* = \beta N \setminus N$

- The following spaces are always continuous images of N^*:
 - separable spaces
 - (Parovichenko; 1963) spaces of weight ω_1
 -
 - (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2^\omega$

- The following spaces always isometrically embed into ℓ_∞/c_0:
 - Banach spaces with weakly* separable dual ball, in particular, all HI spaces
The following spaces are always continuous images of N^*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω_1
-
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2^\omega$

The following spaces always isometrically embed into ℓ_∞/c_0:

- Banach spaces with weakly* separable dual ball, in particular, all HI spaces
- **Banach spaces of density ω_1**
Universality and non-universality of $N^* = \beta N \setminus N$

- The following spaces are always continuous images of N^*:
 - separable spaces
 - (Parovichenko; 1963) spaces of weight ω_1
 -
 - (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2^\omega$

- The following spaces always isometrically embed into ℓ_∞ / c_0:
 - Banach spaces with weakly* separable dual ball, in particular, all HI spaces
 - Banach spaces of density ω_1
The following spaces are always continuous images of N^*:
- separable spaces
- (Parovichenko; 1963) spaces of weight ω_1
-
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight $\leq 2^\omega$

The following spaces always isometrically embed into ℓ_∞/c_0:
- Banach spaces with weakly* separable dual ball, in particular, all HI spaces
- Banach spaces of density ω_1
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

The following spaces may not be continuous images of $(Kunen; 1968) [0, \omega_2]...$

The following spaces may not isomorphically embed into $\ell_\infty/c_0 \equiv (Brech, Koszmider; 2012) C([0, 2\omega]) \equiv (Todorcevic; 2011)$ some first countable and some Corson compacta of weight $\leq 2\omega$

$(Brech, P. K.; 2012)$ It is consistent that there exist universal Banach spaces for $B_{2\omega}$ but l_∞/c_0 is not among them.

$(Krupski, Marciszewski, 201?)$ It is consistent that a Banach space isomorphically embeds in l_∞/c_0 but it does not embed isometrically.

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 11 / 26
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*

- It is consistent that there exist universal Banach spaces for $\mathcal{B}_{2\omega}$ but ℓ_∞/c_0 is not among them.

- It is consistent that a Banach space isomorphically embeds in ℓ_∞/c_0 but it does not embed isometrically.
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
Universality and non-universality of $\ell_\infty / c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞ / c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
Universality and non-universality of $\ell_\infty/c_0 \cong C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 - ...
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
 - (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight $\leq 2^\omega$
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
 - (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight $\leq 2^\omega$

- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for \mathcal{B}_{2^ω} but ℓ_∞/c_0 is not among them.
Universality and non-universality of $\ell_\infty/c_0 \cong C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
 - (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight $\leq 2^\omega$

- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for B_{2^ω} but ℓ_∞/c_0 is not among them.

- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in ℓ_∞/c_0 but it does not embed isometrically.
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
 - (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight $\leq 2^\omega$

- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for \mathcal{B}_{2^ω} but l_∞/c_0 is not among them.

- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in l_∞/c_0 but it does not embed isometrically.
Universality and non-universality of $\ell_\infty/c_0 \equiv C(N^*)$

- The following spaces may not be continuous images of N^*
 - (Kunen; 1968) $[0, \omega_2]$
 -
 - (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not isomorphically embed into ℓ_∞/c_0
 - (Brech, Koszmider; 2012) $C([0, 2^\omega])$
 - (Todorcevic; 2011) some first countable and some Corson compacta of weight $\leq 2^\omega$
 - (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight $\leq 2^\omega$

- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for \mathcal{B}_{2^ω} but ℓ_∞/c_0 is not among them.

- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in ℓ_∞/c_0 but it does not embed isometrically.
Questions

Is it consistent that \([0, 2\omega]\) is not a continuous image of \(N^\ast\) but \(C([0, 2\omega])\) isomorphically embeds in \(\ell_\infty/c_0\)?

Suppose that \(K\) is the Stone space of the measure algebra (Borel sets of \([0, 1]\) divided by Lebesgue measure sets zero). Is it consistent that \(C(K)\) does not isometrically embed into \(\ell_\infty/c_0\)?

Is it consistent that \(N^\ast\) is not universal for \(K_{2\omega}\) but \(\ell_\infty/c_0\) is universal for \(B_{2\omega}\)?
Questions

Is it consistent that $[0, 2^\omega]$ is not a continuous image of \mathbb{N}^* but $C([0, 2^\omega])$ isomorphically embeds in ℓ_∞/c_0?
Questions

- Is it consistent that $[0, 2^\omega]$ is not a continuous image of \mathbb{N}^* but $\mathcal{C}([0, 2^\omega])$ isomorphically embeds in ℓ_∞/c_0?

