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Restriction estimates: Earlier work

Fix a compact n-dimensional compact boundaryless Riemannian
manifold (M, g).
Consider L2-normalized eigenfunctions

−∆geλ(x) = λ2eλ(x),

∫
M
|eλ|2 dVg = 1.

Problem raised by Reznikov and others: If Σ ⊂ M is a
d-dimensional submanifold, when do you have bounds of the form

‖eλ‖Lq(Σ,dS) ≤ C (λ, n, d) ?

I Answer may depend on curvature assumptions of Σ ⊂ M
(better if it is curved).

I We shall focus on simplest case where Σ = γ ∈ Π, where Π is
space of unit-length geodesic segments.

I Simplest case (flat, 1-dimensional) and important for
applications.



Restriction bounds for geodesics of Burq-Gérard-Tzvetkov
and Hu

If Π is space of all unit-length geodesics segments in our
n-dimensional Riemannian manifold (M, g)

sup
γ∈Π

(∫
γ
|eλ|q ds

) 1
q ≤ C (1 + λ)σ(n,q),

where

σ(2, q) =

{
1
4 , if 2 ≤ q ≤ 4,
1
2 −

1
q , if q ≥ 4,

and

σ(n, q) =
n − 1

2
−1

q
, if q > 2, and n = 3, or q ≥ 2, and n ≥ 4.

For n = 3 they also obtained the endpoint estimate(∫
γ
|eλ|2 ds

) 1
2 ≤ C

(
log(2 + λ)

) 1
2 (1 + λ)

1
2 .



Global Harmonic Analysis: Improved Lp-estimates for
eigenfunctions and global dynamics

In 1988 CS proved

‖eλ‖Lq(M) . (1 + λ)δ(q,n).

If n = 2 and q = 4, δ = 1
8 .

Sharp because of highest weight spherical harmonics on
S2 = {x2

1 + x2
2 + x2

3 = 1} concentrating on equator (periodic
geodesic):

Qλ = c(λ)(x1 + ix2)λ, λ = 1, 2, 3, . . . , c(λ) ≈ λ
1
4 .

Question: When can you rule out the existence of such modes
(“Gaussian beams”)?
Probably want a) not too many periodic geodesics and b) all such
are unstable.
Best case: Nonpositive curvature.



L4(M)-norms in 2-d

Bourgain 2010 (⇒) and CS 2011 (⇐) showed that

‖eλ‖L4(M) = o(λ
1
8 ) ⇐⇒ sup

γ∈Π

(∫
γ
|eλ|2 ds

) 1
2

= o(λ
1
4 ).

CS showed that above are ⇐⇒ L2(dVg )-norms over λ−
1
2 tubes

about γ ∈ Π are o(1) (beating the trivial Kakeya-Nikodym max
estimate).

In 2-d Euclidean space R2, L4 is a critical space for Bochner-Riesz
and oscillatory integral theorems.

The ⇐ part was proved by using ideas from the two different
proofs of the Carleson-Sjölin theorem for Bochner-Riesz
summability for L4(R2), which go back to the 1970s and are due to
a) Carleson-Sjölin and Hörmander, and b) Fefferman and Córdoba.



Joint w/ Zelditch: Improved L4(M) and L2(γ) bounds

If n = 2, CS and Zelditch in 2011 showed that if (M, g) has
everywhere nonpositive curvature then

sup
γ∈Π

(∫
γ
|eλ|2 ds

) 1
2

= o(λ
1
4 ),

and hence
‖eλ‖L4(M) = o(λ

1
8 ).

So no Gaussian beam type functions (i.e., max concentration
along geodesics) under this curvature assumption.
As shown in CS’s 2011 paper, the L2(γ) restriction estimate is easy
if γ is not a segment in a periodic orbit.

CS-Zeldtich handled the case when it is part of a periodic orbit, γ̃.

