Damping-induced self-recovery phenomenon in mechanical systems with an unactuated cycle variable

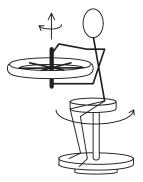
Dong Eui Chang

Applied Mathematics, University of Waterloo

12 April 2013 Southern Ontario Dynamics Day Fields Institute

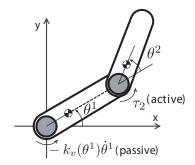
Angular Momentum Conservation

Thought Experiment



$$I_{\rm s}\omega_{\rm s} + I_{\rm w}\omega_{\rm w} = 0.$$

Horizontally Planar 2-Link Arm



$$I_{\rm i}\omega_{\rm i} + I_{\rm o}\omega_{\rm o} = 0.$$

Horizontally Planar 2-Link Arm: With or Without Damping

without damping

with damping

Horizontally Planar 2-Link Arm: Global Self-Recovery

Self-recovery is global, remembering the winding number.

Mechanical System with an Unactuated Cyclic Variable

- Configuration space Q = open subset of \mathbb{R}^n .
- Lagrangian $L(\mathbf{q},\dot{\mathbf{q}}) = \frac{1}{2}m_{ij}\dot{q}^i\dot{q}^j V(\mathbf{q})$ with cyclic variable q^1

$$\frac{\partial L}{\partial q^1} = 0$$

• Equations of Motion (EL equations with forces):

$$\begin{array}{ll} \displaystyle \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^1} & = -k_v(q^1) \dot{q}^1 \\ \displaystyle \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^a} - \frac{\partial L}{\partial q^a} = u_a, \quad a = 2, \, ..., \, n \end{array}$$

where

- $-k_v(q^1)\dot{q}^1$ is a viscous damping force
- u_2, \ldots, u_n are control forces

Mechanical System with an Unactuated Cyclic Variable

• Lagrangian $L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2}m_{ij}\dot{q}^i\dot{q}^j - V(\mathbf{q})$ with cyclic variable q^1

$$\frac{\partial L}{\partial q^1} = 0.$$

• Equations of Motion (EL equations with forces):

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^1} = -k_v(q^1)\dot{q}^1 \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^a} - \frac{\partial L}{\partial q^a} = u_a, \quad a = 2, ..., n$$

• Without damping $(k_v = 0)$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^1} = 0 \Rightarrow \frac{\partial L}{\partial \dot{q}^1} = \text{conserved}.$$

Mechanical System with an Unactuated Cyclic Variable

• Lagrangian $L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2}m_{ij}\dot{q}^i\dot{q}^j - V(\mathbf{q})$ with cyclic variable q^1 such that

$$\frac{\partial L}{\partial q^1} = 0.$$

• Equations of Motion (EL equations with forces):

$$\begin{array}{ll} \displaystyle \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^1} & = -k_v(q^1) \dot{q}^1 \\ \displaystyle \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^a} - \frac{\partial L}{\partial q^a} = u_a, \quad a = 2, \, ..., \, n \end{array}$$

New conserved quantity with damping

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^{1}} + \int_{0}^{q^{1}} k_{v}(x) dx \right) = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^{1}} + k_{v}(q^{1}) \dot{q}^{1} = 0$$

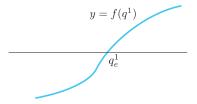
$$\Rightarrow \underbrace{\frac{\partial L}{\partial \dot{q}^{1}}}_{\text{damping-added momentum}} + \int_{0}^{q^{1}} k_{v}(x) dx = \text{conserved}$$

•
$$\int_0^{q^1(t)} k_v(x) dx = \int_0^t k_v(x) \dot{x} dt = (-)$$
 impulse due to friction.

Damping-Induced Self-Recovery Phenomenon Theorem (Chang and Jeon [2013, ASME J. DSMC]) Let

$$\mu = \frac{\partial L}{\partial \dot{q}^{1}} + \int_{0}^{q^{1}} k_{v}(x) dx = m_{1i}(\mathbf{q}(t)) \dot{q}^{i}(t) + \int_{0}^{q^{1}(t)} k_{v}(x) dx.$$

Let $f(q^1) = \int_0^{q^1} k_v(x) dx - \mu$ such that



Suppose controls $u_a(t)$'s (a = 2, ..., n) are chosen such that $q^a(t)$'s (a = 2, ..., n) are bounded and $\lim_{t \to \infty} \dot{q}^a(t) = 0$ for all a = 2, ..., n. Then, 1. $lim_{t \to \infty} q^1(t) = q_e^1$. 2. If the initial condition is such that $\dot{q}^i(0) = 0$ for all i = 1, ..., n, then $lim_{t \to \infty} q^1(t) = q^1(0)$. Sketch of Proof for Constant k_v with $\mu = 0$

Equation for q^1

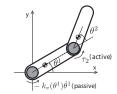
$$0 = m_{1i}\dot{q}^{i}(t) + \int_{0}^{q^{1}} k_{v}dx = m_{1i}\dot{q}^{i}(t) + k_{v}q^{1}$$
$$\Rightarrow \dot{q}^{1} = -\frac{k_{v}}{m_{11}}q^{1} + \left(-\frac{1}{m_{11}}\sum_{a=2}^{n}m_{1a}\dot{q}^{a}\right),$$

where $\dot{q}^i(0) = 0$ for all $i = 1, \dots, n$ and $q^1(0) = 0$. Hence,

$$\lim_{t \to \infty} \dot{q}^a = 0 \quad \forall a = 2, \dots, n \Rightarrow \lim_{t \to \infty} q^1(t) = 0 = q^1(0).$$

Remark: Damping coefficient $k_v(q^1)$ does not have to be a non-negative function. For example, $k_v(q^1) = 1 + 4\cos(q^1)$ shows self-recovery for $\mu = 0$.

Damping-Induced Bound



Suppose

$$\lim_{q^1\to\infty}\int_0^{q^1}k_v(x)dx=\infty,\qquad\qquad \lim_{q^1\to-\infty}\int_0^{q^1}k_v(x)dx=-\infty.$$

If controls $u_a(t)$'s are chosen such that $m_{11}(\mathbf{q}(t))$ is bounded above and below by two positive numbers and $m_{1a}(\mathbf{q}(t))$'s and $\dot{q}^a(t)$'s are bounded where a = 2, ..., n, then $q^1(t)$ is also bounded. Damping-Induced Bound for Horizontally Planar 2-Link Arm

The motion of Link 1 (θ^1) is bounded when $\dot{\theta}^2$ is bounded.

Real Experiment

Several Unactuated Cyclic Variables

Link 2 (θ^2) is actuated and Links 1 and 3 (θ^1, θ^3) are unactuated but under friction.

Self-Recovery Seems to Occur Only for Linear Friction

Cubic friction $F = -kv^3$.

Summary

- Viscous damping force breaks symmetry, so the corresponding momentum is no longer conserved.
- Exists a new conserved quantity called *damping-added momentum*.
- Damping-induced self-recovery is global.
- Damping puts a bound on range of the unactuated variable.
- References:
 - D.E. Chang and S. Jeon, "Damping-induced self recovery phenomenon in mechanical systems with an unactuated cyclic variable," ASME Journal of Dynamic Systems, Measurement, and Control, 135(2), 2013. http://dx.doi.org/10.1115/1.4007556
 - D.E. Chang and S. Jeon, "On the damping-induced self-recovery phenomenon in mechanical systems with several unactuated cyclic variables," J. Nonlinear Science, Submitted. http://arxiv.org/abs/1302.2109