# A microscopic derivation of Ginzburg-Landau theory 

Rupert L. Frank<br>Department of Mathematics<br>Princeton University

Joint work with C. Hainzl, R. Seiringer, J. P. Solovej
Microscopic derivation of Ginzburg-Landau theory
J. Amer. Math. Soc. 25 (2012), no. 3, 667-713

Fields Institute Toronto, September 19, 2012

## The Ginzburg-Landau Model

Introduced in 1950 as a phenomenological model of a superconductor. For given vector and scalar potentials $A$ and $W$ on a compact set $\mathcal{C}$,
$\mathcal{E}^{\mathrm{GL}}(\psi)=\int_{\mathcal{C}}\left[B_{1}|(-i \nabla+2 A(x)) \psi(x)|^{2}+B_{2} W(x)|\psi(x)|^{2}+B_{3}\left(|\psi(x)|^{4}-2 D|\psi(x)|^{2}\right)\right] d x$
Here, $B_{1}, B_{3}>0, B_{2} \in \mathbb{R}$ and $D>0$ are coefficients.
Ginzburg-Landau energy $\quad E^{\mathrm{GL}}=\inf _{\psi} \mathcal{E}^{\mathrm{GL}}(\psi)$
A minimizing $\psi$ describes the macroscopic variations in the superfluid density. The normal state corresponds to $\psi \equiv 0$, while $|\psi|>0$ describes superconducting particles.

For us, $\mathcal{C}=[0,1]^{3}$ and $\psi$ satisfies periodic boundary conditions.
One is often interested in minimizing over both $\psi$ and $A$, adding an additional field energy term. For us, $A$ is fixed (but arbitrary).

## The BCS Functional

Bardeen-Cooper-Schrieffer (1957): a microscopic theory of superconductivity State of the system described by a $2 \times 2$ operator-valued matrix

$$
\Gamma=\left(\begin{array}{cc}
\gamma & \alpha \\
\bar{\alpha} & 1-\bar{\gamma}
\end{array}\right) \quad \text { with } \quad 0 \leq \Gamma \leq 1
$$

Here, $0 \leq \gamma \leq 1$ is the 1 -particle density matrix, and $\alpha$ the Cooper-pair wavefunction.
For chemical potential $\mu \in \mathbb{R}$ and temperature $T>0$, the BCS energy functional is

$$
\operatorname{Tr}\left[\left((-i \nabla+\tilde{A}(x))^{2}-\mu+\tilde{W}(x)\right) \gamma\right]-T S(\Gamma)+\iint \tilde{V}(x-y)|\alpha(x, y)|^{2} d x d y
$$

The entropy equals $S(\Gamma)=-\operatorname{Tr}[\Gamma \ln \Gamma]$.
The BCS functional can be heuristically derived from the full many-body Hamiltonian with pair-interaction $V$ via two steps of simplification. First, one considers only quasi-free states, and second one neglects the direct and exchange term in the interaction energy.

## Microscopic vs. Macroscopic Scale

We are interested in interactions $\tilde{V}(x)=V\left(h^{-1} x\right)$ of size one varying on the microscopic scale and external fields $\tilde{A}(x)=h A(h x)$ and $\tilde{W}(x)=h^{2} W(h x)$ which are weak and vary on the macroscopic scale. Here $h$ is a small parameter. Thus,

$$
\begin{aligned}
\mathcal{F}^{\mathrm{BCS}}(\Gamma):= & \operatorname{Tr}\left[\left((-i h \nabla+h A(x))^{2}-\mu+h^{2} W(x)\right) \gamma\right]-T S(\Gamma) \\
& +\iint_{\mathcal{C} \times \mathbb{R}^{3}} V\left(h^{-1}(x-y)\right)|\alpha(x, y)|^{2} d x d y
\end{aligned}
$$

To avoid boundary conditions, we assume that the system is periodic (with period 1). $\mathcal{C}$ denotes the unit cube $[0,1]^{3}$, and $\operatorname{Tr}$ stands for the trace per unit volume.

