Hypoelliptic random walks

Gilles Lebeau, Laurent Michel

Département de Mathématiques,
Université de Nice Sophia-Antipolis
Parc Valrose 06108 Nice Cedex 02, France

December 15, 2011

Outline

(1) Introduction

(3) The Main Lemma

Let M be a m-dimensional manifold equipped with a volume form $d x$ and Ω an connected open relatively compact subset of M with smooth boundary $\partial \Omega$.
Let $X_{1}, X_{2}, \ldots, X_{N}$ be a finite collection of smooth vectors fields on M such that

$$
\forall i \quad \operatorname{div}\left(X_{i}\right)=0
$$

Let \mathcal{G} be the lie algebra generated by the X_{i}. We assume

H1 For any $x \in M, \mathcal{G}_{x}=T_{x} M$
i.e the vectors fields X_{i} satisfy the hypoelliptic condition of Hörmander, and
$\mathbf{H} 2 \forall x \in \partial \Omega, \exists j, X_{j}(x) \notin T_{x} \partial \Omega$
i.e the boundary $\partial \Omega$ is not caracteristic for the collection $\left(X_{i}\right)_{i}$.

Hypoelliptic Random Walk

Let $h \in] 0, h_{0}$] be a small parameter. Let us consider the following random walk on $\Omega, x_{0}, x_{1}, \ldots, x_{n}, \ldots$ starting at $x_{0} \in \Omega$:

At step n, choose $j \in\{1, \ldots, N\}$ at random and $t \in[-h, h]$ at random (uniform), and let $y=\Phi_{j}\left(t, x_{n}\right)$ where $\Phi_{j}(t, x)$ is the flow of X_{j} starting at x.
If $y \in \Omega$ go to $x_{n+1}=y$,
else, if $y \notin \Omega$, set $x_{n+1}=x_{n}$.
This is a Metropolis type algorithm, and due to the condition $\operatorname{div}\left(X_{j}\right)=0$, this random walk is reversible for the probability p on Ω

$$
d p=\frac{d x}{\operatorname{Vol}(\Omega)}
$$

The Markov kernel

For any j, let $T_{j, h}$ be the self adjoint operator on $L^{2}(\Omega, d p)$

$$
\begin{align*}
& T_{j, h} f(x)=m_{j, h}(x) f(x)+\left.\frac{1}{2 h} \int_{-h}^{h} \mathbf{1}\right|_{\Phi_{j}(t, x) \in \Omega} f\left(\Phi_{j}(t, x)\right) d t \\
& m_{j, h}(x)=1-\left.\frac{1}{2 h} \int_{-h}^{h} \mathbf{1}\right|_{\Phi_{j}(t, x) \in \Omega} d t \tag{1.1}
\end{align*}
$$

Then $T_{j, h} f(x)=\int f(y) K_{j, h}(x, d y)$ where $K_{j, h}$ is a Markov Kernel, and

$$
\begin{equation*}
K_{h}(x, d y)=\frac{1}{N} \sum_{j=1}^{N} K_{j, h}(x, d y), T_{h}(f)(x)=\int_{\Omega} f(y) K_{h}(x, d y) \tag{1.2}
\end{equation*}
$$

are the Markov kernel and the Markov operator associated to our random walk, i.e

$$
\begin{equation*}
P\left(x_{n+1} \in A \mid x_{n}=x\right)=\int_{A} K_{h}(x, d y) \tag{1.3}
\end{equation*}
$$

Let $K_{h}^{n}(x, d y)$ be the kernel of the iterate operator T_{h}^{n}. Then $\int_{A} K_{h}^{n}(x, d y)$ is the probability to be in the set A after n steps of the walk starting at $x \in \Omega$. Our goal is

1. To get estimates on the rate of convergence of the probability $K_{h}^{n}(x, d y)$ towards the stationary probability p

$$
\left\|K_{h}^{n}(x, d y)-p\right\|_{T V} \quad \text { as } n \rightarrow \infty \quad \forall x
$$

where

$$
\left\|p_{1}-p_{2}\right\|_{T V}=\sup _{A \in \mathcal{B}(\Omega)}\left|p_{1}(A)-p_{2}(A)\right|
$$

is the total variation distance
2. To describe some aspects of the spectral theory of the operator T_{h} acting as a self adjoint contraction on $L^{2}(\Omega, d p)$.