- Suppose that K is the Stone space of the measure algebra (Borel sets of $[0, 1]$ divided by Lebesgue measure sets zero). Is it consistent that $\mathcal{C}(K)$ does not isometrically embed into ℓ_∞/c_0?
Questions

- Is it consistent that \([0, 2^\omega]\) is not a continuous image of \(\mathbb{N}^*\) but \(C([0, 2^\omega])\) isomorphically embeds in \(\ell_\infty/c_0\)?
- Suppose that \(K\) is the Stone space of the measure algebra (Borel sets of \([0, 1]\) divided by Lebesgue measure sets zero). Is it consistent that \(C(K)\) does not isometrically embed into \(\ell_\infty/c_0\)?
- Is it consistent that \(\mathbb{N}^*\) is not universal for \(K_{2^\omega}\) but \(\ell_\infty/c_0\) is universal for \(B_{2^\omega}\)?
Questions

- Is it consistent that $[0, 2^\omega]$ is not a continuous image of \mathbb{N}^* but $C([0, 2^\omega])$ isomorphically embeds in ℓ_∞/c_0?

- Suppose that K is the Stone space of the measure algebra (Borel sets of $[0, 1]$ divided by Lebesgue measure sets zero). Is it consistent that $C(K)$ does not isometrically embed into ℓ_∞/c_0?

- Is it consistent that \mathbb{N}^* is not universal for K_{2^ω} but ℓ_∞/c_0 is universal for \mathcal{B}_{2^ω}?
Questions

- Is it consistent that $[0, 2^\omega]$ is not a continuous image of \mathbb{N}^* but $C([0, 2^\omega])$ isomorphically embeds in ℓ_∞/c_0?

- Suppose that K is the Stone space of the measure algebra (Borel sets of $[0, 1]$ divided by Lebesgue measure sets zero). Is it consistent that $C(K)$ does not isometrically embed into ℓ_∞/c_0?

- Is it consistent that \mathbb{N}^* is not universal for K_{2^ω} but ℓ_∞/c_0 is universal for B_{2^ω}?
Uniform Eberlein Compact and Hilbert generated Banach spaces I

K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.

X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator T: H → X with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001)

UEκ and Hκ are K-associated and are not strongly associated.

Bl2(κ) is injectively universal for UEκ. In particular C(A(κ)N) is weakly universal in UEκ.

(Benyamini, Rudin, Wage; 1977)

A(κ)N is weakly universal in UEκ. In particular C(A(κ)N) is weakly universal for Hκ.

(M. Bell; 2002) There is a compact K ∈ UEω1 which is not a continuous image of any space A(κ)N. In particular the space A(κ)N is not universal in UEκ for an uncountable κ.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE_κ and \overline{H}_κ are K-associated and are not strongly associated.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.

- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE_κ and \overline{H}_κ are K-associated and are not strongly associated.

- $B_{l_2(\kappa)}$ is injectively universal for UE_κ. In particular $C(B_{l_2(\kappa)})$ is weakly universal for \overline{H}_κ.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE_κ and \overline{H}_κ are K-associated and are not strongly associated.

$B_{l_2(\kappa)}$ is injectively universal for UE_κ. In particular $C(B_{l_2(\kappa)})$ is weakly universal for \overline{H}_κ.

(Benyamini, Rudin, Wage; 1977) $A(\kappa)^\mathbb{N}$ is weakly universal in UE_κ. In particular $C(A(\kappa)^\mathbb{N})$ is weakly universal for \overline{H}_κ.
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.

- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) \mathcal{UE}_κ and \mathcal{H}_κ are K-associated and are not strongly associated.

- $B_{l_2(\kappa)}$ is injectively universal for \mathcal{UE}_κ. In particular $C(B_{l_2(\kappa)})$ is weakly universal for \mathcal{H}_κ.

- (Benyamini, Rudin, Wage; 1977) $A(\kappa)^\mathbb{N}$ is weakly universal in \mathcal{UE}_κ. In particular $C(A(\kappa)^\mathbb{N})$ is weakly universal for \mathcal{H}_κ.

- (M. Bell; 2002) There is a compact $K \in \mathcal{UE}_{\omega_1}$ which is not a continuous image of any space $A(\kappa)^\mathbb{N}$. In particular the space $A(\kappa)^\mathbb{N}$ is not universal in \mathcal{UE}_κ for an uncountable κ.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 13 / 26
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE_κ and \overline{H}_κ are K-associated and are not strongly associated.

