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finance weather predictionfluids

Figure 9: Patterns showing the set X+(t) = {x ∈ Ω | u(t, x) > 0} obtained by numerically solving (5)
on a 3-dimensional domain with a random initial condition.

Figure 10: Plot of isosurface X0(t) := {x ∈ Ω | u(t, x) = 0} corresponding to the solution used in
Figure 9.
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What is a dynamical system?
Formal answer: a math definition



(T,M,�)A dynamical system is a tuple 

T : monoid (time) 

M : set (state space) 

� : map (evolution function) 

� : T ⇥M ! M

satisfying the two following properties

As mentioned in [12], most algorithms for computing heteroclinic or homoclinic
orbits reduce the question to solving a boundary value problem on a finite inter-
val where the boundary conditions are given in terms of linear or higher order
approximations of invariant manifolds near the steady states. We adopt the
same philosophy in this paper. The novelty of our approach is that our compu-
tational techniques provide existence results and bounds on approximations that
are mathematically rigorous. We hasten to add that a variety of authors have
already developed methods that involve a combination of interval arithmetic
with analytical and topological tools and provide proofs for the existence of ho-
moclinic and heteroclinic solutions to di⇥erential equations [28, 23, 32, 5, 33].
However, the combination of techniques we propose appears to be unique, per-
haps because our approach is being developed with additional goals in mind.
We return to this point later.

For the sake of clarity in this paper we have chosen to restrict our attention
to proving the existence of symmetric connecting orbits for systems of coupled
second order equations

d2u

d�2
= �(u), (1)

where u ⇥ Rn and � is a polynomial in u. Rescaling time by a factor L > 0,
leads to

d2u

dt2
= u⇤⇤ = L2�(u) (2)

with the boundary conditions

lim
t⇥±⌅

u(t) = u± ⇥ Rn.

For simplicity we represent the symmetry condition by

G(u(0), u⇤(0)) = 0, (3)

where the case G(u(0), u⇤(0)) = u⇤(0) corresponds to looking for even homoclinic
orbits and the case G(u(0), u⇤(0)) = u(0) corresponds to looking for odd hetero-
clinic orbits when �(�u) = �(u), but a mixture is also possible. The standard
trick of defining ũ = u⇤ ⇥ Rn reduces (2) to a 2n-dimensional first order system

�
u⇤ = ũ
ũ⇤ = L2�(u).

(4)

We assume that y
def
= (u+, 0) ⇥ R2n is a hyperbolic equilibrium for (4) with a

stable manifold W s(y) of dimension n.
Observe that we have reduced the problem of looking for a symmetric con-

necting orbit to the afore mentioned boundary value problem:

⇥
⇧⇧⌅

⇧⇧⇤

d2u

dt2
= L2�(u(t)), in [0, 1],

G(u(0), u⇤(0)) = 0,

(u(1), u⇤(1)) ⇥ W s(y).

(5)

2

�(t2,�(t1, x)) = �(t1 + t2, x)

�(0, x) = x
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In case the state space M is a function space, we 
have an infinite dimensional dynamical system !



Examples

1. Finite dimensional discrete dynamical systems

f(x) =

⇢
2x, for x 2 [0,

1
2 )

2(1� x), for x 2 [

1
2 , 1]

� : T ⇥M ! M
(n, x) 7! �(n, x) = f

n(x)

T = N (discrete time) 

M = [0, 1] (state space) 



Examples

2. Finite dimensional continuous dynamical systems: ODEs

x0

�(t, x0)

�(�t, x0)

Lorenz equations

⇥
f 2 C1(Rn)

⇤dx

dt

= f(x)
x(0) = x0
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(IVP)

�(t, x0) : solution of the (IVP)

� : T ⇥M ! M
(t, x0) 7! �(t, x0)

(continuous time) T = R
(state space) M = Rn



Examples

� : T ⇥M ! M

(infinite dimensional state space) M = L2(�)

(continuous time) T = [0,1)

(semigroup) 

(a) Partial differential equations

3. Infinite dimensional continuous dynamical systems

Cahn-Hilliard equation

� ⇢ Rn, n = 1, 2, 3

⇥u

⇥t
��

�
���u� u+ u3

�
= 0

(t, u0) 7! �(t, u0)
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(b) Delay differential equations y0(t) = F(y(t), y(t� ⌧))

� : T ⇥M ! M

(infinite dimensional state space) 
(continuous time) T = [0,1)

(semigroup) 

M = C[�⌧, 0]

(t, y0) 7! �(t, y0)
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In practice, how to study a dynamical system?

A standard approach is to get insight from numerical simulations to formulate new 
conjectures, and then attempt to prove the conjectures using pure mathematical 
techniques only.  Actually, this strong dichotomy need not exist in the context of 
dynamical systems, as the strength of numerical analysis and functional analysis can 
be combined to prove, in a rigorous mathematical sense, the existence of 
equilibria, periodic solutions, connecting orbits.... and even chaotic dynamics !



In practice, how to study a dynamical system?

Rigorous computations
The goal of rigorous computations is to construct algorithms that 
provide an approximate solution to the problem together with 
precise and possibly efficient bounds within which the exact solution 
is guaranteed to exist in the mathematically rigorous sense.