Outline

(1) Introduction

(2) Results

(3) The Main Lemma

Outline

(1) Introduction

(2) Results

Spectral gap

Since T_{h} is Markov and self adjoint, its spectrum is a subset of $[-1,1]$.
We shall denote by $g(h)$ the spectral gap of the operator T_{h}. It is defined as the best constant such that the following inequality holds true for all $u \in L^{2}=L^{2}(\Omega, d p)$

$$
\begin{equation*}
\|u\|_{L^{2}}^{2}-(u \mid 1)_{L^{2}}^{2} \leq \frac{1}{g(h)}\left(u-T_{h} u \mid u\right)_{L^{2}} \tag{2.1}
\end{equation*}
$$

The existence of a non zero spectral gap means that : 1 is a simple eigenvalue of T_{h}, and the distance between 1 and the rest of the spectrum is equal to $g(h)$.

Theorem

There exists $\left.h_{0}>0, \delta_{0} \in\right] 0,1 / 2\left[, M>0, c_{0} \in\right] 0,1\left[\right.$, and constants $C_{i}>0$ such that for any $\left.h \in] 0, h_{0}\right]$, the following holds true.
i) The spectrum of T_{h} is a subset of $\left[-1+\delta_{0}, 1\right], 1$ is a simple eigenvalue of T_{h}, and $\operatorname{Spec}\left(T_{h}\right) \cap\left[1-\delta_{0} h^{2\left(1-c_{0}\right)}, 1\right]$ is discrete. Moreover, for any $0 \leq \lambda \leq \delta_{0} h^{-2 c_{0}}$, the number of eigenvalues of T_{h} in $\left[1-h^{2} \lambda, 1\right]$ (with multiplicity) is bounded by $C_{1}(1+\lambda)^{M}$.
ii) The spectral gap satisfies

$$
\begin{equation*}
C_{2} h^{2} \leq g(h) \leq C_{3} h^{2} \tag{2.2}
\end{equation*}
$$

and the following estimate holds true for all integer n

$$
\begin{equation*}
\sup _{x \in \Omega}\left\|K_{h}^{n}(x, d y)-\frac{d y}{\operatorname{Vol}(\Omega)}\right\|_{T V} \leq C_{4} e^{-n g(h)} \tag{2.3}
\end{equation*}
$$

The limit diffusion operator

Let $\mathcal{H}^{1}\left(\left(X_{i}\right)\right)$ be the Hilbert space

$$
\mathcal{H}^{1}\left(\left(X_{i}\right)\right)=\left\{u \in L^{2}(\Omega), \forall j, X_{j} u \in L^{2}(\Omega)\right\}
$$

Let ν be the best constant such that the following inequality holds true for all $u \in \mathcal{H}^{1}\left(\left(X_{i}\right)\right)$

$$
\begin{equation*}
\|u\|_{L^{2}}^{2}-(u \mid 1)_{L^{2}}^{2} \leq \frac{\mathcal{E}(u)}{\nu}, \quad \mathcal{E}(u)=\frac{1}{6 \operatorname{Vol}(\Omega)} \int_{\Omega} \sum_{j}\left|X_{j} u\right|^{2}(x) d x \tag{2.4}
\end{equation*}
$$

By the hypoelliptic theorem of Hörmander, one has $\mathcal{H}^{1}\left(\left(X_{i}\right)\right) \subset H^{\mu}(\Omega)$, for some $\mu>0$. For any fixed smooth function $g \in C_{0}^{\infty}(\Omega)$, one has

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1-T_{h}}{h^{2}} g=L(g), \quad L=-\frac{1}{6} \sum_{j} X_{j}^{2} \tag{2.5}
\end{equation*}
$$

L (with Neumann condition at the boundary) is the positive Laplacian associated to the Dirichlet form $\mathcal{E}(u)$. It has a compact resolvant and spectrum $\nu_{0}=0<\nu_{1}=\nu<\nu_{2}<\ldots$. Let m_{j} be the multiplicity of ν_{j}. One has $m_{0}=1$ since $\operatorname{Ker}(L)$ is spaned by the constant function 1

The spectrum of T_{h} near 1

Theorem
One has

$$
\begin{equation*}
\lim _{h \rightarrow 0} h^{-2} g(h)=\nu \tag{2.6}
\end{equation*}
$$

Moreover, for any $R>0$ and $\varepsilon>0$, there exists $h_{1}>0$ such that one has for all $h \in] 0, h_{1}$]

$$
\begin{equation*}
\left.\left.\operatorname{Spec}\left(\frac{1-T_{h}}{h^{2}}\right) \cap\right] 0, R\right] \subset \cup_{j \geq 1}\left[\nu_{j}-\varepsilon, \nu_{j}+\varepsilon\right] \tag{2.7}
\end{equation*}
$$

and the number of eigenvalues of $\frac{1-T_{h, \rho}}{h^{2}}$ with multiplicities, in the interval $\left[\nu_{j}-\varepsilon, \nu_{j}+\varepsilon\right]$, is equal to m_{j}.