$B_{l_2(\kappa)}$ is injectively universal for UE_κ. In particular $C(B_{l_2(\kappa)})$ is weakly universal for \overline{H}_κ.

(Benyamini, Rudin, Wage; 1977) $A(\kappa)^N$ is weakly universal in UE_κ. In particular $C(A(\kappa)^N)$ is weakly universal for \overline{H}_κ.

(M. Bell; 2002) There is a compact $K \in \text{UE}_{\omega_1}$ which is not a continuous image of any space $A(\kappa)^N$. In particular the space $A(\kappa)^N$ is not universal in UE_κ for an uncountable κ.

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 13 / 26
Uniform Eberlein Compact and Hilbert generated Banach spaces I

- K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology.
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator $T : H \to X$ with a dense range.

(Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE_κ and $\overline{\mathcal{H}}_\kappa$ are K-associated and are not strongly associated.

$B_{l_2}(\kappa)$ is injectively universal for UE_κ. In particular $C(B_{l_2}(\kappa))$ is weakly universal for $\overline{\mathcal{H}}_\kappa$.

(Benyamini, Rudin, Wage; 1977) $A(\kappa)^N$ is weakly universal in UE_κ. In particular $C(A(\kappa)^N)$ is weakly universal for $\overline{\mathcal{H}}_\kappa$.

(M. Bell; 2002) There is a compact $K \in \text{UE}_{\omega_1}$ which is not a continuous image of any space $A(\kappa)^N$. In particular the space $A(\kappa)^N$ is not universal in UE_κ for an uncountable κ.

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 / 26
Uniform Eberlein Compact and Hilbert generated Banach spaces II

(M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1.

(C. Brech, P. K.; To appear in PAMS) It is consistent that there is no Banach space of density 2^{ω} or ω_1 which contains isomorphic copies of all Banach spaces from UE_2^{ω} or from UE_{ω_1} respectively.
(M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1.

(C. Brech, P. K.; To appear in PAMS) It is consistent that there is no Banach space of density 2^{ω} or ω_1 which contains isomorphic copies of all Banach spaces from $U\varepsilon_{2^{\omega}}$ or from $U\varepsilon_{\omega_1}$ respectively. In particular, it is consistent that there is no universal Banach space neither in H_{ω_1} nor in $H_{2^{\omega}}$.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 14 / 26
Uniform Eberlein Compact and Hilbert generated Banach spaces II

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1
- (M. Bell; 2000) Assume $\kappa = 2^{<\kappa}$. Then, there is a universal uniform Eberlein compact space UE_κ in UE_κ and so $C(UE_\kappa)$ is isometrically universal Banach space for \mathcal{H}_κ. In particular, the above results hold for $\kappa = 2^\omega = \omega_1$ if we assume the continuum hypothesis.
Uniform Eberlein Compact and Hilbert generated Banach spaces II

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1

- (M. Bell; 2000) Assume $\kappa = 2^{<\kappa}$. Then, there is a universal uniform Eberlein compact space UE_κ in UE_κ and so $C(UE_\kappa)$ is isometrically universal Banach space for \mathcal{H}_κ. In particular, the above results hold for $\kappa = 2^\omega = \omega_1$ if we assume the continuum hypothesis.

- (C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density 2^ω or ω_1 which contains isomorphic copies of all Banach spaces from UE_{2^ω} or from UE_{ω_1} respectively. In particular, it is consistent that there is no universal Banach space neither in \mathcal{H}_{ω_1} nor in \mathcal{H}_{2^ω}
Uniform Eberlein Compact and Hilbert generated Banach spaces II

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1

- (M. Bell; 2000) Assume $\kappa = 2^{<\kappa}$. Then, there is a universal uniform Eberlein compact space UE_κ in UE_κ and so $C(\text{UE}_\kappa)$ is isometrically universal Banach space for \mathcal{H}_κ. In particular, the above results hold for $\kappa = 2^\omega = \omega_1$ if we assume the continuum hypothesis.

- (C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density 2^ω or ω_1 which contains isomorphic copies of all Banach spaces from UE_{2^ω} or from UE_{ω_1} respectively. In particular, it is consistent that there is no universal Banach space neither in \mathcal{H}_{ω_1} nor in \mathcal{H}_{2^ω}
Uniform Eberlein Compact and Hilbert generated Banach spaces II

(M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω_1.