A standard approach is to get insight from numerical simulations to formulate new 
conjectures, and then attempt to prove the conjectures using pure mathematical 
techniques only.  Actually, this strong dichotomy need not exist in the context of 
dynamical systems, as the strength of numerical analysis and functional analysis can 
be combined to prove, in a rigorous mathematical sense, the existence of 
equilibria, periodic solutions, connecting orbits.... and even chaotic dynamics !



Diffusion, cross-diffusion and competitive interaction 627

Fig. 4 Bifurcation diagram for (15) when d1 = d2 = d varies with ε = 0.0001 and the other
parameters as in Fig. 1

outside and the inhomogeneity of the distribution of the activator forms. Math-
ematically speaking, the stable equilibrium points of some ordinary differential
equations become unstable by adding the diffusion. Consider the competition-
diffusion system (4) under the weak competition condition (9). As was seen in
Sect. 1, the diffusion-less system (5) has the stable equilibrium point (u∗

1, u∗
2).

For the corresponding competition-diffusion system (4), it is well known that
Turing’s instability never occurs, that is, the spatially constant equilibrium solu-
tion (u∗

1, u∗
2) is always stable. Actually the comparison principle directly implies

that all the solutions converge to the constant solution (u∗
1, u∗

2) when both com-
ponents of initial data are positive. On the other hand, as was seen in Sect. 2,
stable non-constant stationary solutions of the cross-diffusion system (8) bifur-
cate from the stable constant solution (u∗

1, u∗
2) under the weak competition

condition. In this section we will make clear the relationship between Turing’s
instability and the cross-diffusion induced instability for (8).

First we consider the linearized stability of the constant stationary solution
(u∗

1, u∗
2) for (8) with α > 0. For simplicity of notation, we set

{
f (u1, u2) = (r1 − a1u1 − b1u2)u1,
g(u1, u2) = (r2 − b2u1 − a2u2)u2. (27)

Then the linearized operator for the right-hand side of (8) in a neighborhood
of (u∗

1, u∗
2) is

(
d1# + αu∗

2# + fu1(u
∗
1, u∗

2) αu∗
1# + fu2(u

∗
1, u∗

2)

gu1(u
∗
1, u∗

2) d2# + gu2(u
∗
1, u∗

2)

)
.

Motivation: how to study 
parameter dependent infinite 

dimensional problems ?
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X

Often impossible to compute exactly !

F(x) = 0



X

Alternative: find small balls in which it is demonstrated (in a 
mathematically rigorous sense) that a unique solution exists.

F(x) = 0



Rigorous Computations
(Ingredients)

1. Smoothness of the solutions

2. Banach space of algebraically decaying sequences

3. Finite dimensional Galerkin projection

4. Bounds on the truncation error terms (Analytic estimates)

5. Fixed point theory, Uniform contraction principle

6. Numerical analysis (continuation, Fast Fourier transform)

7. Interval Arithmetic



Rigorous Computations
(Ingredients)

CHAPTER I

INTRODUCTION

Mathematical models in biology, chemistry, finance and physics involve parameters.

Many fundamental questions concerning these models can be reduced to the problem

of finding the zeros of a specific function. A central problem in applied mathematics

is hence the following: given a function f : H � R ⌅ H defined on a Hilbert space

H, find

E := {(x, �) | f(x, �) = 0} . (1)

Continuation methods have been extensively developed in recent years, as they pro-

vide an e�cient way to numerically follow branches of zeros on E . Recall, that this

method involves a predictor and corrector step: given, within a prescribed toler-

ance, a zero x0 at parameter value �0, the predictor step produces an approximate

equilibrium x̃1 at nearby parameter value �1, and the corrector step, often based on

a Newton-like operator, takes x̃1 as its input and produces, once again within the

prescribed tolerance, an equilibrium x1 at �1.

(x0, �0)

(x1, �1)

•

Suppose that at a given parameter value �0 , we numerically obtained x̄ ⇧ H such

that f(x̄, �0) ⇥ 0. The idea now is to build a continuous operator T = T (f, x̄) whose

fixed point correspond to a zero of f that will contract a small set Wx̄ ⇤ H centered
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ẋ

Suppose that at a given parameter value �0, we numerically obtained x̄ ⇤ H such that

f(x̄, �0) � 0. Restricting our investigation of zeros of f to the admissible validation

sets at x̄ defined by

AVS x̄ := {Wx̄(r) ⇥ H | W is compact, centered at x̄ and has radius r > 0} ,

we build an operator T = T (f, x̄) and investigate for a set Wx̄(r) ⇤ AVS x̄ on which

T is a contraction. Locating the problem on compact sets like this has the advantage

that we get continuity of T on Wx̄(r). Hence, by the Banach fixed point theorem, we

get the existence of a unique fixed point of T in the set Wx̄(r). By construction of T ,

this fixed point correspond to the unique zero of f in Wx̄(r).

The idea is to solve for sets Wx̄(r) ⇤ AVS x̄ by looking for validation radius at x̄

defined by

VRx̄ := {r > 0 | there exists Wx̄(r) ⇤ AVS x̄ such that T contracts Wx̄(r)} .