We make the following assumptions on the functions $A, W$ and $V$ appearing in $\mathcal{F}^{\mathrm{BCS}}$.

- $W$ and $A$ are periodic, and $\widehat{W}(p)$ and $|\widehat{A}(p)|(1+|p|)$ are summable.
- $V$ is real-valued and reflection-symmetric, i.e., $V(x)=V(-x)$, with $V \in L^{3 / 2}\left(\mathbb{R}^{3}\right)$.

Non-local potentials $V$ (as in the original BCS model) could also be considered.

## The Translation-Invariant Case

For $W=0=A$, we can restrict to translation-invariant states $\Gamma$. In this case, there exists a critical temperature $T_{c} \geq 0$ such that

- For $T \geq T_{c}, \alpha=0$ in any minimizer of $\mathcal{F}^{\mathrm{BCS}}$.
- For $T<T_{c}, \alpha \neq 0$ in any minimizer of $\mathcal{F}^{\mathrm{BCS}}$.

In fact, $T_{c}$ turns out to be the unique $T$ such that

$$
\frac{-\nabla^{2}-\mu}{\tanh \left(\frac{-\nabla^{2}-\mu}{2 T}\right)}+V(x)=: K_{T}(-i \nabla)+V(x)
$$

has 0 as its lowest eigenvalue (Hainzl, Hamza, Seiringer, Solovej 2008).
In the following, we shall assume that $V$ is such that $T_{c}>0$, and that the eigenvalue 0 of $K_{T_{c}}(-i \nabla)+V$ is simple. This is satisfied, e.g., if $\widehat{V} \leq 0$ (and not identically zero).

Let $\alpha_{0}$ denote the eigenfunction of $K_{T_{c}}(-i \nabla)+V$ corresponding to eigenvalue 0 .

## Main Results: Energy Asymptotics

Let $\Gamma_{0}$ denote the minimizer of $\mathcal{F}^{\mathrm{BCS}}$ for $V=0$, i.e.,
$\Gamma_{0}:=\left(\begin{array}{cc}\gamma_{0} & 0 \\ 0 & 1-\bar{\gamma}_{0}\end{array}\right) \quad$ with $\left.\gamma_{0}=\left(1+\exp \left((-i h \nabla+h A(x))^{2}+h^{2} W(x)-\mu\right) / T\right)\right)^{-1}$
Define the energy difference

$$
F^{\mathrm{BCS}}(T, \mu)=\inf _{0 \leq \Gamma \leq 1} \mathcal{F}^{\mathrm{BCS}}(\Gamma)-\mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)
$$

Note that $\mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)=T \operatorname{Tr} \ln \left(1-\gamma_{0}\right)=O\left(h^{-3}\right)$ for small $h$.
THEOREM 1. Fix $D>0$. For appropriate coefficients $B_{1}, B_{2}$ and $B_{3}$

$$
F^{\mathrm{BCS}}\left(T_{c}\left(1-h^{2} D\right), \mu\right)=h\left(E^{\mathrm{GL}}+o(1)\right)
$$

with $E^{\mathrm{GL}}=\inf _{\psi} \mathcal{E}^{\mathrm{GL}}(\psi)$ and const. $h^{2} \geq o(1) \geq-$ const. $h^{1 / 5}$ for small $h$.
For smooth enough $A$ and $W$, one could also expand $\mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)$ to order $h$. We bound directly the energy difference, however!