Dirichlet forms

Let

$$
\mathcal{E}_{h}(u)=\left(\left(\left.\frac{1-T_{h}}{h^{2}} u \right\rvert\, u\right)\right)_{L^{2}}
$$

Lemma

There exists $\left.\left.h_{0}>0, C>0, c_{0} \in\right] 0,1\right]$ such that for all $\left.\left.h \in\right] 0, h_{0}\right]$ and any $u_{h} \in L^{2}(\Omega)$ such that

$$
\left\|u_{h}\right\|_{L^{2}}^{2}+\mathcal{E}_{h}\left(u_{h}\right) \leq 1
$$

one has

$$
\begin{align*}
& u_{h}=v_{h}+w_{h} \\
& \forall j,\left\|X_{j} v_{h}\right\|_{L^{2}} \leq C \tag{2.8}\\
& \left\|w_{h}\right\|_{L^{2}} \leq C h^{c_{0}}
\end{align*}
$$

As a direct byproduct, using also $\sum_{j}\left\|X_{j} v\right\|^{2} \leq C t e \lim _{\inf }^{h \rightarrow 0} \mathcal{E}_{h}(v)$ for $v \in \mathcal{H}^{1}\left(\left(X_{i}\right)\right)$, we get

$$
C_{2} h^{2} \leq g(h) \leq C_{3} h^{2}
$$

Basic bounds

Lemma

$1 \operatorname{Spec}\left(T_{h, \rho}\right) \cap\left[1-\delta_{0} h^{2\left(1-c_{0}\right)}, 1\right]$ is discrete, and there exists $M>0$ such that for any $0 \leq \lambda \leq \delta_{0} h^{-2 c_{0}}$, the number of eigenvalues of T_{h} in $\left[1-h^{2} \lambda, 1\right]$ (with multiplicity) is bounded by $C_{1}(1+\lambda)^{M}$.
2 There exists $A>0$ such that any eigenfuntion $T_{h}(u)=\lambda u$ with
$\lambda \in\left[1-\delta_{0} h^{-2 c_{0}}, 1\right]$ satisfies the bound

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C_{2} h^{-A}\|u\|_{L^{2}} \tag{2.9}
\end{equation*}
$$

The first item is an abstract consequence of the preceeding lemma and of the injection $\mathcal{H}^{1}\left(\left(X_{i}\right)\right) \subset H^{\mu}(\Omega)$.
For the second item, one uses with p large enough the equation

$$
u(x)=\lambda^{-p} T_{h}^{p}(u)(x)
$$

Total variation

Let Π_{0} be the orthogonal projector in L^{2} on the space of constant functions

$$
\begin{equation*}
\Pi_{0}(u)(x)=\frac{1_{\Omega}(x)}{\operatorname{Vol}(\Omega)} \int_{\Omega} u(y) d y \tag{2.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
2 \sup _{x \in \Omega}\left\|T_{h, x}^{n}-d p\right\|_{T V}=\left\|T_{h}^{n}-\Pi_{0}\right\|_{L^{\infty} \rightarrow L^{\infty}} \tag{2.11}
\end{equation*}
$$

Thus, we have to prove that there exist C_{0}, h_{0}, such that for any n and any $\left.h \in] 0, h_{0}\right]$, one has

$$
\begin{equation*}
\left\|T_{h}^{n}-\Pi_{0}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq C_{0} e^{-n g(h)} \tag{2.12}
\end{equation*}
$$

Total variation

Observe that since $g_{h, \rho} \simeq h^{2}$, we may assume $n \geq C h^{-2}$. In order to prove 2.12, we split T_{h} in 3 pieces, according to the spectral theory.