Techniques: Lift necessary calculations up to universal cover
(R2, g̃) where you can use microlocal analysis, Hadamard
parametrix and properties of the deck transformations (especially
role of stabilizer group for γ̃). See below.



Applications: Improved L1-lower bounds and nodal sets

If Zλ = {x ∈ M : eλ(x) = 0} is the nodal set of a real-valued
eigenfunction eλ of frequency λ, Yau conjectured that its
(n − 1)-dimensional Hausdorff measure should satisfy

|Zλ| ≈ λ.

Fully settled in real analytic case by Donnelly and Fefferman in
1980s.

Until about 2 years ago, for C∞ case, best lower bounds were
exp(−cλ) (and best known upper bounds are doubly exponential).

Lower bounds involving powers of λ were obtained by CS and
Zelditch in 2010.

Current best lower bounds (also 2010) are due to Colding and
Minicozzi:

λ1− n−1
2 . |Zλ|.



Improved L1-lower bounds and nodal sets, continued

Using ideas from earlier paper of CS and Zeldich, in 2011 Hezari

and CS showed that λ
(∫

M |eλ| dVg

)2
. |Zλ|.

Using earlier L1(M)-lower bounds of CS and Zelditch,

λ−
n−1

4 . ‖eλ‖L1(M),

from this you obtain the C-M lower bound

λ1− n−1
2 . |Zλ|.

Problem: When can you beat the above lower bound for
L1(M)-norms? (Would lead to improved nodal lower bounds.)

This estimate also saturated by highest weight spherical harmonics
(“Gaussian beams”).

Can do this by Hölder’s inequality if you can improve CS’s Lq(M)

estimates for any 2 < q ≤ 2(n+1)
n−1 .



For instance, when n = 2 get improved L1(M)-lower bounds from
improved L4(M)-upper bounds using Hölder:

1 = ‖eλ‖
3
2

L2(M)
≤ ‖eλ‖L1(M)‖eλ‖2

L4(M),

and so if you can beat ‖eλ‖L4(M) = O(λ
1
8 ), you can beat the

L1(M)-lower bound of CS and Zelditch:

λ−
1
4 . ‖eλ‖L1(M).

Conclusion: Several different problems (e.g. nodal sets,
Lq(M)-bounds for “small q” and restriction estimates) all seem to
center on whether you can have eigenfunctions fitting the
“Gaussian beam” profile measured in different ways.

I.e., quantitative improvements measuring lack of concentration
near periodic geodesics via one of the estimates implies (or should)
improvements for the others.

Also related to questions of quantum ergodicity.



Hilbert transform & an improved endpoint estimate in 3-d

Joint work with Xuehua Chen: If n = 3 for a general (M, g) (no
curvature assumptions) get log-improvement of the earlier
L2(γ)-restriction estimates of Burq-Gérard-Tzvetkov and Hu:(∫

γ
|eλ|2 ds

) 1
2 ≤ C (1 + λ)

1
2 ‖eλ‖L2(M), γ ∈ Π.

To prove this, note that if ρ ∈ S(R) is an even real-valued function
satisfying

ρ(0) = 1, and ρ̂(τ) = 0, if |τ | ≥ Inj (M)/4,

then ρ(λ−
√
−∆g )eλ = eλ, and so above estimate follows from

‖Tf ‖L2(γ) . (1 + λ)
1
2 ‖f ‖L2(M), T = ρ(λ−

√
−∆g ).



The last statement that ‖T‖L2(M)→L2(γ) = O((1 + λ)
1
2 ) is

equivalent to the statement that the adjoint operator T ∗ obey

‖T ∗h‖L2(M) . (1 + λ)
1
2 ‖h‖L2(γ).

But

‖T ∗h‖2
L2(M) = 〈T ∗h,T ∗h〉 =

∫
γ
TT ∗h h ds ≤ ‖TT ∗h‖L2(γ)‖h‖L2(γ),

Conclude that we would have the log-improvement of BGT and Hu
if we could show that

‖TT ∗h‖L2(γ) . (1 + λ)‖h‖L2(γ).