## Macroscopic Variations in the Superfluid Density

THEOREM 2. If $\Gamma$ is an approximate minimizer of $\mathcal{F}^{\mathrm{BCS}}$ at $T=T_{c}\left(1-h^{2} D\right)$, in the sense that

$$
\mathcal{F}^{\mathrm{BCS}}(\Gamma) \leq \mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)+h\left(D E^{\mathrm{GL}}+\epsilon\right)
$$

for some small $\epsilon>0$, then the corresponding $\alpha$ can be decomposed as

$$
\alpha=\frac{h}{2}\left(\psi(x) \widehat{\alpha}_{0}(-i h \nabla)+\widehat{\alpha}_{0}(-i h \nabla) \psi(x)\right)+\sigma
$$

with $\mathcal{E}^{\mathrm{GL}}(\psi) \leq E^{\mathrm{GL}}+\epsilon+$ const. $h^{1 / 5}$ and

$$
\int_{\mathcal{C} \times \mathbb{R}^{3}}|\sigma(x, y)|^{2} d x d y \leq \text { const. } h^{1-2 / 5}
$$

To appreciate the bound on $\sigma$, note that the square of the $L^{2}\left(\mathcal{C} \times \mathbb{R}^{3}\right)$ norm of the main term in $\alpha$ is of the order $h^{-1}=h^{-3} h^{2}$. To leading order in $h$, we thus have

$$
\alpha(x, y) \approx \frac{1}{2 h^{2}}(\psi(x)+\psi(y)) \alpha_{0}\left(\frac{x-y}{h}\right) \approx h^{-2} \psi\left(\frac{x+y}{2}\right) \alpha_{0}\left(\frac{x-y}{h}\right)
$$

## The Coefficients in the GL Functional

Let $t$ be the Fourier transform of $2 K_{T_{c}} \alpha_{0}=-2 V \alpha_{0}$, where $\left\|\alpha_{0}\right\|_{2}=1$. Let

$$
g_{1}(z)=\frac{e^{2 z}-2 z e^{z}-1}{z^{2}\left(1+e^{z}\right)^{2}}, \quad g_{2}(z)=g_{1}^{\prime}(z)+2 g_{1}(z) / z
$$

and

$$
C=\left(\beta_{c} \int_{\mathbb{R}^{3}} t(q)^{4} \frac{g_{1}\left(\beta_{c}\left(q^{2}-\mu\right)\right)}{q^{2}-\mu} d q\right)^{-1} \int_{\mathbb{R}^{3}} \frac{t(q)^{2}}{\cosh ^{2}\left(\frac{\beta_{c}}{2}\left(q^{2}-\mu\right)\right)} d q
$$

Then the matrix $B_{1}$ and the numbers $B_{2}$ and $B_{3}$ are given by

$$
\begin{gathered}
\left(B_{1}\right)_{i j}=C \frac{\beta_{c}^{2}}{16} \int_{\mathbb{R}^{3}} t(q)^{2}\left(\delta_{i j} g_{1}\left(\beta_{c}\left(q^{2}-\mu\right)\right)+2 \beta_{c} q_{i} q_{j} g_{2}\left(\beta_{c}\left(q^{2}-\mu\right)\right)\right) \frac{d q}{(2 \pi)^{3}}, \\
B_{2}=C \frac{\beta_{c}^{2}}{4} \int_{\mathbb{R}^{3}} t(q)^{2} g_{1}\left(\beta_{c}\left(q^{2}-\mu\right)\right) \frac{d q}{(2 \pi)^{3}}, \\
B_{3}=C^{2} \frac{\beta_{c}^{2}}{16} \int_{\mathbb{R}^{3}} t(q)^{4} \frac{g_{1}\left(\beta_{c}\left(q^{2}-\mu\right)\right)}{q^{2}-\mu} \frac{d q}{(2 \pi)^{3}} .
\end{gathered}
$$

## Key Semiclassical Estimates

For $\psi \in H_{\text {loc }}^{2}\left(\mathbb{R}^{d}\right)$ and $t$ "sufficiently nice", let $\Delta$ denote the operator

$$
\Delta=-\frac{h}{2}(\psi(x) t(-i h \nabla)+t(-i h \nabla) \psi(x))
$$

The effective Hamiltonian on $L^{2}\left(\mathbb{R}^{d}\right) \otimes \mathbb{C}^{2}$ is

$$
H_{\Delta}=\left(\begin{array}{cc}
(-i h \nabla+h A(x))^{2}-\mu+h^{2} W(x) & \Delta \\
\bar{\Delta} & -(i h \nabla+h A(x))^{2}+\mu-h^{2} W(x)
\end{array}\right)
$$

