Hypoelliptic random walks

Gilles Lebeau, Laurent Michel

Département de Mathématiques, Université de Nice Sophia-Antipolis Parc Valrose 06108 Nice Cedex 02, France

December 15, 2011

Outline

2

イロト イヨト イヨト イヨト

Let *M* be a *m*-dimensional manifold equipped with a volume form dx and Ω an connected open relatively compact subset of *M* with smooth boundary $\partial\Omega$.

Let $X_1, X_2, ..., X_N$ be a finite collection of smooth vectors fields on M such that

$$\forall i \ div(X_i) = 0$$

Let \mathcal{G} be the lie algebra generated by the X_i . We assume

H1 For any
$$x \in M$$
, $\mathcal{G}_x = \mathcal{T}_x M$

i.e the vectors fields X_i satisfy the hypoelliptic condition of Hörmander, and

H2
$$\forall x \in \partial \Omega, \exists j, X_j(x) \notin T_x \partial \Omega$$

i.e the boundary $\partial \Omega$ is not caracteristic for the collection $(X_i)_i$.

Hypoelliptic Random Walk

Let $h \in]0, h_0]$ be a small parameter. Let us consider the following random walk on Ω , $x_0, x_1, ..., x_n, ...$ starting at $x_0 \in \Omega$:

At step *n*, choose $j \in \{1, ..., N\}$ at random and $t \in [-h, h]$ at random (uniform), and let $y = \Phi_j(t, x_n)$ where $\Phi_j(t, x)$ is the flow of X_j starting at *x*. If $y \in \Omega$ go to $x_{n+1} = y$, else, if $y \notin \Omega$, set $x_{n+1} = x_n$.

This is a Metropolis type algorithm, and due to the condition $div(X_j) = 0$, this random walk is reversible for the probability p on Ω

$$dp = \frac{dx}{Vol(\Omega)}$$

The Markov kernel

For any j, let $T_{j,h}$ be the self adjoint operator on $L^2(\Omega, dp)$

$$T_{j,h}f(x) = m_{j,h}(x)f(x) + \frac{1}{2h} \int_{-h}^{h} \mathbf{1}|_{\Phi_{j}(t,x)\in\Omega}f(\Phi_{j}(t,x))dt$$

$$m_{j,h}(x) = 1 - \frac{1}{2h} \int_{-h}^{h} \mathbf{1}|_{\Phi_{j}(t,x)\in\Omega}dt$$
(1.1)

Then $T_{j,h}f(x) = \int f(y)K_{j,h}(x, dy)$ where $K_{j,h}$ is a Markov Kernel, and

$$K_h(x, dy) = \frac{1}{N} \sum_{j=1}^N K_{j,h}(x, dy), T_h(f)(x) = \int_{\Omega} f(y) K_h(x, dy)$$
(1.2)

are the Markov kernel and the Markov operator associated to our random walk, i.e

$$P(x_{n+1} \in A | x_n = x) = \int_A K_h(x, dy)$$
 (1.3)

(日) (周) (三) (三)

Let $K_h^n(x, dy)$ be the kernel of the iterate operator T_h^n . Then $\int_A K_h^n(x, dy)$ is the probability to be in the set A after n steps of the walk starting at $x \in \Omega$. Our goal is

1. To get estimates on the rate of convergence of the probability $K_h^n(x, dy)$ towards the stationary probability p

$$\|K_h^n(x,dy)-p\|_{TV}$$
 as $n o \infty$ $\forall x$

where

$$||p_1 - p_2||_{TV} = sup_{A \in \mathcal{B}(\Omega)}|p_1(A) - p_2(A)|$$

is the total variation distance

2. To describe some aspects of the spectral theory of the operator T_h acting as a self adjoint contraction on $L^2(\Omega, dp)$.

Outline

∃ → (∃ →

• • • • • • • •

2

Outline

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Spectral gap

Since T_h is Markov and self adjoint, its spectrum is a subset of [-1, 1].

We shall denote by g(h) the spectral gap of the operator T_h . It is defined as the best constant such that the following inequality holds true for all $u \in L^2 = L^2(\Omega, dp)$

$$\|u\|_{L^2}^2 - (u|1)_{L^2}^2 \le \frac{1}{g(h)}(u - T_h u|u)_{L^2}$$
(2.1)

The existence of a non zero spectral gap means that :

1 is a simple eigenvalue of T_h , and the distance between 1 and the rest of the spectrum is equal to g(h).