Let $0<\lambda_{1, h} \leq \ldots \leq \lambda_{j, h} \leq \lambda_{j+1, h} \leq \ldots \leq h^{-2\left(1-c_{0}\right)} \delta_{0}$ be such that the eigenvalues of T_{h} in the interval $\left[1-\delta_{0} h^{2 c_{0}}, 1\left[\right.\right.$ are the $1-h^{2} \lambda_{j, h}$, with associated orthonormals eigenfunctions $e_{j, h}$

$$
\begin{equation*}
T_{h}\left(e_{j, h}\right)=\left(1-h^{2} \lambda_{j, h}\right) e_{j, h}, \quad\left(e_{j, h} \mid e_{k, h}\right)_{L^{2}(\rho)}=\delta_{j, k} \tag{2.13}
\end{equation*}
$$

Then we write $T_{h}-\Pi_{0}=T_{h, 1}+T_{h, 2}+T_{h, 3}$ with

$$
\begin{align*}
& T_{h, 1}(x, y)=\sum_{\lambda_{1, h} \leq \lambda_{j, h} \leq h^{-\alpha}}\left(1-h^{2} \lambda_{j, h}\right) e_{j, h}(x) e_{j, h}(y) \\
& T_{h, 2}(x, y)=\sum_{h^{-\alpha}<\lambda_{j, h} \leq h^{-2\left(1-c_{0}\right)} \delta_{0}}\left(1-h^{2} \lambda_{j, h}\right) e_{j, h}(x) e_{j, h}(y) \tag{2.14}\\
& T_{h, 3}=T_{h}-\Pi_{0}-T_{h, 1}-T_{h, 2}
\end{align*}
$$

$T_{h, 1}$

Let E_{α} be the (finite dimensional) subspace of $L^{2}(\rho)$ span by the eigenvectors $e_{j, h}, \lambda_{j, h} \leq h^{-\alpha}$. One has $\operatorname{dim}\left(E_{\alpha}\right) \leq C h^{-M \alpha}$.

Lemma

There exist $\alpha>0, p>2$ and C independent of h such that for all $u \in E_{\alpha}$, the following inequality holds true

$$
\begin{equation*}
\|u\|_{L^{p}(\Omega)}^{2} \leq C\left(\mathcal{E}_{h}(u)+\|u\|_{L^{2}}^{2}\right) \tag{2.15}
\end{equation*}
$$

Nash inequality

From the previous lemma, using the interpolation inequality $\|u\|_{L^{2}}^{2} \leq\|u\|_{L^{p}}^{\frac{p}{p-1}}\|u\|_{L^{1}}^{\frac{p-2}{p-1}}$, we deduce the Nash inequality, with $1 / D=2-4 / p>0$

$$
\begin{equation*}
\|u\|_{L^{2}}^{2+1 / D} \leq C h^{-2}\left(\left(\mathcal{E}_{\Omega, h}(u)+h^{2}\|u\|_{L^{2}}^{2}\right)\|u\|_{L^{1}}^{1 / D}, \quad \forall u \in E_{\alpha}\right. \tag{2.16}
\end{equation*}
$$

For $\lambda_{j, h} \leq h^{-\alpha}$, one has $h^{2} \lambda_{j, h} \leq 1$, and thus for any $u \in E_{\alpha}$, one gets $\mathcal{E}_{\Omega, h}(u) \leq\|u\|_{L^{2}}^{2}-\left\|T_{h} u\right\|_{L^{2}}^{2}$, thus we get from 2.16

$$
\begin{equation*}
\|u\|_{L^{2}}^{2+1 / D} \leq C h^{-2}\left(\left(\|u\|_{L^{2}}^{2}-\left\|T_{h} u\right\|_{L^{2}}^{2}+h^{2}\|u\|_{L^{2}}^{2}\right)\|u\|_{L^{1}}^{1 / D}, \quad \forall u \in E_{\alpha}\right. \tag{2.17}
\end{equation*}
$$

Nash inequality

There exists C_{2} such that $\forall h, \quad \forall n \geq h^{-2+\alpha / 2}$ one has $\left\|T_{1, h}^{n}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq C_{2}$ and thus since $T_{1, h}$ is self adjoint on L^{2} $\left\|T_{1, h}^{n}\right\|_{L^{1} \rightarrow L^{1}} \leq C_{2}$. Fix $p \simeq h^{-2+\alpha / 2}$. Take $g \in L^{2}$ such that $\|g\|_{L^{1}} \leq 1$ and consider the sequence $c_{n}, n \geq 0$

$$
\begin{equation*}
c_{n}=\left\|T_{1, h}^{n+p} g\right\|_{L^{2}}^{2} \tag{2.18}
\end{equation*}
$$