We will show that su�cient conditions for T to contract Wx̄(r) will boil down to solve

simultaneously a finite set of polynomial inequalities in r that we will call the Radii

Polynomials.
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simultaneously a finite set of polynomial inequalities in r that we will call the Radii
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Continuation
(Predictor-Corrector Algorithm)

1. Smoothness of the solutions

2. Banach space of algebraically decaying sequences

3. Finite dimensional Galerkin projection

4. Bounds on the truncation error terms (Analytic estimates)

5. Fixed point theory, Uniform contraction principle

6. Numerical analysis (continuation, Fast Fourier transform)

7. Interval Arithmetic
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r > 0 pk(r) < 0 k

proof. Banach fixed point theorem.



In dynamical systems theory, central objects of interest are invariant sets, that
is a geometric collections of solutions which exist for all time. For a wide variety
of infinite dimensional systems like parabolic partial di�erential equations and
functional delay equations, individual bounded solutions which exist globally
in time are more regular than the typical functions of the natural phase space.
Moreover, they are often low dimensional (for example a zero-dimensional steady
state or a one-dimensional periodic orbit) and they can often carry important
information of the long term evolution of the solutions.
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J.B. van den Berg, J.-P. L. and K. Mischaikow.
Global smooth solution curves using rigorous branch following.
To appear in Mathematics of Computation, 2010.
M. Gameiro and J.-P. L.
A priori estimates and rigorous continuation for equilibria of higher-dimensional
PDEs. To appear in Journal of Di�erential Equations, 2010.
M. Gameiro and J.-P. L.
Rigorous computation of smooth branches of equilibria for the three-dimensional
Cahn-Hilliard equation. Submitted to Numerische Mathematik, 2010.
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Proof.

M. Gameiro & J.-P. L. Analytic estimates and rigorous continuation for equilibria of 
higher-dimensional PDEs. Journal of Differential Equations, 2010.

ω
s
k = |k1|

s1 · · · |kd|
sd



The rigorous computational method

||x||s

•
x̄
•

•

Bx̄(r)

xν = x̄ + ∆ν ẋ

f(x, ν) = 0

Bxν
(r)

ν
ν0 ν0 + ∆ν

Radii polynomials {pk(r,∆ν)} Verifying the uniform
contraction principle.
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• Global smooth curves of solutions.
• Local uniqueness by the Banach fixed point theorem.
• Proof of non existence of secondary bifurcations along the curves.
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1. Homoclinic and heteroclinic orbits
of ODEs (traveling waves)

dx

dt

= f(x)ODEs
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Figure 3: Some branches of equilibria for the Cahn-Hilliard equation in the 3D domain � = [0, ⇧]⇤
[0, ⇧/1.001]⇤ [0, ⇧/1.002]. We refer to these branches as branch 1 through branch 7 according to the
labels above. For ⇥ = 1/�2 in the interval (0, 3.5] all the bifurcations from the trivial solution are
computed. They occur at ⇥ ⇧ 1, 1.002, 1.004, 2.002, 2.004, 2.006, and 3.006. For all the points in
each of the branches in the plot, the proof was successful using s = 2.

we can expand the solutions using a cosine basis {⌃k}k⇥Nd given by

⌃k(y) :=
d⌃

j=1

cos(kjLjyj),

where Lj = 2⇧/�j , for j = 1, . . . , d. As in the previous section, we only need to consider the basis
elements for k ⌅ 0. However, if we use the expansion

u =
⇧

k⇥Zd

ak⌃k

with the assumption that a|k| = ak for k ⌃ Zd, then the expansion of (36) takes the form

fk(a,⇥) := µkak �
⇧

k1+k2+k3=k

kj⇥Zd

ak1ak2ak3 ,

where
µk = ⇥�

⌥
1�

�
k2
1L

2
1 + · · · + k2

dL2
d

⇥�2
,

with ⇥ = ⌅, and f|k| = fk, for all k ⌃ Zd. Therefore, we only need to solve fk = 0 for k ⌅ 0. As in
Section 5.1, we need to compute µ̃M satisfying (23).

Lemma 5.3 (Construction of µ̃M > 0). Assuming that

min
1�j�d

⇤
M2

j L2
j

⌅
> 1 +

 
⇥, (38)
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ν

Cahn-Hilliard 3D

Figure 4: Solutions for the Cahn-Hilliard equation in 3D. Plotted are isosurfaces of the solutions
corresponding to the last point of the respective branches in Figure 3. Plot (1) corresponds to the
branch 1 and is computed using m = 8 and M = 218; (2) corresponds to the branch 2 and is
computed using m = 8 and M = 218; (3) corresponds to the branch 3 and is computed using m = 8
and M = 212; (4) corresponds to the branch 4 and is computed using m = 8 and M = 182; (5)
corresponds to the branch 5 and is computed using m = 8 and M = 176; (6) corresponds to the
branch 6 and is computed using m = 8 and M = 176; and (7) corresponds to the branch 7 and is
computed using m = 8 and M = 170.
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branches of solutions for a system of reaction-di�usion PDEs
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Abstract

1 Introduction
From my proposal: We will attempt to achieve this goal for the cross-di�usion model for the
competitive interaction between two species introduced in [1], where complicated bifurcation
diagrams of equilibria are computed. The goal is to demonstrate that their diagrams are reli-
able. It is shown in [2] that the steady states of the reaction-di�usion system approximates the
steady states of the cross-di�usion competition system. However, how to make sure that the
computation of the steady states of the reaction-di�usion system is correct?