- 3

Theorem

There exists $h_0 > 0$, $\delta_0 \in]0, 1/2[$, M > 0, $c_0 \in]0, 1[$, and constants $C_i > 0$ such that for any $h \in]0, h_0]$, the following holds true. i) The spectrum of T_h is a subset of $[-1 + \delta_0, 1]$, 1 is a simple eigenvalue of T_h , and $Spec(T_h) \cap [1 - \delta_0 h^{2(1-c_0)}, 1]$ is discrete. Moreover, for any $0 \le \lambda \le \delta_0 h^{-2c_0}$, the number of eigenvalues of T_h in $[1 - h^2\lambda, 1]$ (with multiplicity) is bounded by $C_1(1 + \lambda)^M$. ii) The spectral gap satisfies

$$C_2 h^2 \le g(h) \le C_3 h^2 \tag{2.2}$$

and the following estimate holds true for all integer n

$$\sup_{x\in\Omega} \|K_h^n(x,dy) - \frac{dy}{Vol(\Omega)}\|_{TV} \le C_4 e^{-ng(h)}$$
(2.3)

イロト 不得下 イヨト イヨト 二日

The limit diffusion operator Let $\mathcal{H}^1((X_i))$ be the Hilbert space

$$\mathcal{H}^1((X_i)) = \{ u \in L^2(\Omega), \ \forall j, \ X_j u \in L^2(\Omega) \}$$

Let ν be the best constant such that the following inequality holds true for all $u \in \mathcal{H}^1((X_i))$

$$\|u\|_{L^2}^2 - (u|1)_{L^2}^2 \le \frac{\mathcal{E}(u)}{\nu}, \quad \mathcal{E}(u) = \frac{1}{6 \operatorname{Vol}(\Omega)} \int_{\Omega} \sum_j |X_j u|^2(x) dx \quad (2.4)$$

By the hypoelliptic theorem of Hörmander, one has $\mathcal{H}^1((X_i)) \subset H^{\mu}(\Omega)$, for some $\mu > 0$. For any fixed smooth function $g \in C_0^{\infty}(\Omega)$, one has

$$\lim_{h \to 0} \frac{1 - T_h}{h^2} g = L(g), \quad L = -\frac{1}{6} \sum_j X_j^2$$
(2.5)

L (with Neumann condition at the boundary) is the positive Laplacian associated to the Dirichlet form $\mathcal{E}(u)$. It has a compact resolvant and spectrum $\nu_0 = 0 < \nu_1 = \nu < \nu_2 < \dots$ Let m_j be the multiplicity of ν_j . One has $m_0 = 1$ since Ker(L) is spaned by the constant function $1 \cdot \frac{1}{2}$

G. Lebeau, L. Michel (Nice)

The spectrum of T_h near 1

Theorem

One has

$$lim_{h\to 0}h^{-2}g(h) = \nu$$
 (2.6)

Moreover, for any R > 0 and $\varepsilon > 0$, there exists $h_1 > 0$ such that one has for all $h \in]0, h_1]$

$$Spec(rac{1-T_h}{h^2})\cap]0,R] \subset \cup_{j\geq 1}[\nu_j-\varepsilon,\nu_j+\varepsilon]$$
 (2.7)

and the number of eigenvalues of $\frac{1-T_{h,\rho}}{h^2}$ with multiplicities, in the interval $[\nu_j - \varepsilon, \nu_j + \varepsilon]$, is equal to m_j .

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Dirichlet forms Let

$$\mathcal{E}_h(u) = \left(\left(\frac{1-T_h}{h^2}u|u\right)\right)_{L^2}$$

Lemma

There exists $h_0 > 0$, C > 0, $c_0 \in]0,1]$ such that for all $h \in]0, h_0]$ and any $u_h \in L^2(\Omega)$ such that

$$\|u_h\|_{L^2}^2 + \mathcal{E}_h(u_h) \leq 1$$

one has

$$\begin{aligned} u_h &= v_h + w_h \\ \forall j, \ \|X_j v_h\|_{L^2} \leq C \\ \|w_h\|_{L^2} \leq C h^{c_0} \end{aligned}$$
 (2.8)