Then, $0 \leq c_{n+1} \leq c_{n}$ and from 2.17, we get

$$
\begin{align*}
& c_{n}^{1+\frac{1}{2 D}} \leq C h^{-2}\left(c_{n}-c_{n+1}+h^{2} c_{n}\right)\left\|T_{1, h}^{n+p} g\right\|_{L^{1}}^{1 / D} \tag{2.19}\\
& \leq C C_{2}^{1 / D} h^{-2}\left(c_{n}-c_{n+1}+h^{2} c_{n}\right)
\end{align*}
$$

Thus there exist A which depends only on C, C_{2}, D, such that for all $0 \leq n \leq h^{-2}$, one has $c_{n} \leq\left(\frac{A h^{-2}}{1+n}\right)^{2 D}$

Thus there exist C_{0}, such that for $N \simeq h^{-2}$, one has $c_{N} \leq C_{0}$. This implies

$$
\begin{equation*}
\left\|T_{1, h}^{N+p} g\right\|_{L^{2}} \leq C_{0}\|g\|_{L^{1}} \tag{2.20}
\end{equation*}
$$

and thus taking adjoints

$$
\begin{equation*}
\left\|T_{1, h}^{N+p} g\right\|_{L^{\infty}} \leq C_{0}\|g\|_{L^{2}} \tag{2.21}
\end{equation*}
$$

and so we get for any n and with $N+p \simeq h^{-2}$

$$
\begin{equation*}
\left\|T_{1, h}^{N+p+n} g\right\|_{L^{\infty}} \leq C_{0}\left(1-h^{2} \lambda_{1, h}\right)^{n}\|g\|_{L^{2}} \tag{2.22}
\end{equation*}
$$

And thus for $n \geq h^{-2}$

$$
\begin{equation*}
\left\|T_{1, h}^{n}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq C_{0} e^{-\left(n-h^{-2}\right) h^{2} \lambda_{1, h}}=C_{0} e^{\lambda_{1, h}} e^{-n g a p}, \quad \forall h, \quad \forall n \geq h^{-2} \tag{2.23}
\end{equation*}
$$

Outline

(1) Introduction

(2) Results

(3) The Main Lemma

Main Lemma

Let K be a compact subset of Ω

Lemma

Under the hypoelliptic hypothesis H1, the following holds true for $h \in] 0, h_{0}$] with h_{0} small enough:
There exists C such that for any u_{h} with support in K such that

$$
\begin{equation*}
\left\|u_{h}\right\|_{L^{2}}^{2}+\left|\left(\left.\frac{1-T_{h}}{h^{2}} u_{h} \right\rvert\, u_{h}\right)_{L^{2}}\right| \leq 1 \tag{3.1}
\end{equation*}
$$

one has

$$
\begin{align*}
& u_{h}=v_{h}+w_{h} \\
& \forall j,\left\|X_{j} v_{h}\right\|_{L^{2}} \leq C \tag{3.2}\\
& \left\|w_{h}\right\|_{L^{2}} \leq C h
\end{align*}
$$

Main Lemma : sketch of proof

It is easy to see that 3.1 implies for some $C_{0}>0$

$$
\begin{align*}
& \left\|u_{h}\right\|_{L^{2}} \leq C_{0} \\
& \forall j \quad u_{h}=v_{h, j}+w_{h, j} \tag{3.3}\\
& \left\|X_{j} v_{h, j}\right\|_{L^{2}} \leq C_{0} \\
& \left\|w_{h, j}\right\|_{L^{2}} \leq C_{0} h
\end{align*}
$$

and we want to prove that there exists $C>0$ such that

$$
\begin{align*}
& u_{h}=v_{h}+w_{h} \\
& \forall j,\left\|X_{j} v_{h}\right\|_{L^{2}} \leq C \tag{3.4}\\
& \left\|w_{h}\right\|_{L^{2}} \leq C h
\end{align*}
$$

Main Lemma : sketch of proof

In order to prove the implication (3.3) \rightarrow (3.4) we will construct operators depending on $h, \Phi, C_{j}, B_{k, j}$ such that $\Phi, C_{j}, B_{k, j}, C_{j} h X_{j}, B_{k, j} h X_{k}(k>0)$ are uniformly in h bounded on L^{2} and

$$
\begin{align*}
& 1-\Phi=\sum_{j=1}^{N} C_{j} h X_{j}+h C_{0} \tag{3.5}\\
& X_{j} \Phi=\sum_{k=1}^{N} B_{k, j} X_{k}+B_{0, j}
\end{align*}
$$

and then we set

$$
v_{h}=\Phi\left(u_{h}\right), \quad w_{h}=(1-\Phi)\left(u_{h}\right)
$$

Main Lemma : sketch of proof

The construction of the operators $C_{j}, B_{k, j}$ is easy if the vectors fields X_{1}, \ldots, X_{N} are the derivatives coordinates $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{N}}$ on $M=\mathbb{R}^{N}$, just using classical h-pseudodifferential operators.