Discuss about existence results:
Establishing the existence of non-constant bounded solutions to PDEs is a classical problem

in non-linear analysis. Methods like singular perturbation theory [3], local bifurcation theory
(see the references in the paper by Peng and Wang), Leray-Schauder degree theory

Once we have local existence results, how do we study the solutions on global branches? Talk
about global bifurcation theorems, and how they can only convey partial information about the
global behaviour of the branches

Describe the contribution to the field of rigorous computations: first time that a system
of PDEs is studied, new estimates for s ⇥ (1, 2), modification of the approach by [4] for the
construction of global branches via pseudo arclength continuation, detailed analysis of the choice
of the parameters (optimization), etc.
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where x, y and z are defined on [0, 1], with Neumann boundary conditions and the following
numerical values :

a1 = 3 , a2 = 3, b1 = 1, b2 = 1, r1 = 5, r2 = 2, � = 3, ⇥ = 0.01 and N = 1.
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Kuramoto-Sivashinski equation

(KS)

DyToComp2012: An integration-free approach to

rigorously compute time periodic solutions of PDEs

Abstract

We present a computational fixed point theory method to prove existence of time-

periodic solutions of PDEs. We apply the method to the Kuramoto-Sivashinsky PDE.

1 Introduction

Computing branches of periodic solutions of the Kuramoto-Sivashinsky equation
(

u

t

= �⌫u
yyyy

� u

yy

+ 2uu
y

u(t, y) = u(t, y + 2⇡), u(t,�y) = �u(t, y)
(1)

is an interesting problem, as it is a popular model to analyze weak turbulence or spatiotem-

poral chaos [10, 13]. A common approach to study periodic solutions of (1) is to construct
a Poincaré map via numerical integration of the flow, and to look for fixed points of this
map on a prescribed Poincaré section [4, 11, 18, 19]. The idea of this project is to use ideas
from [3, 6, 7, 9] to study periodic solutions of (1) in a significantly more e�cient way. The
improvement is twofold. On one hand computationally, because no integration of the flow
is required, and on the other hand, because continuation methods are e�cient techniques to
study parameter dependent systems like (1). Suppose that we are looking for time periodic
solutions u of period p of (1).

Letting L = 2⇡
p

, the time-periodic solutions of period p of (KS) can be expanded using the
Fourier expansion

u(t, y) =
X

k2Z2

ck k, where for k = (k1, k2) 2 Z2
,  k = e

iLk1t
e

ik2y
.

Since u 2 R, then for any k = (k1, k2) 2 Z2, one has that c�k = c̄k, where c�k =
c�k1,�k2 . Since u(t,�y) = �u(t, y), we get that c

k1,�k2 = �c

k1,k2 , for all (k1, k2) 2 Z2.
Hence, for every k = (k1, k2) � 0, we have the following relations

c�k1,�k2 = c̄k

c

k1,�k2 = �ck

c�k1,k2 = �c̄k.

(2)

The relations (2) imply that to describe entirely the expansion (??), one only needs to
consider the ck with non negative indices. From (2), we get that

Re(c
k1,0) = 0, k1 � 0,

Im(c
k1,0) = 0, k1 � 0,

Re(c0,k2) = 0, k2 � 0.
(3)

1
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a Poincaré map via numerical integration of the flow, and to look for fixed points of this
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More explicitly, let
ak

def
= Re(ck) and bk

def
= Im(ck).

Since we keep the time frequency L variable, let us define the vector of unknowns x by

xk =

8

>

>

<

>

>

:

L, k = (0, 0)
bk, k = (0, k2), k2 6= 0

✓

ak

bk

◆

, k = (k1, k2), k1 6= 0 and k2 6= 0.
(4)

Defining

I def
= {(0, 0)} [ {k = (0, k2) | k2 6= 0} [ {k = (k1, k2) | k1 6= 0 and k2 6= 0},

one can identify x = {xk}k2I . Hence, finding periodic solutions u(t, y) of (1) corresponds
to finding infinite dimensional vectors of the form x = {xk}k2I given by (4).

Assume that we found an approximate periodic orbit û(t, y) of (1) at the parameter
value ⌫0 with time-space Fourier expansion

û(t, y) =
X

k2Z2

ĉke
iL̂k1t

e

ik2y
. (5)

Using the Fourier coe�cients {ĉk}k2I , we can proceed as before and construct a vector x̂

of the form (4). The idea of the method is to show the existence of a small ball B centered
at the numerical approximation û in a given Banach space such that B contains a unique
periodic solution of (1). In order to undertake such a task, let us introduce a nonlinear
operator F whose zeros correspond to periodic solutions of (1).

2 The operator F
Plugging (??) into (1) results in solving, for all k = (k1, k2) 2 Z2

hk
def
= µkck � 2

X

k1+k2=k

ik1
2ck1

ck2 = µkck � k2i

X

k1+k2=k

ck1
ck2 = 0, (6)

where
µk = µ

k1,k2

def
= ik1L+ ⌫k

4
2 � k

2
2.
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h�k1,�k2 = h̄k

h

k1,�k2 = �hk

h�k1,k2 = �h̄k.