As a direct byproduct, using also $\sum_{j} ||X_{j}v||^{2} \leq Cte \liminf_{h\to 0} \mathcal{E}_{h}(v)$ for $v \in \mathcal{H}^{1}((X_{i}))$, we get

$$C_2h^2 \leq g(h) \leq C_3h^2$$

|▲欄▶||▲園▶||▲園▶|||三園

Basic bounds

Lemma

1 Spec $(T_{h,\rho}) \cap [1 - \delta_0 h^{2(1-c_0)}, 1]$ is discrete, and there exists M > 0 such that for any $0 \le \lambda \le \delta_0 h^{-2c_0}$, the number of eigenvalues of T_h in $[1 - h^2\lambda, 1]$ (with multiplicity) is bounded by $C_1(1 + \lambda)^M$. **2** There exists A > 0 such that any eigenfunction $T_h(u) = \lambda u$ with $\lambda \in [1 - \delta_0 h^{-2c_0}, 1]$ satisfies the bound

$$\|u\|_{L^{\infty}} \le C_2 h^{-A} \|u\|_{L^2}$$
(2.9)

The first item is an abstract consequence of the preceeding lemma and of the injection $\mathcal{H}^1((X_i)) \subset H^\mu(\Omega)$.

For the second item , one uses with p large enough the equation

$$u(x) = \lambda^{-p} T_h^p(u)(x)$$

イロト 不得 トイヨト イヨト 二日

Total variation

Let Π_0 be the orthogonal projector in L^2 on the space of constant functions

$$\Pi_0(u)(x) = \frac{1_\Omega(x)}{Vol(\Omega)} \int_\Omega u(y) dy$$
 (2.10)

Then

$$2sup_{x\in\Omega} \|T_{h,x}^n - dp\|_{TV} = \|T_h^n - \Pi_0\|_{L^{\infty} \to L^{\infty}}$$
(2.11)

Thus, we have to prove that there exist C_0 , h_0 , such that for any n and any $h \in]0, h_0]$, one has

$$\|T_h^n - \Pi_0\|_{L^{\infty} \to L^{\infty}} \le C_0 e^{-ng(h)}$$

$$(2.12)$$

Total variation

Observe that since $g_{h,\rho} \simeq h^2$, we may assume $n \ge Ch^{-2}$. In order to prove 2.12, we split T_h in 3 pieces, according to the spectral theory. Let $0 < \lambda_{1,h} \le ... \le \lambda_{j,h} \le \lambda_{j+1,h} \le ... \le h^{-2(1-c_0)}\delta_0$ be such that the eigenvalues of T_h in the interval $[1 - \delta_0 h^{2c_0}, 1]$ are the $1 - h^2 \lambda_{j,h}$, with associated orthonormals eigenfunctions $e_{j,h}$

$$T_h(e_{j,h}) = (1 - h^2 \lambda_{j,h}) e_{j,h}, \quad (e_{j,h}|e_{k,h})_{L^2(\rho)} = \delta_{j,k}$$
(2.13)

Then we write $T_h - \Pi_0 = T_{h,1} + T_{h,2} + T_{h,3}$ with

$$T_{h,1}(x,y) = \sum_{\substack{\lambda_{1,h} \le \lambda_{j,h} \le h^{-\alpha}}} (1 - h^2 \lambda_{j,h}) e_{j,h}(x) e_{j,h}(y)$$

$$T_{h,2}(x,y) = \sum_{\substack{h^{-\alpha} < \lambda_{j,h} \le h^{-2(1-c_0)} \delta_0}} (1 - h^2 \lambda_{j,h}) e_{j,h}(x) e_{j,h}(y)$$

$$T_{h,3} = T_h - \Pi_0 - T_{h,1} - T_{h,2}$$
(2.14)

Let E_{α} be the (finite dimensional) subspace of $L^{2}(\rho)$ span by the eigenvectors $e_{j,h}, \lambda_{j,h} \leq h^{-\alpha}$. One has $dim(E_{\alpha}) \leq Ch^{-M\alpha}$.