Under the hypoelliptic hypothesis $\mathbf{H 1}$, the Hörmander-Weyl calculus does not work as soon as one needs ≥ 3 brackets to span the tangent space (after discussion with Jean-Michel Bony).

So we use the Rothschild-Stein method (Acta-Math 137, 1977) to reduce the problem to a construction on a free (up to rank r) nilpotent Lie group.

Main Lemma : sketch of proof

Let $\mathcal{G}=\mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \ldots \oplus \mathcal{G}_{r}$ be the free (up to rank r) Lie algebra with generators Y_{1}, \ldots, Y_{N}. One has $\operatorname{span}\left(Y_{1}, \ldots, Y_{N}\right)=\mathcal{G}_{1}$ and \mathcal{G}_{j} is spanned by the commutators of order $j,\left[Y_{k_{1}}\left[Y_{k_{2}}, \ldots\left[Y_{k_{j-1}}, Y_{k_{j}}\right]\right] \ldots\right]$.

The exponential map identifies \mathcal{G} with the Lie group G, and the Y_{1}, \ldots, Y_{N} with left invariant vectors fields on G by

$$
Y_{j} f(x)=\frac{d}{d s}\left(\left.f\left(x \cdot \exp \left(s Y_{j}\right)\right)\right|_{s=0}\right.
$$

The action of \mathbb{R}_{+}on \mathcal{G} is given by

$$
t .\left(v_{1}, v_{2}, \ldots, v_{r}\right)=\left(t v_{1}, t^{2} v_{2}, \ldots, t^{r} v_{r}\right)
$$

and

$$
Q=\sum j \operatorname{dim}\left(\mathcal{G}_{j}\right)
$$

is the quasi homogeneous dimension of \mathcal{G}.

Main Lemma : sketch of proof

Let $f * u$ be the convolution on G

$$
f * u(x)=\int_{G} f\left(x y^{-1}\right) u(y) d y
$$

Then $Y_{j} f=f * Y_{j} \delta$. We will use operators of the form, with $\varphi \in \mathcal{S}(G)$, the Schwartz space on G

$$
\begin{equation*}
\Phi(f)=f * \varphi_{h}, \quad \varphi_{h}(x)=h^{-Q} \varphi\left(h^{-1} x\right) \tag{3.6}
\end{equation*}
$$

Then the equation

$$
Y_{j} \Phi=\sum B_{k, j} Y_{k}
$$

is equivalent to find $\varphi_{k, j} \in \mathcal{S}(G)$ such that

$$
\begin{equation*}
Y_{j} \varphi=\sum_{k} Y_{k} \delta * \varphi_{k, j} \tag{3.7}
\end{equation*}
$$

Main Lemma : sketch of proof

Also, the equation $1-\Phi=\sum_{j} C_{j} h Y_{j}$ reduces to solve

$$
\begin{equation*}
\delta_{0}-\varphi=\sum_{j} Y_{j} \delta * c_{j} \tag{3.8}
\end{equation*}
$$

with $c_{j} \in C^{\infty}(G \backslash 0)$, Schwartz for $|x| \geq 1$, and quasi homogeneous of degree $-Q+1$ near 0 .
Both 3.7 and 3.8 are consequence of the the following cohomological lemma : Let $Z_{j}(f)=Y_{j} \delta * f$, which is a right invariant vector field.

Lemma

Let $\varphi \in \mathcal{S}$ be such that $\int_{G} \varphi d x=0$. Then there exists $\varphi_{k} \in \mathcal{S}$ such that

$$
\begin{equation*}
\varphi=\sum_{k} Z_{k}\left(\varphi_{k}\right) \tag{3.9}
\end{equation*}
$$

This lemma is proved by induction on a family $\left(Z_{k}\right)$ of r.i vectors fields such that the $\left(Z_{k}(0)\right)$ spanned a graded Lie algebra,