If χ(τ) = (ρ(τ))2, not hard to unravel to see that the kernel of
TT ∗ is the restriction to γ × γ of

Kλ(x , y) =
∞∑
j=0

χ(λ− λj)ej(x)ej(y)

Here 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . are the e.v’s listed w/ multiplicity &
{ej} the associated o.n. basis of e.f.’s (i.e., −∆gej(x) = λ2

j ej(x))



Parametrize the geodesic w.r.t arc length γ = {γ(s) : |s| ≤ 1
2}

(and assume, WLOG, Inj(M) ≥ 4). Then we are left with showing
that(∫ 1

2

− 1
2

∣∣∣∫ 1
2

− 1
2

K (γ(t), γ(s))h(s) ds
∣∣∣2dt) 1

2 ≤ C (1+λ)
(∫ 1

2

− 1
2

|h(s)|2ds
) 1

2
.

To compute Kλ(x , y), x , y ∈ M we use the wave equation:

Kλ(x ,y) = χ(λ−
√
−∆g )(x , y)

= 1
2π

∫ ∞
−∞

χ̂(τ)e iτλ
(
e−iτ
√
−∆g

)
(x , y) dτ

= 1
π

∫ ∞
−∞

χ̂(τ)e iλτ
(
cos τ

√
−∆g

)
(x , y)dτ − χ(λ+

√
−∆g )(x , y).

Since χ ∈ S and spectrum of −∆g is nonneg easy to see that last
term is O((1 + λ)−N), N = 1, 2, 3. So have estimate in blue if
same holds with Kλ replaced by

K̃λ(x , y) =

∫
χ̂(τ)e iλτ (cos τ

√
−∆g )(x , y) dτ, x = γ(t), y = γ(s).



Wave kernel

Here (cos τ
√
−∆g )(x , y) is the kernel of the operator,

cos(τ
√
−∆g ), which takes an eigenfunction eλ(x) to the function

cos(τλ) eλ(x).

Hence, if f ∈ C∞(M) it follows that

u(τ, x) =
(
cos(τ

√
−∆g )f

)
(x)

is the unique solution of the Cauchy problem{
(∂2
τ −∆g

)
u(τ, x) = 0, τ ∈ R, x ∈ M

u(0, x) = f (x), ∂τu(0, x) = 0.



End of proof: Hadamard parametrix & Hilbert transform

We are assuming that Inj(M) ≥ 4. Therefore for τ ∈ supp χ̂, by
the Hadamard parametrix

(cos τ
√
−∆g )(x , y) = w(x , y)(2π)−3

∫
R3

e idg (x ,y)ξ1 cos(τ |ξ|) dξ+better ,

for some w ∈ C∞(M ×M) satisfies w(x , x) ≡ 1, and where
dg (x , y) is the Riemannian distance. Since dg (γ(t), γ(s)) = |t − s|
and

∫
S2 e

iω·ηdω = 4π sin |η|/|η|, get using polar coordinates

K̃λ(γ(t), γ(s)) ≈ w(γ(t), γ(s))

(2π)3

∫
R3

∫
R
χ̂(τ)e iλτe i |t−s|ξ1 cos(τ |ξ|)dτdξ

=
w(γ(t), γ(s))

4π2

∫
R3

χ(λ− |ξ|)e i |t−s|ξ1dξ + O(1)

=
w(γ(t), γ(s))

π

∫ ∞
0

χ(λ− r)
sin(t − s)r

t − s
r dr + O(1)

=
1

π

∫ ∞
0

χ(λ− r)
sin r(t − s)

t − s
rdr + O(1 + λ).