Lemma

There exist $\alpha > 0$, p > 2 and C independent of h such that for all $u \in E_{\alpha}$, the following inequality holds true

$$\|u\|_{L^{p}(\Omega)}^{2} \leq C(\mathcal{E}_{h}(u) + \|u\|_{L^{2}}^{2})$$
(2.15)

Nash inequality

From the previous lemma, using the interpolation inequality $\|u\|_{L^2}^2 \leq \|u\|_{L^p}^{\frac{p}{p-1}} \|u\|_{L^1}^{\frac{p-2}{p-1}}$, we deduce the Nash inequality, with 1/D = 2 - 4/p > 0

$$\|u\|_{L^{2}}^{2+1/D} \leq Ch^{-2}((\mathcal{E}_{\Omega,h}(u) + h^{2}\|u\|_{L^{2}}^{2})\|u\|_{L^{1}}^{1/D}, \quad \forall u \in E_{\alpha}$$
(2.16)

For $\lambda_{j,h} \leq h^{-\alpha}$, one has $h^2 \lambda_{j,h} \leq 1$, and thus for any $u \in E_{\alpha}$, one gets $\mathcal{E}_{\Omega,h}(u) \leq \|u\|_{L^2}^2 - \|\mathcal{T}_h u\|_{L^2}^2$, thus we get from 2.16

$$\|u\|_{L^{2}}^{2+1/D} \leq Ch^{-2}((\|u\|_{L^{2}}^{2} - \|T_{h}u\|_{L^{2}}^{2} + h^{2}\|u\|_{L^{2}}^{2})\|u\|_{L^{1}}^{1/D}, \quad \forall u \in E_{\alpha}$$
(2.17)

Nash inequality

There exists C_2 such that $\forall h$, $\forall n \geq h^{-2+\alpha/2}$ one has $\|T_{1,h}^n\|_{L^\infty \to L^\infty} \leq C_2$ and thus since $T_{1,h}$ is self adjoint on L^2 $\|T_{1,h}^n\|_{L^1 \to L^1} \leq C_2$. Fix $p \simeq h^{-2+\alpha/2}$. Take $g \in L^2$ such that $\|g\|_{L^1} \leq 1$ and consider the sequence $c_n, n \geq 0$

$$c_n = \|T_{1,h}^{n+p}g\|_{L^2}^2 \tag{2.18}$$

Then, $0 \le c_{n+1} \le c_n$ and from 2.17, we get

$$c_{n}^{1+\frac{1}{2D}} \leq Ch^{-2}(c_{n}-c_{n+1}+h^{2}c_{n}) \|T_{1,h}^{n+p}g\|_{L^{1}}^{1/D} \\ \leq CC_{2}^{1/D}h^{-2}(c_{n}-c_{n+1}+h^{2}c_{n})$$
(2.19)

Thus there exist A which depends only on C, C₂, D, such that for all $0 \le n \le h^{-2}$, one has $c_n \le \left(\frac{Ah^{-2}}{1+n}\right)^{2D}$

Thus there exist C_0 , such that for $N \simeq h^{-2}$, one has $c_N \leq C_0$. This implies

$$\|T_{1,h}^{N+\rho}g\|_{L^2} \le C_0 \|g\|_{L^1}$$
(2.20)

and thus taking adjoints

$$\|T_{1,h}^{N+p}g\|_{L^{\infty}} \le C_0 \|g\|_{L^2}$$
(2.21)

and so we get for any n and with $N+p\simeq h^{-2}$

$$\|T_{1,h}^{N+p+n}g\|_{L^{\infty}} \leq C_0(1-h^2\lambda_{1,h})^n \|g\|_{L^2}$$
(2.22)

And thus for $n \ge h^{-2}$

$$\|T_{1,h}^{n}\|_{L^{\infty}\to L^{\infty}} \leq C_{0}e^{-(n-h^{-2})h^{2}\lambda_{1,h}} = C_{0}e^{\lambda_{1,h}}e^{-ngap}, \quad \forall h, \quad \forall n \geq h^{-2}$$
(2.23)

Outline

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main Lemma

Let K be a compact subset of Ω

Lemma

Under the hypoelliptic hypothesis H1, the following holds true for $h \in]0, h_0]$ with h_0 small enough: There exists C such that for any u_h with support in K such that

$$\|u_h\|_{L^2}^2 + |(\frac{1-T_h}{h^2}u_h|u_h)_{L^2}| \le 1$$
(3.1)

one has

$$u_{h} = v_{h} + w_{h}$$

$$\forall j, \|X_{j}v_{h}\|_{L^{2}} \leq C$$

$$\|w_{h}\|_{L^{2}} \leq Ch$$
(3.2)