THEOREM 3. Let $f(z)=-\ln \left(1+e^{-z}\right)$ and $\varphi(p)=\frac{1}{2} \frac{t(p)}{p^{2}-\mu} \tanh \left(\frac{\beta}{2}\left(p^{2}-\mu\right)\right)$. Then

$$
\frac{h^{d}}{\beta} \operatorname{Tr}\left[f\left(\beta H_{\Delta}\right)-f\left(\beta H_{0}\right)\right]=h^{2} E_{1}+h^{4} E_{2}+O\left(h^{6}\right)\left(\|\psi\|_{H^{1}(\mathcal{C})}^{6}+\|\psi\|_{H^{2}(\mathcal{C})}^{2}\right)
$$

for explicit $E_{1}$ and $E_{2}$. Moreover, the off-diagonal entry $\alpha_{\Delta}$ of $\left[1+e^{\beta H_{\Delta}}\right]^{-1}$ satisfies

$$
\left\|\alpha_{\Delta}-\frac{h}{2}(\psi(x) \varphi(-i h \nabla)+\varphi(-i h \nabla) \psi(x))\right\|_{H^{1}} \leq \text { const. } h^{3-d / 2}\left(\|\psi\|_{H^{2}(\mathcal{C})}+\|\psi\|_{H^{1}(\mathcal{C})}^{3}\right)
$$

## Upper Bound to the Energy

One simple takes as trial state

$$
\Gamma=\Gamma_{\Delta}:=\left[1+e^{\beta H_{\Delta}}\right]^{-1}
$$

with $t$ the Fourier transform of $2 K_{T_{c}} \alpha_{0}=-2 V \alpha_{0}$, and computes

$$
\begin{aligned}
& \mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{\Delta}\right)-\mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)=-\frac{1}{2 \beta} \operatorname{Tr}\left[\ln \left(1+e^{-\beta H_{\Delta}}\right)-\ln \left(1+e^{-\beta H_{0}}\right)\right] \\
& \quad-h^{2-2 d} \int_{\mathcal{C} \times \mathbb{R}^{d}} V\left(\frac{x-y}{h}\right)\left|\frac{1}{2}(\psi(x)+\psi(y)) \alpha_{0}\left(\frac{x-y}{h}\right)\right|^{2} \frac{d x d y}{(2 \pi)^{d}} \\
& \quad+\int_{\mathcal{C} \times \mathbb{R}^{d}} V\left(\frac{x-y}{h}\right)\left|\frac{h^{1-d}}{2(2 \pi)^{d / 2}}(\psi(x)+\psi(y)) \alpha_{0}\left(\frac{x-y}{h}\right)-\alpha_{\Delta}(x, y)\right|^{2} d x d y
\end{aligned}
$$

For $\beta^{-1}=T=T_{c}\left(1-h^{2} D\right)$, the terms in the first two lines yield $h^{4-d} \mathcal{E}^{\mathrm{GL}}(\psi)+O\left(h^{6-d}\right)$ for $\psi \in H^{2}(\mathcal{C})$. The last line can be controlled by the $H^{1}(\mathcal{C})$ norm of the operator, yielding also an error term $O\left(h^{6-d}\right)$.