(M. Bell; 2000) Assume $\kappa = 2^{<\kappa}$. Then, there is a universal uniform Eberlein compact space UE_κ in UE_κ and so $C(UE_\kappa)$ is isometrically universal Banach space for \mathcal{H}_κ. In particular, the above results hold for $\kappa = 2^\omega = \omega_1$ if we assume the continuum hypothesis.

(C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density 2^ω or ω_1 which contains isomorphic copies of all Banach spaces from UE_{2^ω} or from UE_{ω_1} respectively. In particular, it is consistent that there is no universal Banach space neither in \mathcal{H}_{ω_1} nor in \mathcal{H}_{2^ω}.
Questions
Questions

- Is it consistent that there is a universal graph of size $\omega_1 (2^\omega)$ but there is no universal Banach space for $B_{\omega_1} (B_{2^\omega})$? Or any other class we consider here?
Scattered compact space and Asplund Banach spaces

A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable. A compact K is scattered iff $C(K)$ is Asplund (Mazurkiewicz, Sierpiński; 1920). There is no universal scattered space of a given weight.

$d: K \times K \to \mathbb{R}^+ \cup \{0\}$ fragments K iff for every $F \subseteq K$, for every $\varepsilon > 0$ there is an open $U \subseteq K$ such that $U \cap F \neq \emptyset$ and $\text{diam} \ d(U \cap F) < \varepsilon$.

(Namioka, Phelps, Jayne, Rogers) the dual norm fragments compact subsets of B_X^* iff X is Asplund (Szlenk 1968, Wojtaszczyk 1970, Hajek, Lancien, Montesinos 2007). For any cardinal κ there is no universal reflexive or Asplund Banach space of density $\leq \kappa$. Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 16 / 26
A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable.
Scattered compact space and Asplund Banach spaces

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff $C(K)$ is Asplund
Scattered compact space and Asplund Banach spaces

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable.
- A compact K is scattered iff $C(K)$ is Asplund.
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
Scattered compact space and Asplund Banach spaces

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable.
- A compact K is scattered iff $C(K)$ is Asplund.
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$ fragments K iff for every $F \subseteq K$, for every $\varepsilon > 0$ there is an open $U \subseteq K$ such that $U \cap F \neq \emptyset$ and

\[\text{diam}_d(U \cap F) < \varepsilon.\]
Scattered compact space and Asplund Banach spaces

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable.
- A compact K is scattered iff $C(K)$ is Asplund.
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$ fragments K iff for every $F \subseteq K$, for every $\varepsilon > 0$ there is an open $U \subseteq K$ such that $U \cap F \neq \emptyset$ and

$$diam_d(U \cap F) < \varepsilon.$$

- (Namioka, Phelps, Jayne, Rogers) the dual norm fragments compact subsets of B_{X^*} iff X is Asplund.
Scattered compact space and Asplund Banach spaces

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable.
- A compact K is scattered iff $C(K)$ is Asplund.
 (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$ fragments K iff for every $F \subseteq K$, for every $\varepsilon > 0$ there is an open $U \subseteq K$ such that $U \cap F \neq \emptyset$ and
 $$\text{diam}_d(U \cap F) < \varepsilon.$$
 (Namioka, Phelps, Jayne, Rogers) the dual norm fragments compact subsets of B_{X^*} iff X is Asplund.
- (Szlenk 1968, Wojtaszczyk 1970, Hajek, Lancien, Montesinos 2007) For any cardinal κ there is no universal reflexive or Asplund Banach space of density $\leq \kappa$.

Piotr Koszmider (Polish Academy of Sciences) Universality and Forcing Toronto, 12 16 / 26
A compact space is called Radon-Nikodym compact iff there is a l.s.c. metric on it which fragments it.

\[d: K \times K \to \mathbb{R}^+ \cup \{0\} \]

is l.s.c. iff \(\{ (x, y) \in K^2 : d(x, y) \geq r \} \) is closed for every \(r \in \mathbb{R}^+ \cup \{0\} \).

A Banach space \(X \) is said to be Asplund generated iff there is an Asplund space \(A \) and a bounded linear operator \(T: A \to X \) with dense range. (I. Namioka; 1987)

\(\text{RN}_\kappa \) and \(A_\kappa \) are \(K \)-associated, (A. Avilés; 2005) strongly associated if \(\kappa < b \) and not strongly associated if \(\kappa \geq b \);
A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.

\[d : K \times K \rightarrow \mathbb{R}_+ \cup \{0\} \text{ is l.s.c. iff } \{ (x, y) \in K^2 : d(x, y) \geq r \} \text{ is closed for every } r \in \mathbb{R}_+ \cup \{0\} \]
Radon-Nikodým compact space and Asplund generated Banach spaces

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.

- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$ is l.s.c. iff \(\{(x, y) \in K^2 : d(x, y) \geq r\}\) is closed for every $r \in \mathbb{R}_+ \cup \{0\}$.

- A Banach space X is said to be Asplund generated iff there is an Asplund space A and a bounded linear operator $T : A \to X$ with dense range.
Radon-Nikodym compact space and Asplund generated Banach spaces

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.

 \[d : K \times K \to \mathbb{R}_+ \cup \{0\} \text{ is l.s.c. iff } \{(x, y) \in K^2 : d(x, y) \geq r\} \text{ is closed for every } r \in \mathbb{R}_+ \cup \{0\} \]

- A Banach space \(X \) is said to be Asplund generated iff there is an Asplund space \(A \) and a bounded linear operator \(T : A \to X \) with dense range.

- (I. Namioka; 1987) \(\mathbb{RN}_\kappa \) and \(\overline{A}_\kappa \) are \(K \)-associated,
Radon-Nikodym compact space and Asplund generated Banach spaces

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$ is l.s.c. iff $\{(x, y) \in K^2 : d(x, y) \geq r\}$ is closed for every $r \in \mathbb{R}_+ \cup \{0\}$
- A Banach space X is said to be Asplund generated iff there is an Asplund space A and a bounded linear operator $T : A \to X$ with dense range.

(I. Namioka; 1987) $\mathbb{R}N_\kappa$ and \overline{A}_κ are K-associated,

(A. Avilés; 2005) strongly associated if $\kappa < b$ and not strongly associated if $\kappa \geq b$;
Questions

Is it consistent that there are universal spaces in one of the classes \mathbb{R}^2_ω, \mathbb{R}_ω^1?

Is it consistent that there are universal spaces in one of the classes \mathcal{A}_2^ω, \mathcal{A}_ω^1?

Is it possible to associate to each Radon-Nikodym compact K an ordinal index $i(K)$ having the following properties:

1. $|i(K)|$ is not bigger than the weight of K,
2. If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
3. For every $\alpha < \kappa^+$ there is a Radon-Nikodym compactum K of weight κ such that $i(K) > \alpha$.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 18 / 26
Questions

- Is it consistent that there are universal spaces in one of the classes \(\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1} \)?
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1}$?

- Is it consistent that there are universal spaces in one of the classes $\mathcal{A}_{2\omega}, \mathcal{A}_{\omega_1}$?
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1}$?

- Is it consistent that there are universal spaces in one of the classes $\mathbb{A}_{2\omega}, \mathbb{A}_{\omega_1}$?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
 - If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
 - For every $\alpha < \kappa^+$ there is a Radon-Nikodým compactum K of weight κ such that $i(K) > \alpha$.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 18 / 26
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_2^\omega, \mathbb{RN}_\omega^1$?

- Is it consistent that there are universal spaces in one of the classes $\mathcal{A}_2^\omega, \mathcal{A}_\omega^1$?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1}$?

- Is it consistent that there are universal spaces in one of the classes $\mathbb{A}_{2\omega}, \mathbb{A}_{\omega_1}$?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
 - If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1}$?

- Is it consistent that there are universal spaces in one of the classes $\mathbb{A}_{2\omega}, \mathbb{A}_{\omega_1}$?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
 - If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
 - For every $\alpha < \kappa^+$ there is a Radon-Nikodým compactum K of weight κ such that $i(K) > \alpha$.
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}, \mathbb{RN}_{\omega_1}$?

- Is it consistent that there are universal spaces in one of the classes $\mathbb{A}_{2\omega}, \mathbb{A}_{\omega_1}$?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
 - If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
 - For every $\alpha < \kappa^+$ there is a Radon-Nikodým compactum K of weight κ such that $i(K) > \alpha$.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12
Questions

- Is it consistent that there are universal spaces in one of the classes $\mathbb{RN}_{2\omega}$, \mathbb{RN}_{ω_1}?

- Is it consistent that there are universal spaces in one of the classes $\mathcal{A}_{2\omega}$, \mathcal{A}_{ω_1}?

- Is it possible to associate to each Radon-Nikodým compact K an ordinal index $i(K)$ having the following properties:
 - $|i(K)|$ is not bigger than the weight of K,
 - If L is a closed subset of K or if L is a continuous image of K, then $i(L) \leq i(K)$,
 - For every $\alpha < \kappa^+$ there is a Radon-Nikodým compactum K of weight κ such that $i(K) > \alpha$.
A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.