(7)

From (7), we get that
Re(h

k1,0) = 0, k1 � 0,
Im(h

k1,0) = 0, k1 � 0,
Re(h0,k2) = 0, k2 � 0.

(8)

Hence, that means that in practice, one need solving hk given in (6) for k � 0 only. In
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at the numerical approximation û in a given Banach space such that B contains a unique
periodic solution of (1). In order to undertake such a task, let us introduce a nonlinear
operator F whose zeros correspond to periodic solutions of (1).

2 The operator F
Plugging (??) into (1) results in solving, for all k = (k1, k2) 2 Z2

hk
def
= µkck � 2

X

k1+k2=k

ik1
2ck1

ck2 = µkck � k2i

X

k1+k2=k

ck1
ck2 = 0, (6)

where
µk = µ

k1,k2

def
= ik1L+ ⌫k

4
2 � k

2
2.

Using the relations (2) and considering k = (k1, k2) � 0, one can show that

h�k1,�k2 = h̄k

h

k1,�k2 = �hk

h�k1,k2 = �h̄k.

(7)

From (7), we get that
Re(h

k1,0) = 0, k1 � 0,
Im(h

k1,0) = 0, k1 � 0,
Re(h0,k2) = 0, k2 � 0.

(8)

Hence, that means that in practice, one need solving hk given in (6) for k � 0 only. In
order to eliminate arbitrary time shift, we introduce the notion of phase condition. Recall
that we numerically found an approximate periodic solution û given by (5). We want to
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û(t, y) =
X

k2Z2
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value ⌫0 with time-space Fourier expansion
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û(0, y) =
X

k22Z
i

"

X

k12Z
b̂

k1,k2

#

e

ik2y
,

û
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ĉke
iL̂k1t

e

ik2y
. (5)
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û(t, y) =
X

k2Z2
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û(t, y) =
X

k2Z2
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Using the Fourier coe�cients {ĉk}k2I , we can proceed as before and construct a vector x̂

of the form (4). The idea of the method is to show the existence of a small ball B centered
at the numerical approximation û in a given Banach space such that B contains a unique
periodic solution of (1). In order to undertake such a task, let us introduce a nonlinear
operator F whose zeros correspond to periodic solutions of (1).

2 The operator F
Plugging (??) into (1) results in solving, for all k = (k1, k2) 2 Z2
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From (7), we get that
Re(h

k1,0) = 0, k1 � 0,
Im(h

k1,0) = 0, k1 � 0,
Re(h0,k2) = 0, k2 � 0.

(8)

Hence, that means that in practice, one need solving hk given in (6) for k � 0 only. In
order to eliminate arbitrary time shift, we introduce the notion of phase condition. Recall
that we numerically found an approximate periodic solution û given by (5). We want to
solve for u(t, y) such that u(0, t) lies in the hyperplane perpendicular to the direction vector
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k1âk1,k2

!#

= 0.

Hence, we restrict our attention to periodic solutions of (1) satisfying ⌘(x) = 0. Let

fk
def
= Re(hk) =

�

⌫k

4
2 � k

2
2

�

ak � (k1L)bk + 2k2
X

k1+k2=k

ak1
bk2

,

gk
def
= Im(hk) = (k1L)ak +

�

⌫k

4
2 � k

2
2

�

bk � k2

X

k1+k2=k

(ak1
ak2 � bk1

bk2).

Finally, let us define F = {Fk}k2I component-wise by

Fk =

8

>

>

<

>

>

:

⌘, k = (0, 0)
gk, k = (0, k2), k2 6= 0

✓

fk
gk

◆

, k = (k1, k2), k1 6= 0 and k2 6= 0.
(10)

Hence, finding 2⇡
L

-time periodic solutions u(t, y) of (1) such that ⌘ = 0 is equivalent to solve

F(x, ⌫) = 0. (11)

For sake of simplicity of the presentation, for k = (k1, k2) with k1 6= 0 or k2 6= 0, let

Rk(⌫, L)
def
=

✓

⌫k

4
2 � k

2
2 �k1L

k1L ⌫k

4
2 � k

2
2

◆

and R0,k2(⌫, L)
def
= ⌫k

4
2 � k

2
2, (12)

Nk(x)
def
=

X

k1+k2=k

✓

2ak1
bk2

�ak1
ak2 + bk1

bk2

◆

(13)

so that one has that
Fk(x, ⌫) = Rk(⌫, L)xk + k2Nk(x). (14)

Note that F
k1,0(x, ⌫) = 0 for all k1 2 Z. We now introduce a Banach space X

s on which
the map F is defined.
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3 The Banach space Xs

Before describing in detail the space X

s, we need to introduce some notation. We use
boldface type to denote multi-indices as in k = (k1, k2) 2 Z2. We denote by | · | the
component-wise absolute value, that is, |k| def

= (|k1|, |k2|). Given k,n 2 Z2 we also use
component-wise inequalities. So that k < n, for example, means that k

j

< n

j

for all
1  j  2. Similarly for k  n, k > n, and k � n. Throughout this paper m = (m1,m2)
and M = (M1,M2) always denote computational parameters such that M � m, and
M

j

� 6 for all 1  j  2. Also s = (s1, s2) always denote the “decay rate”, where each s

j

is the decay rate on the jth-coordinate, and is such that s
j

� 2 for all 1  j  2.
Define the one-dimensional weights !s

k

by

!

s

k

def
=

(

1, if k = 0

|k|s, if k 6= 0.