End of proof continued: Hilbert transform

Want integral operator with kernel K̃λ(γ(t), γ(s)) to be bounded
from L2([−1/2, 1/2]) to itself with norm O((1 + λ)). By the last
formula and Minkowski’s integral inequality, this would follow from∫ ∞

0

(∫ 1
2

− 1
2

∣∣∣∫ 1
2

− 1
2

sin r(t − s)

t − s
h(s)ds

∣∣∣2 dt) 1
2 |χ(λ− r)|r dr

≤ C (1 + λ)
(∫ 1

2

− 1
2

|h(s)|2 ds
) 1

2
.

Since χ ∈ S, have
∫
|χ(λ− r)|r dr . (1 + λ), and so above if

sup
r>0

(∫ 1
2

− 1
2

∣∣∣∫ 1
2

− 1
2

sin r(t − s)

t − s
h(s)ds

∣∣∣2 dt) 1
2 ≤ C

(∫ 1
2

− 1
2

|h(s)|2 ds
) 1

2
.

Since sin r(t−s)
t−s (essentially) the Dirichlet kernel, follows from the

uniform L2 boundedness of the partial summation operators for
Fourier series, or since 2i sin r(t − s) = e ir(t−s) + e−ir(t−s) follows
from Hilbert transform bounds (replace sin r(t − s) by 1 in above).



Improved L4-restriction bounds for nonpositive curvature

Joint with Xuehua Chen: n = 2, (M, g) nonpositive curvature,(∫
γ
|eλ|4 ds

) 1
4

= o(λ
1
4 ), γ ∈ Π.

In 2011, CS-Zelditch,(∫
γ
|eλ|2 ds

) 1
2

= o(λ
1
4 ), γ ∈ Π.

I The XC-CS result implies the CS-Zeldtich one by Hölder’s
inequality.

I Either gives improved L2(M)→ Lq(M) estimates for
eigenfunctions by 2011 results of CS (see also Bourgain 2010).

I None of above true on S2 because of highest weight spherical
harmonics concentrating on periodic geodesics (“Gaussian
beams”)



Outline of proof

I As in the 2-d case, use wave equation (cosine-transform).

I To exploit curvature hypothesis, lift the calculation up to the
universal cover.

I Obtain a sum with a great deal of terms.

I Terms corresponding to stabilizer group for geodesic can
handle as before (no oscillation). Also, very few terms.

I Exponentially growing number of terms not arising from
stabilizer group.

I Get improved bounds for each using oscillator integral
theorems of Hörmander, Greenleaf-Seeger, Phong-Stein,
which allows one to estimate the sum favorably.



To prove the new o(λ
1
4 ) result, need to show that given ε > 0

∃Λ <∞ so that (∫
γ
|eλ|4 ds

) 1
4 ≤ ελ

1
4 , λ ≥ Λ.

Take T ≈ ε−4 and if ρ ∈ S(R) is as above with ρ(0) = 1,
ρ̂(τ) = 0, |τ | ≥ 1/2, have

eλ = ρ(T (λ−
√
−∆g ))eλ,

and so it suffices to show that(∫
γ
|ρ(T (λ−

√
−∆g ))f |4 ds

) 1
4 ≤

(
CT−

1
4λ

1
4 + CTλ

3
16
)
‖f ‖L2(M).

By earlier TT ∗ argument, above if when χ(τ) = (ρ(τ))2 have

(∫ 1
2

− 1
2

∣∣∣∫ 1
2

− 1
2

χ
(
T (λ−

√
−∆g )

)
(γ(t), γ(s)) h(s)ds

∣∣∣4dt) 1
4

≤
(
CT−

1
2λ

1
2 + CTλ

3
8
)
‖h‖

L
4
3
.



Similar to the 3-d case, write for x , y ∈ M

χ
(
T (λ−

√
−∆g )

)
(x , y) =

∞∑
j=0

χ(T (λ− λj))ej(x)ej(y)

=
1

2πT

∫ ∞
−∞

χ̂(τ/T )e itλ
(
cos τ

√
−∆g

)
(x , y) dτ +O((1+λ)−N).

Can ignore “error term”: much better bounds.