< A > < > > <

It is easy to see that 3.1 implies for some $C_0 > 0$

$$\begin{aligned} \|u_{h}\|_{L^{2}} &\leq C_{0} \\ \forall j \ \ u_{h} &= v_{h,j} + w_{h,j} \\ \|X_{j}v_{h,j}\|_{L^{2}} &\leq C_{0} \\ \|w_{h,j}\|_{L^{2}} &\leq C_{0}h \end{aligned}$$
 (3.3)

and we want to prove that there exists C > 0 such that

$$u_{h} = v_{h} + w_{h}$$

$$\forall j, \|X_{j}v_{h}\|_{L^{2}} \leq C$$

$$\|w_{h}\|_{L^{2}} \leq Ch$$
(3.4)

In order to prove the implication $(3.3) \rightarrow (3.4)$ we will construct operators depending on h, Φ , C_j , $B_{k,j}$ such that Φ , C_j , $B_{k,j}$, C_jhX_j , $B_{k,j}hX_k(k > 0)$ are uniformly in h bounded on L^2 and

$$1 - \Phi = \sum_{j=1}^{N} C_j h X_j + h C_0$$

$$X_j \Phi = \sum_{k=1}^{N} B_{k,j} X_k + B_{0,j}$$
(3.5)

and then we set

$$v_h = \Phi(u_h), \quad w_h = (1 - \Phi)(u_h)$$

The construction of the operators C_j , $B_{k,j}$ is easy if the vectors fields $X_1, ..., X_N$ are the derivatives coordinates $\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_N}$ on $M = \mathbb{R}^N$, just using classical *h*-pseudodifferential operators.

Under the hypoelliptic hypothesis **H1**, the Hörmander-Weyl calculus does not work as soon as one needs ≥ 3 brackets to span the tangent space (after discussion with Jean-Michel Bony).

So we use the Rothschild-Stein method (Acta-Math 137, 1977) to reduce the problem to a construction on a free (up to rank r) nilpotent Lie group.

Let $\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2 \oplus ... \oplus \mathcal{G}_r$ be the free (up to rank r) Lie algebra with generators $Y_1, ..., Y_N$. One has $span(Y_1, ..., Y_N) = \mathcal{G}_1$ and \mathcal{G}_j is spanned by the commutators of order j, $[Y_{k_1}[Y_{k_2}, ...[Y_{k_{j-1}}, Y_{k_j}]]...]$.

The exponential map identifies G with the Lie group G, and the $Y_1, ..., Y_N$ with left invariant vectors fields on G by

$$Y_j f(x) = \frac{d}{ds} (f(x.exp(sY_j))|_{s=0})$$

The action of \mathbb{R}_+ on $\mathcal G$ is given by

$$t.(v_1, v_2, ..., v_r) = (tv_1, t^2v_2, ..., t^rv_r)$$

and

$$Q = \sum j \dim(\mathcal{G}_j)$$

is the quasi homogeneous dimension of \mathcal{G} .

Let f * u be the convolution on G

$$f * u(x) = \int_{G} f(xy^{-1})u(y)dy$$

Then $Y_j f = f * Y_j \delta$. We will use operators of the form, with $\varphi \in \mathcal{S}(G)$, the Schwartz space on G

$$\Phi(f) = f * \varphi_h, \quad \varphi_h(x) = h^{-Q} \varphi(h^{-1}x)$$
(3.6)

Then the equation

$$Y_j \Phi = \sum B_{k,j} Y_k$$

is equivalent to find $\varphi_{k,j} \in \mathcal{S}(G)$ such that

$$Y_{j}\varphi = \sum_{k} Y_{k}\delta * \varphi_{k,j}$$
(3.7)

Also, the equation $1 - \Phi = \sum_{j} C_{j} h Y_{j}$ reduces to solve

$$\delta_0 - \varphi = \sum_j Y_j \delta * c_j \tag{3.8}$$

with $c_j \in C^{\infty}(G \setminus 0)$, Schwartz for $|x| \ge 1$, and quasi homogeneous of degree -Q + 1 near 0.

Both 3.7 and 3.8 are consequence of the the following cohomological lemma : Let $Z_j(f) = Y_j \delta * f$, which is a right invariant vector field.

Lemma

Let $\varphi \in S$ be such that $\int_G \varphi dx = 0$. Then there exists $\varphi_k \in S$ such that

$$\varphi = \sum_{k} Z_k(\varphi_k) \tag{3.9}$$

This lemma is proved by induction on a family (Z_k) of r.i vectors fields such that the $(Z_k(0))$ spanned a graded Lie algebra.

G. Lebeau, L. Michel (Nice)