A Banach space X is called WCG iff there is $K \subseteq X$ such that

1. K is compact w.r.t. the weak topology of X
2. $\text{lin}(K)$ is norm dense in X

(Amir, Lindenstrauss; 1968; Rosenthal; 1974)

E_κ and WCG_κ, are K-associated and are not strongly associated.
A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.

\[\text{A Banach space } \mathcal{X} \text{ is called WCG iff there is } \mathcal{K} \subseteq \mathcal{X} \text{ such that:} \]

1. \(\mathcal{K} \) is compact w. r. t. the weak topology of \(\mathcal{X} \).
2. \(\operatorname{lin}(\mathcal{K}) \) is norm dense in \(\mathcal{X} \).

(Amir, Lindenstrauss; 1968; Rosenthal; 1974)

\(E \kappa \) and \(WCG \kappa \) are \(\mathcal{K} \)-associated and are not strongly associated.
A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.

A Banach space X **is called WCG iff there is** $K \subseteq X$ **such that**

1. K is compact w. r. t. the weak topology of X,
2. $\text{lin}(K)$ is norm dense in X (Amir, Lindenstrauss; 1968; Rosenthal; 1974)

E^K and WCG^K are K-associated and are not strongly associated.
Eberlein Compact and weakly compactly generated (WCG) Banach spaces I

- A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.
- A Banach space X is called WCG iff there is $K \subseteq X$ such that
 1. K is compact w. r. t. the weak topology of X
A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.

A Banach space X is called WCG iff there is $K \subseteq X$ such that
1. K is compact w. r. t. the weak topology of X
2. $\text{lin}(K)$ is norm dense in X
A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology.

A Banach space X is called WCG iff there is $K \subseteq X$ such that:

1. K is compact w. r. t. the weak topology of X,
2. $\text{lin}(K)$ is norm dense in X.

(Amir, Lindenstrauss; 1968; Rosenthal; 1974) E_κ and WCG_κ, are K-associated and are not strongly associated.
Eberlein Compact and weakly compactly generated (WCG) Banach spaces II

If $\kappa \omega = \kappa$ or $\kappa = \omega_1$ then there is no weakly universal Eberlein compact of weight κ nor a universal WCG Banach space of density κ. If κ is a strong limit cardinal of countable cofinality, then there is a universal Eberlein compact of weight κ, and so, there is a universal WCG Banach space of density κ.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 20 / 26
(Argyros, Benyamini; 1987) If $\kappa^\omega = \kappa$ or $\kappa = \omega_1$ then there is no weakly universal Eberlein compact of weight κ nor a universal WCG Banach space of density κ. If κ is a strong limit cardinal of countable cofinality, then there is a universal Eberlein compact of weight κ, and so, there is a universal WCG Banach space of density κ.
Questions

Is it consistent that there is no universal space in E_ω in WCG_ω?

Is it consistent that there is a universal space in E_{ω^2} in WCG_{ω^2}?
Questions

- Is it consistent that there is no universal space in E_{ω_ω}, in $\mathcal{WCG}_{\omega_\omega}$?
Questions

- Is it consistent that there is no universal space in \mathbb{E}_{ω}, in \mathcal{WCG}_{ω}?
- Is it consistent that there is a universal space in \mathbb{E}_{ω_2}, in \mathcal{WCG}_{ω_2}?
Questions

- Is it consistent that there is no universal space in E_{ω_ω}, in WCG_{ω_ω}?
- Is it consistent that there is a universal space in E_{ω_2}, in WCG_{ω_2}?
Questions

- Is it consistent that there is no universal space in E_{ω_ω}, in WCG_{ω_ω}?
- Is it consistent that there is a universal space in E_{ω_2}, in WCG_{ω_2}?
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I
A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals.
A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals

A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals

A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology

Every WCG space is weakly Lindelöf
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the \(\Sigma \)-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
- Every WCG space is weakly Lindelöf
- Every Eberlein compact space is Corson compact
A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals.

A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology.

Every WCG space is weakly Lindelöf.

Every Eberlein compact space is Corson compact.