## Ideas in the Lower Bound

The key is to show that if $\Gamma$ is an approximate minimizer, then $\Gamma \approx\left[1+e^{\beta H_{\Delta}}\right]^{-1}$ for suitable $\psi$ (approximately) minimizing $\mathcal{E}^{\mathrm{GL}}$.
Step 1. For any $\Gamma$ with $\mathcal{F}^{\mathrm{BCS}}(\Gamma) \leq \mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)$, the corresponding $\alpha$ satisfies

$$
\alpha=\frac{h}{2}\left(\psi(x) \widehat{\alpha}_{0}(-i h \nabla)+\widehat{\alpha}_{0}(-i h \nabla) \psi(x)\right)+\sigma
$$

for some $\psi$ with $H^{1}(\mathcal{C})$ norm bounded independently of $h$, and with $\|\sigma\|_{H^{1}} \leq O\left(h^{2-d / 2}\right)$.
Step 2. With $\psi$ as above, we compute

$$
\begin{aligned}
& \mathcal{F}^{\mathrm{BCS}}(\Gamma)-\mathcal{F}^{\mathrm{BCS}}\left(\Gamma_{0}\right)=-\frac{T}{2} \operatorname{Tr}\left[\ln \left(1+e^{-\beta H_{\Delta}}\right)-\ln \left(1+e^{-\beta H_{0}}\right)\right] \\
& \quad-h^{2-2 d} \int_{\mathcal{C} \times \mathbb{R}^{d}} V\left(h^{-1}(x-y)\right) \frac{1}{4}|\psi(x)+\psi(y)|^{2}\left|\alpha_{0}\left(h^{-1}(x-y)\right)\right|^{2} \frac{d x d y}{(2 \pi)^{d}} \\
& \quad+T \mathcal{H}\left(\Gamma, \Gamma_{\Delta}\right)+\int_{\mathcal{C} \times \mathbb{R}^{d}} V\left(h^{-1}(x-y)\right)|\sigma(x, y)|^{2} d x d y
\end{aligned}
$$

where $\mathcal{H}$ denotes the relative entropy.

## Relative Entropy

For general $\Gamma$ and $\Gamma_{\Delta}=\left[1+e^{\beta H_{\Delta}}\right]^{-1}$, it is true that

$$
\mathcal{H}\left(\Gamma, \Gamma_{\Delta}\right)=\operatorname{Tr} \Gamma\left(\ln \Gamma-\ln \Gamma_{\Delta}\right) \geq \operatorname{Tr}\left[\frac{\beta H_{\Delta}}{\tanh \frac{1}{2} \beta H_{\Delta}}\left(\Gamma-\Gamma_{\Delta}\right)^{2}\right]
$$

Since $x \mapsto \sqrt{x} / \tanh \sqrt{x}$ is an operator monotone function, we can further bound

$$
\frac{H_{\Delta}}{\tanh \frac{1}{2} \beta H_{\Delta}} \geq(1-O(h)) \frac{H_{0}}{\tanh \frac{1}{2} \beta H_{0}} \geq(1-O(h)) K_{T}(-i h \nabla) \otimes \mathbb{I}_{\mathbb{C}^{2}}
$$

Recall that, by definition, $K_{T_{c}}(-i \nabla)+V(x) \geq 0$, and hence $K_{T}(-i \nabla)+V(x) \geq-O\left(h^{2}\right)$. Moreover, $\alpha-\alpha_{\Delta} \approx \sigma$. This allows to get a lower bound on

$$
T \mathcal{H}\left(\Gamma, \Gamma_{\Delta}\right)+\int_{\mathcal{C} \times \mathbb{R}^{d}} V\left(h^{-1}(x-y)\right)|\sigma(x, y)|^{2} d x d y
$$

that is $o\left(h^{4-d}\right)$.

## Conclusion

- Rigorous derivation of Ginzburg-Landau theory, starting from the BCS model.
- For weak external fields and close to the critical temperature, GL arises as an effective theory on the macroscopic scale.
- The relevant scaling limit is semiclassical in nature.

Some open problems:

- Treat physical boundary conditions
- Treat self-consistent magnetic fields
- Derive BCS theory from many-body quantum mechanics


## THANK YOU FOR YOUR ATTENTION!