To understand integral operator coming from blue kernel restricted
to γ × γ need to understand kernel of cos τ

√
−∆g for |τ | ≤ T

(large times).

Also need that there is some sort of “dispersion” for this wave
kernel that allows us to have small restriction bounds. This comes
from our curvature hypothesis.



Hadamard and the universal cover of (M , g)

Hadamard (1898): For any point P ∈ M, the exponential map at
P,

κ = expP : TPM ' R2 → M,

is a covering map. Take P = γ(0), the center of our geodesic
segment.

Pullback metric g on M to get metric g̃ on the universal cover,
R2, of M.

The set of all diffeomorphisms α : R2 → R2 satisfying

κ ◦ α = κ

forms a group, Γ, of “deck transformations” for the covering map.

Each is an isometric diffeomorphism of (R2, g̃) and M ' R2/Γ.



Fundamental domains and the wave equation on M

Let D ⊂ R2 be a fundamental domain for (M, g). Then M ' D
and smooth solutions u(τ, x) of wave equations on (M, g) are in
one-to-one correspondence with smooth periodic ones ũ(τ, x̃) on
(R2, g̃) with respect to Γ, i.e.,

ũ(τ, x̃) = ũ(τ, α(x̃)), α ∈ Γ.

Thus if for x ∈ M, x̃ is the unique point in D such that κ(x̃) = x̃ ,
we have the following formula relating wave kernel on (M, g) to
that on its universal cover:(

cos τ
√
−∆g

)
(x , y) =

∑
α∈Γ

(
cos τ

√
−∆g̃

)
(x̃ , α(ỹ)).

This formula is analogous to the classical Poisson summation
formula for Fourier series (i.e., M = T2)



Fundamental domain for the double torus

Recall a fundamental domain of T2 = S1 × S1 is “square”,
[−π, π)2. Comes from cutting the T2 along each S1 & unraveling.
Consider the double (two-holed) torus of constant negative
curvature and genus two:

Hard to visualize since cannot be embedded in R3.
To obtain the fundamental domain, cut along the colored loops
and unravel. Obtain octagonal fundamental domain (shown as
subset of hyperbolic disk (not plane)):



To finish we are trying to estimate the

L
4
3 (|t| ≤ 1/2)→ L4(|t| ≤ 1/2) norm of operator with kernel

Kλ(t, s) =
1

2πT

∑
α∈Γ

∫ T

−T
χ̂(τ/T )e iτλ

(
cos τ

√
−∆g̃

)
(γ̃(t), α(γ̃(s))) dτ.

Here γ̃(t) denotes the lift of the geodesic γ(t), t ∈ R we are
considering.

γ̃ is a geodesic in (R2, g̃), since g̃ is the pullback of metric g on
M. α(γ̃) is also a geodesic when α ∈ Γ since every deck
transformation preserves distances and angles.

Let Stab(γ) be all α so that α(γ̃) = γ̃. This is a cyclic subgroup of
Γ, which is just trivial subgroup (i.e. Identity) unless γ is a
periodic geodesic with some minimal period ` > 0.

If α ∈ Stab(γ), have for some k ∈ Z, α(γ̃(t)) = γ̃(t + k`) (shift).

Let K
Stab(γ)
λ (t, s) denote the analog of above where we sum over

α ∈ Stab(γ) (typically just one term)



Contribution of stabilizer group

(R2, g̃) has infinite injectivity radius. Also (cos τ
√
−∆g̃ )(x , y)

vanishes if dg̃ (x , y) > τ . So can use Hadamard parametrix and
arguments from 3-d case to see that∣∣∣ 1

2πT

∫ T

−T
χ̂(t/T )e iτλ

(
cos τ

√
−∆g̃

)
(γ̃(t), γ̃(s + `k)) dτ

∣∣∣
≤ CT−1λ

1
2 |t − s − `k |−

1
2 + CT .