Corson compact space has property M iff every Radon measure on it has separable support.
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals.
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology.
- Every WCG space is weakly Lindelöf.
- Every Eberlein compact space is Corson compact.
- Corson compact space has property M iff every Radon measure on it has separable support.
- A Banach space X is called WLD iff X with the weak topology is a continuous image of a closed subset of L^ω_{κ}.
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $\mathcal{C}(K) \in \mathcal{WLD}_\kappa$

Assuming $\text{MA} + \neg \text{CH}$ (Argyros, Mercourakis, Negrepontis; 1988) the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

Assuming CH (Argyros, Mercourakis, Negrepontis; 1988) \mathcal{C}_ω is not associated with any class of Banach spaces.

\mathcal{WLD}_ω is not associated with any class of compact spaces.

\mathcal{CM}_κ is associated with a class of Banach spaces for any uncountable cardinal κ;
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in CM_\kappa$ if and only if $C(K) \in WLD_\kappa$

- (Argyros, Mercourakis; 1993) $X \in WLD_\kappa$ if and only if $B_{X^*} \in C_\kappa$,

Assuming $MA + \neg CH$ the classes $C_\kappa = CM_\kappa$ and WLD_κ are strongly associated for any uncountable cardinal κ.

Assuming CH (Argyros, Mercourakis, Negrepontis; 1988) C_2^{ω} is not associated with any class of Banach spaces 2^{ω} (Kalenda, Plebanek; 2002) WLD_2^{ω} is not associated with any class of compact spaces 2^{ω} (Kalenda, Plebanek; 2002) L_2^{ω} is not associated with any class of compact spaces. CM_κ is associated with a class of Banach spaces for any uncountable cardinal κ.

Piotr Koszmider (Polish Academy of Sciences)

Universality and Forcing

Toronto, 12
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA} \vdash \neg \text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

Assuming CH $\mathcal{C}_\omega = \mathcal{CM}_\omega$ is not associated with any class of Banach spaces.

L_ω is not associated with any class of compact spaces

\mathcal{CM}_κ is associated with a class of Banach spaces for any uncountable cardinal κ.

Piotr Koszmider (Polish Academy of Sciences)

Universality and Forcing

Toronto, 12

23 / 26
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA} + \neg \text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- **Assuming CH**
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$

- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,

- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $MA + \neg CH$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

- Assuming CH

 1. (Argyros, Mercourakis, Negrepontis; 1988) $\mathcal{C}_{2\omega}$ is not associated with any class of Banach spaces
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA}+\neg\text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

Assuming CH

1. (Argyros, Mercourakis, Negrepontis; 1988) \mathcal{C}_{2^ω} is not associated with any class of Banach spaces
2. (Kalenda, Plebanek; 2002) \mathcal{WLD}_{2^ω} is not associated with any class of compact spaces
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $MA + \neg CH$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- Assuming CH
 1. (Argyros, Mercourakis, Negrepontis; 1988) $\mathcal{C}_{2\omega}$ is not associated with any class of Banach spaces
 2. (Kalenda, Plebanek; 2002) $\mathcal{WLD}_{2\omega}$ is not associated with any class of compact spaces
 3. (Kalenda, Plebanek; 2002) $\mathcal{L}_{2\omega}$ is not associated with any class of compact spaces
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$

- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,

- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA} + \neg \text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

- Assuming CH
 1. (Argyros, Mercourakis, Negrepontis; 1988) \mathcal{C}_{2^ω} is not associated with any class of Banach spaces
 2. (Kalenda, Plebanek; 2002) \mathcal{WLD}_{2^ω} is not associated with any class of compact spaces
 3. (Kalenda, Plebanek; 2002) \mathcal{L}_{2^ω} is not associated with any class of compact spaces

- (Plebanek, 2002) \mathcal{CM}_κ is associated with a class of Banach spaces for any uncountable cardinal κ;
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA} + \neg \text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.

Assuming CH

1. (Argyros, Mercourakis, Negrepontis; 1988) $\mathcal{C}_{2\omega}$ is not associated with any class of Banach spaces
2. (Kalenda, Plebanek; 2002) $\mathcal{WLD}_{2\omega}$ is not associated with any class of compact spaces
3. (Kalenda, Plebanek; 2002) $\mathcal{L}_{2\omega}$ is not associated with any class of compact spaces

- (Plebanek, 2002) \mathcal{CM}_κ is associated with a class of Banach spaces for any uncountable cardinal κ;
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces II