Using the 1-d weights, define the 2-dimensional weights, given k = (k1, k2) 2 Z2,

!

s
k

def
= !

s1
k1
!

s2
k2
.

They are used to define the norm

kxks = sup
k2I

!

s
k|xk|1,

where |xk|1 is the sup norm of the vector xk, which is one or two dimensional, depending
on k. Define the Banach space

X

s = {x | kxks < 1} ,

consisting of sequences with algebraically decaying tails according to the rate s.

Lemma 3.1. Consider s = (s1, s2) � (2, 4) a decay rate. Then one has that

F : Xs ⇥ R ! X

s�(1,4)
. (14)

Proof. Let x 2 X

s. Then recalling (12) and using the general convolution estimate of
Lemma 2.1 in [7], one has that Nk(x) 2 X

s. Hence, {k2Nk(x)}k2I 2 X

s�(0,1) ⇢ X

s�(1,4).
Note that since x 2 X

s, there exists a constant C such that |ak|, |bk|  C

!

s
k
. Hence,

sup
k2I
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s�(1,4)
k |Rk(⌫, L)xk|1  C sup

k
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!

1
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+
L

!

4
k2

!

< 1.

That implies that {Rk(⌫, L)xk}k2I 2 X

s�(1,4). Combining the above, one gets that

sup
k2I

!

s�(1,4)
k |Fk(x, ⌫)|1 < 1,

which means that F(x, ⌫) 2 X

s�(1,4). ⌅

The next step is to design a fixed point operator whose fixed points correspond to
solutions of (??).
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t

(0, y). Since
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ĉke
iL̂k1t

e

ik2y and u(t, y) =
X

k2Z2

cke
iLk1t

e

ik2y
,

then using (2), one has that

u(0, y) =
X

k22Z
i

"

X

k12Z
b

k1,k2

#

e

ik2y
,
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Note that F
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s on which
the map F is defined.
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û

t
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k1âk1,k2

#

e

ik2y
.
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so that one has that
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âk

ˆbk

◆

, k = (k1, k2), k1 6= 0 and k2 6= 0

5

Lemma. (Bootstrap) Consider a fixed decay rate s > (1, 1) and assume the existence of
M > (0, 0) such that Rk(⌫, L) is invertible for all |k| > M . If there exists x 2 X

s such
that F(x) = 0, then x 2 X

s0 , for all s0 > (1, 1).

Proof. By definition of the Banach space, one has that X

s ⇢ X

s0 , for all s0 satisfying
(1, 1) < s0  s. Hence, x 2 X

s0 , for all s0 such that (1, 1) < s0  s. Let us show that
x 2 X

s0 for all s0 > s. First, using the fact that (Xs
, ⇤) is a Banach Algebra for all

s > (1, 1), one has that Nk(x) 2 X

s. Since Fk(x, ⌫) = Rk(⌫, L)xk + k2Nk(x) = 0 for all k,
then

xk = �k2Rk(⌫, L)
�1Nk(x), for all |k| > M .

Since Nk(x) 2 X

s, there exists C > 0 such that Nk(x) <

✓
1
1

◆
C

!

s
k
, for all k 2 I. Applying

the Cauchy-Young inequality with p = 4 and q = 4
3 , one gets the existence of a constant

D > 0 such that

����k2Rk(⌫, L)
�1Nk(x)!

( 1
2 ,1)

k

���
1


 

k

1
2
1 k

2
2|⌫k42 � k

2
2|

(⌫k42 � k

2
2)

2 + (k1L)2
+

|k1|
3
2
k

2
2L

(⌫k42 � k

2
2)

2 + (k1L)2

!
C

!

s
k

 D

!

s
k

.

Hence,
x = {xk}k2I =

�
�k2Rk(⌫, L)

�1Nk(x)
 
k2I 2 X

s+( 1
2 ,1)

.

⌅

4 The fixed point operator T⌫

Given m = (m1,m2), define Fm = F

m1 ⇥ F

m2 , where F

mj

def
= {k

j

2 Z | |k
j

| < m

j

}.
Consider a Galerkin projection of F of dimension n = n(m)

def
= 2m1m2 � 2m1 � m2 + 2

given by F (m) def
= {F (m)

k }k2Fm , where F (m) : Rn ! Rn, is given component-wise by

F (m)
k (xFm)

def
= Fk(xFm , 0Im), k 2 Fm.

Consider x̂Fm such that F (m)(x̂Fm) ⇡ 0. Let x̂

def
= (x̂Fm , 0Im) 2 X

s. Assume that the
Jacobian matrix DF (m)(x̂Fm) is non-singular and let Am an approximation for its inverse.

Define the action of J�1 on x = {xk}k2I component-wise by

h
J

�1
⌫

(x)
i

k

def
=

8
<

:

h
J

�1
m (xFm)

i

k
, if k 2 Fm

Rk(⌫, L̂)�1
xk, if k 62 Fm.