Since we are assuming that the injectivity radius is ≥ 4, it follows
that either ` = 0 (nonperiodic base geodesic) or ` ≥ 4. Also, by
Huygens each term in the left is = 0 if k > 2T .

So if we sum over all α ∈ Stab(γ) we conclude that

|KStab(γ)(t, s)| ≤ Cλ
1
2 (T−1|t− s|−

1
2 +T−

1
2 ) +CT , |t|, |s| ≤ 1/2,

and hence, by Hardy-Littlewood, the operator with this kernel

maps L
4
3 (|t| ≤ 1/2)→ L4(|t| ≤ 1/2) with norm O(T−

1
2λ

1
2 ) + CT ,

as desired.



Oscillatory integrals and non-stabilizers

Let KOsc
λ (t, s) be equal to the remaining piece,

1

2πT

∑
α/∈Stab(γ)

∫ T

−T
χ̂(τ/T )e iτλ

(
cos τ

√
−∆g̃

)
(γ̃(t), α(γ̃(s))dτ.

Would be done if(∫ 1
2

− 1
2

∣∣∣∫ 1
2

− 1
2

KOsc
λ (t, s) h(s)ds

∣∣∣4 ds) 1
4 ≤ CTλ

1
2λ−

1
8 ‖h‖

L
4
3
. (1)

If α /∈ Stab(γ) then α(γ̃) is a different geodesic than γ̃ and using
Hadamard parametrix have for |t|, |s| ≤ 1/2,

1

2πT

∫ T

−T
χ̂(τ/T )e iτλ

(
cos τ

√
−∆g̃

)
(γ̃(t), α(γ̃(s))dτ

≈ T−1λ
1
2
(
dg̃ (γ̃(t), α(γ̃(s)))

)− 1
2
∑
±

e±iλdg̃ (γ(t),α(γ̃(s))) + OT (1).



Oscillatory integrals and non-stabilizers, continued

If α /∈ Stab(γ) and we set

φ(t, s) = dg̃ (γ̃(t), α(γ̃(s))),

can show that mixed-Hessian satisfies

|φ′′ts(t, s)|+ |∇t,s φ
′′
ts(t, s)| 6= 0.

Thus,by oscillatory integral theorems of Hörmander,
Greeleaf-Seeger and Phong-Stein,

(∫ 1
2

− 1
2

∣∣∣∫ 1
2

− 1
2

(
dg̃ (γ̃(t), α(γ̃(s)))

)− 1
2
∑
±

e±iλdg̃ (γ̃(t),α(γ̃(s))) h(s) ds
∣∣∣4 dt) 1

4

≤ Cλ−
1
8 ‖h‖

L
4
3
,

and so by summing over the O(ec|T |) nonzero terms in the sum
defining KOsc

λ , we get (1) which completes proof.



Problem: Improvements for the L2(γ) restriction estimate
when n = 3 and curvature ≤ 0?

We were able to obtain endpoint restriction estimates in 2-d for
geodesics due to the simple fact that if γ1(t) and γ2(s) are two
different geodesics parameterized by arc-length and

φ(t, s) = dg̃ (γ1(t), γ2(s)),

then the associated canonical relation has at worst one-sided folds
whenever γ1(t) 6= γ2(s).

This is true without any assumptions on the curvature if (R2, g̃)
has no conjugate points.



This is no longer true when n = 3, even for the flat metric. Indeed
there are pairs of lines for which

|φ′′ts(t, s)|+ |∇t,s φ
′′
ts(t, s)|

may vanish at a certain point (t, s).

On the other hand if (R3, g̃) is the universal cover for (M, g) with
nonpositive curvature, perhaps this quantity never vanishes when,
as before,

γ2 = α(γ1), with α ∈ Γ\Stab(γ1).

This fact is true for T3, but we can’t show it presently for general
3-dimensional compact manifolds with nonpositive sectional
curvatures.

If we could, we would obtain o(λ) restriction estimates for 3-d
manifolds with nonpositive curvature.