- (Argyros, Mercourakis; 1993) $K \in \mathcal{CM}_\kappa$ if and only if $C(K) \in \mathcal{WLD}_\kappa$
- (Argyros, Mercourakis; 1993) $X \in \mathcal{WLD}_\kappa$ if and only if $B_{X^*} \in \mathcal{C}_\kappa$,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming $\text{MA} + \neg \text{CH}$ the classes $\mathcal{C}_\kappa = \mathcal{CM}_\kappa$ and \mathcal{WLD}_κ are strongly associated for any uncountable cardinal κ.
- Assuming CH
 1. (Argyros, Mercourakis, Negrepontis; 1988) \mathcal{C}_{2^ω} is not associated with any class of Banach spaces
 2. (Kalenda, Plebanek; 2002) \mathcal{WLD}_{2^ω} is not associated with any class of compact spaces
 3. (Kalenda, Plebanek; 2002) \mathcal{L}_{2^ω} is not associated with any class of compact spaces
- (Plebanek, 2002) \mathcal{CM}_κ is associated with a class of Banach spaces for any uncountable cardinal κ;
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces III

For every countably tight compact space K of weight $\leq 2^\omega$ there is a Corson compact K' of weight $\leq 2^\omega$ where all Radon measures have separable supports and which is not a continuous image of any closed set of K. In particular there is no universal weakly Lindelöf determined Banach spaces in WLD_{2^ω}. There is no universal weakly Lindelöf Banach space of density 2^ω.

Piotr Koszmider (Polish Academy of Sciences)
Universality and Forcing
Toronto, 12 24 / 26
(Todorcevic; 1995) For every countably tight compact space K of weight $\leq 2^\omega$ there is a Corson compact K' of weight $\leq 2^\omega$ where all Radon measures have separable supports and which is not a continuous image of any closed set of K. In particular there is no universal weakly Lindelöf determined Banach spaces in \mathcal{WLD}_{2^ω}.
Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces III

(Todorčević; 1995) For every countably tight compact space K of weight $\leq 2^\omega$ there is a Corson compact K' of weight $\leq 2^\omega$ where all Radon measures have separable supports and which is not a continuous image of any closed set of K. In particular there is no universal weakly Lindelöf determined Banach spaces in WLD_{2^ω}.

There is no universal weakly Lindelöf Banach space of density 2^ω.
Questions

Is it consistent that the class \mathcal{L}_κ of Lindelöf Banach spaces in the weak topology of density $\leq \kappa$ is associated with a class of compact spaces for an uncountable κ?

Are there (consistently) universal Banach spaces in WLD_κ for $\kappa \neq 2^{\omega}$, for example consistently for $\kappa = \omega_1$?

Are there (consistently) universal Corson compact spaces (where all Radon measures have separable supports) spaces of weight $\leq \kappa$ for $\kappa \neq 2^{\omega}$, for example consistently for $\kappa = \omega_1$?

Are there (consistently) universal Banach spaces in \mathcal{L}_κ for $\kappa \neq 2^{\omega}$, for example consistently for $\kappa = \omega_1$?
Questions

Is it consistent that the class \mathcal{L}_κ of Lindelöf Banach spaces in the weak topology of density $\leq \kappa$ is associated with a class of compact spaces for an uncountable κ?
Questions

- Is it consistent that the class \mathcal{L}_κ of Lindelöf Banach spaces in the weak topology of density $\leq \kappa$ is associated with a class of compact spaces for an uncountable κ?

- **Are there (consistently) universal Banach spaces in \mathcal{WLD}_κ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?**
Questions

- Is it consistent that the class \mathcal{L}_κ of Lindelöf Banach spaces in the weak topology of density $\leq \kappa$ is associated with a class of compact spaces for an uncountable κ?

- Are there (consistently) universal Banach spaces in \mathcal{WLD}_κ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?

- Are there (consistently) universal Corson compact spaces (where all Radon measures have separable supports) spaces of weight $\leq \kappa$ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?
Questions

- Is it consistent that the class \mathcal{L}_κ of Lindelöf Banach spaces in the weak topology of density $\leq \kappa$ is associated with a class of compact spaces for an uncountable κ?

- Are there (consistently) universal Banach spaces in \mathcal{WLD}_κ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?

- Are there (consistently) universal Corson compact spaces (where all Radon measures have separable supports) spaces of weight $\leq \kappa$ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?

- Are there (consistently) universal Banach spaces in L_κ for $\kappa \neq 2^\omega$, for example consistently for $\kappa = \omega_1$?
P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294
P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294

Piotr Koszmider; Some topological invariants and biorthogonal systems in Banach spaces, Extracta Math. 26(2) (2011), 271-294

http://arxiv.org/abs/1209.4332
P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294

Piotr Koszmider; Some topological invariants and biorthogonal systems in Banach spaces, Extracta Math. 26(2) (2011), 271-294

http://arxiv.org/abs/1209.4332