T (x)
def
= x� J

�1F(x).

Lemma. Consider a Galerkin projection dimension m = (m1,m2) and let s = (s1, s2) >
(1, 1) a decay rate. The solutions of F = 0 are in one to one correspondence with the fixed
points of T . Also, one has that T : Xs ! X

s.

5



Lemma. (Bootstrap) Consider a fixed decay rate s > (1, 1) and assume the existence of
M > (0, 0) such that Rk(⌫, L) is invertible for all |k| > M . If there exists x 2 X

s such
that F(x) = 0, then x 2 X

s0 , for all s0 > (1, 1).

Proof. By definition of the Banach space, one has that X

s ⇢ X

s0 , for all s0 satisfying
(1, 1) < s0  s. Hence, x 2 X

s0 , for all s0 such that (1, 1) < s0  s. Let us show that
x 2 X

s0 for all s0 > s. First, using the fact that (Xs
, ⇤) is a Banach Algebra for all

s > (1, 1), one has that Nk(x) 2 X

s. Since Fk(x, ⌫) = Rk(⌫, L)xk + k2Nk(x) = 0 for all k,
then

xk = �k2Rk(⌫, L)
�1Nk(x), for all |k| > M .

Since Nk(x) 2 X

s, there exists C > 0 such that Nk(x) <

✓

1
1

◆

C

!

s
k
, for all k 2 I. Applying

the Cauchy-Young inequality with p = 4 and q = 4
3 , one gets the existence of a constant

D > 0 such that

�

�

�

�k2Rk(⌫, L)
�1Nk(x)!

( 1
2 ,1)

k

�

�

�

1


 

k

1
2
1 k

2
2|⌫k42 � k

2
2|

(⌫k42 � k

2
2)

2 + (k1L)2
+

|k1|
3
2
k

2
2L

(⌫k42 � k

2
2)

2 + (k1L)2

!

C

!

s
k

 D

!

s
k

.

Hence,
x = {xk}k2I =

�

�k2Rk(⌫, L)
�1Nk(x)

 

k2I 2 X

s+( 1
2 ,1)

.

⌅

4 The fixed point operator T⌫

Given m = (m1,m2), define Fm = F

m1 ⇥ F

m2 , where F

mj

def
= {k

j

2 Z | |k
j

| < m

j

}.
Consider a Galerkin projection of F of dimension n = n(m)

def
= 2m1m2 � 2m1 � m2 + 2

given by F (m) def
= {F (m)

k }k2Fm , where F (m) : Rn ! Rn, is given component-wise by

F (m)
k (xFm)

def
= Fk(xFm , 0Im), k 2 Fm.

Now suppose that at the parameter value ⌫0, we numerically found x̂Fm such that F (m)(x̂Fm , ⌫0) ⇡
0. We define x̂

def
= (x̂Fm , 0Im) 2 X

s and use it to define a fixed point problem equivalent to
(??). For this purpose, assume that the Jacobian matrix DF (m)(x̂Fm , ⌫0) is non-singular
and let J�1

m be an approximation for its inverse.
Now also suppose that at the parameter value ⌫0, we numerically find ẋFm such that
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5 Rigorous continuation

The rigorous continuation method is based on the notion of the radii polynomials, which
provide a numerically e�cient way to verify that the operator T is a contraction on a small
closed ball B(x̂, r) centered at the numerical approximation x̂ in X

s.

The closed ball of radius r in X

s, centered at the origin, is given by

B(r)
def
=

Y

k2I


� r

!

s
k

,

r

!

s
k

�
d(k)

,

where d(k) = 1 if k = (0, k2) and d(k) = 2 otherwise. The closed ball of radius r centered
at x̂ is then

B(x̂, r)
def
= x̂+B(r).

Consider now bounds Yk and Zk for all k 2 I, such that
���
⇥
T (x̂)� x̂

⇤
k

���  Yk,

and
sup

x1,x22B(r)

���
⇥
DT (x̂+ x1)x2

⇤
k

���  Zk(r).

Lemma. If there exists an r > 0 such that kY + Zks < r, with Y

def
= {Yk}k2I and

Z

def
= {Zk}k2I , then T is a contraction mapping on B(x̂, r) with contraction constant at

most kY + Zks/r < 1. Furthermore, there is a unique x̃ 2 B(x̂, r) such that F(x̃) = 0.

Choose M 2 N2 such that M � 2(m�1)+1 component-wise. This choice of M implies
that Yk can be taken 0 for all k 62 FM . Also, one can construct a uniform bound Z̃M (r)
such that one may define for the cases k 62 FM

Zk(r)
def
=

r

!

s
k

Z̃M (r)Id(k),

where Id(k) = 1 if d(k) = 1, Id(k) = (1, 1)T if d(k) = 2 and Z̃M 2 R is independent of k.

Define the finite radii polynomials {pk(r)}k2FM by

pk(r)
def
= Yk + Zk(r)�

r

!

s
k

Id(k),

and the tail radii polynomial by

p̃M (r)
def
= Z̃M (r)� 1.

Lemma. If there exists r > 0 such that pk(r) < 0 for all k 2 FM and p̃M (r) < 0, then
there is a unique x̃ 2 B(x̂, r) such that F(x̃) = 0.
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Ingredients to construct the radii polynomials 
• Convolution estimates
• Interval arithmetic
• Fast Fourier transform
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Ingredients to construct the radii polynomials 
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Choose M 2 N2 such that M � 2(m�1)+1 component-wise. This choice of M implies
that Yk can be taken 0 for all k 62 FM . Also, one can construct a uniform bound Z̃M (r)
such that one may define for the cases k 62 FM

Zk(r)
def
=

r

!

s
k

Z̃M (r)Id(k),

where Id(k) = 1 if d(k) = 1, Id(k) = (1, 1)T if d(k) = 2 and Z̃M 2 R is independent of k.

Define the finite radii polynomials {pk(r)}k2FM by

pk(r)
def
= Yk + Zk(r)�

r

!

s
k

Id(k),

and the tail radii polynomial by

p̃M (r)
def
= Z̃M (r)� 1.

Lemma. If there exists r > 0 such that pk(r) < 0 for all k 2 FM and p̃M (r) < 0, then
there is a unique x̃ 2 B(x̂, r) such that F(x̃) = 0.

6

asymptotic bound 
for Z  in Xk
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Abstract

We present a computational fixed point theory method to prove existence of time-

periodic solutions of PDEs. We apply the method to the Kuramoto-Sivashinsky PDE.

1 Introduction

Computing branches of periodic solutions of the Kuramoto-Sivashinsky equation
(

u

t

= �⌫u
yyyy

� u

yy

+ 2uu
y

u(t, y) = u(t, y + 2⇡), u(t,�y) = �u(t, y)
(1)

is an interesting problem, as it is a popular model to analyze weak turbulence or spatiotem-

poral chaos [10, 13]. A common approach to study periodic solutions of (1) is to construct
a Poincaré map via numerical integration of the flow, and to look for fixed points of this
map on a prescribed Poincaré section [4, 11, 18, 19]. The idea of this project is to use ideas
from [3, 6, 7, 9] to study periodic solutions of (1) in a significantly more e�cient way. The
improvement is twofold. On one hand computationally, because no integration of the flow
is required, and on the other hand, because continuation methods are e�cient techniques to
study parameter dependent systems like (1). Suppose that we are looking for time periodic
solutions u of period p of (1).

Letting L = 2⇡
p

, the time-periodic solutions of period p of (KS) can be expanded using the
Fourier expansion

u(t, y) =
X

k2Z2

ck k, where for k = (k1, k2) 2 Z2
,  k = e

iLk1t
e

ik2y
.

Since u 2 R, then for any k = (k1, k2) 2 Z2, one has that c�k = c̄k, where c�k =
c�k1,�k2 . Since u(t,�y) = �u(t, y), we get that c

k1,�k2 = �c

k1,k2 , for all (k1, k2) 2 Z2.
Hence, for every k = (k1, k2) � 0, we have the following relations

c�k1,�k2 = c̄k

c

k1,�k2 = �ck

c�k1,k2 = �c̄k.

(2)

The relations (2) imply that to describe entirely the expansion (??), one only needs to
consider the ck with non negative indices. From (2), we get that

Re(c
k1,0) = 0, k1 � 0,

Im(c
k1,0) = 0, k1 � 0,

Re(c0,k2) = 0, k2 � 0.
(3)
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The relations (2) imply that to describe entirely the expansion (??), one only needs to
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m = (77, 15), M = (229, 43), s = ( 32 ,
3
2 )

# of time Fourier modes # of space Fourier modes decay rates
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is required, and on the other hand, because continuation methods are e�cient techniques to
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k1,k2 , for all (k1, k2) 2 Z2.
Hence, for every k = (k1, k2) � 0, we have the following relations

c�k1,�k2 = c̄k

c

k1,�k2 = �ck

c�k1,k2 = �c̄k.

(2)

The relations (2) imply that to describe entirely the expansion (??), one only needs to
consider the ck with non negative indices. From (2), we get that

Re(c
k1,0) = 0, k1 � 0,

Im(c
k1,0) = 0, k1 � 0,

Re(c0,k2) = 0, k2 � 0.
(3)

1

m = (77, 15), M = (229, 43), s = ( 32 ,
3
2 )

# of time Fourier modes # of space Fourier modes decay rates

⌫ 2 {.127, .12707, .12715, .12725, .12739, .12756, .12777}
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r = 3.2246922708⇥ 10�4

r = 3.2082720658⇥ 10�4

r = 3.2237075638⇥ 10�4

r = 3.2490674455⇥ 10�4

r = 2.2709733293⇥ 10�4

B(x̂, r) = x̂+
Y

k2I

"
�3⇥ 10�4

k

3/2
1 k

3/2
2

,

3⇥ 10�4

k

3/2
1 k

3/2
2

#
d(k)

x̃ 2 B(x̂, r) = x̂+
Y

k2I

"
�3⇥ 10�4

k

3/2
1 k
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2

,

3⇥ 10�4

k
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1 k
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#
d(k)

⇢ X

( 3
2 ,

3
2 )

x̃ 2 X
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2 ,

3
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=) |[x̃� x̂]k|1  3⇥ 10�4
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1 k
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