Spreading, retraction and sustained oscillations of surfactant-laden lenses

G. Karapetsas1, R. V. Craster2 & O. K. Matar1

1Department of Chemical Engineering
2Department of Mathematics
Imperial College London

Workshop on Surfactant Driven Thin Films Flow
Fields Institute, Toronto, 24 February, 2012
Motivation

Van Nierop et al. PoF 2006

Daniels et al. 2007

Stocker & Bush JFM 2007
Formulation I

\[\varepsilon = \frac{V_2}{L^2} \ll 1 \]

Surfactant transport and chemical kinetics

\[S_{23} + c_2^* \leftrightarrow c_{23}^* \]
\[S_{12} + c_2^* \leftrightarrow c_{12}^* \]
\[S_{23} + c_{12}^* \leftrightarrow S_{12} + c_{23}^* \]
\[S_{13} + c_{12}^* \leftrightarrow S_{12} + c_{13}^* \]
\[S_{13} + c_{23}^* \leftrightarrow S_{23} + c_{13}^* \]

Approximations

- Lubrication theory
- Rapid vertical diffusion

\[S_i = \text{empty space at interface } i \]
Formulation II

Governing Equations

\[h_{12,t} = -\left(\int_0^{h_{12}} u_1 dz \right)_x \]

\[h_{13,t} = -\left(\int_0^{h_{13}} u_1 dz \right)_x \]

\[h_{23,t} = -\left(\int_0^{h_{12}} u_1 dz + \int_{h_{12}}^{h_{23}} u_2 dz \right)_x \]

where \[\int u_i dz = f(h_i, \sigma_i) \]

\[c_{2,t} + \frac{c_{2,x}}{h_{23} - h_{12}} \int_{h_{12}}^{h_{23}} u_2 dz = \left[\frac{(h_{23} - h_{12})c_{2,x}}{(h_{23} - h_{12})Pe_{c2}} \right]_x - \frac{\beta_{c2c12}}{h_{23} - h_{12}} J_{c2c12} - \frac{\beta_{c2c23}}{h_{23} - h_{12}} J_{c2c23} - J_2 \]

\[m_{2,t} + \frac{m_{2,x}}{h_{23} - h_{12}} \int_{h_{12}}^{h_{23}} u_2 dz = \left[\frac{(h_{23} - h_{12})m_{2,x}}{(h_{23} - h_{12})Pe_{m2}} \right]_x + J_2 \]

\[J_i = \text{sorption fluxes} \]
Formulation III

\[c_{12,t} + (u_{x,12}c_{12})_x = \frac{c_{12,xx}}{Pe_{12}} + J_{c2c12} \]

\[c_{13,t} + (u_{x,13}c_{13})_x = \frac{c_{13,xx}}{Pe_{13}} + J_{ev13} \]

\[c_{23,t} + (u_{x,23}c_{23})_x = \frac{c_{23,xx}}{Pe_{23}} + J_{c2c23} + J_{ev23} \]

\[J_i = \text{sorption fluxes} \]

Equation of state

Sheludko 1967

\[\sigma_i = \left(1 + \frac{1}{\Sigma_i} \right) \left(1 + c_i \left(\left(1 + \Sigma_i \right)^{1/3} - 1 \right) \right)^{-3} \]

\[\Sigma_i = \frac{(\sigma^*_{io} - \sigma^*_{im})}{\sigma^*_{im}} \]

\[\delta_i = \frac{\sigma^*_{im}}{\sigma^*_{23m}} \]

\[i = 12, 13, 23 \]
Formulation IV

Boundary Conditions

Contact line ($x = x_c$)

- $h_{12} = h_{13} = h_{23}$

- Force balance

 \[h_{12,x} = h_{23,x} + f(\sigma_i) \quad h_{13,x} = h_{23,x} + g(\sigma_i) \]

- Continuity of pressure

 \[F(h_{i,x}, \sigma_i) = 0 \]

- Mass conservation

 \[2\int_{0}^{x_c} h_{12} \, dx + 2\int_{x_c}^{x} h_{13} \, dx = V_1 \quad 2\int_{0}^{x_c} (h_{23} - h_{12}) \, dx = V_2 \]
Boundary Conditions

Contact line \((x = x_c)\)

\[
\left. \frac{c_{23,x}}{Pe_{23}} \right|_{x=x_c} = \beta_{c12c23} J_{c12c23} + \beta_{c13c23} J_{c13c23}
\]

\[
\left. \frac{c_{12,x}}{Pe_{12}} \right|_{x=x_c} = \beta_{c13c12} J_{c13c12} + J_{c12c23}
\]

\[
\left. \frac{c_{13,x}}{Pe_{13}} \right|_{x=x_c} = J_{c13c12} + J_{c13c23}
\]
Results I

Clean fluid

$\sigma_{12} = 1, \rho = 1, \mu = 1$

$\sigma_i = \frac{\sigma^*_{i} - \sigma^*_{im}}{\sigma^*_{io} - \sigma^*_{im}}$

$\rho = \frac{\rho^*_2}{\rho^*_1}$

$\mu = \frac{\mu^*_2}{\mu^*_1}$

$X_c \sim t^{1/7}$

Joanny 1987
Fraaije and Cazabat 1989

$S :$ spreading parameter

$S = \sigma_{13} - \sigma_{12} - 1$
Results II

Surfactant-laden drop

$M=8$, $\delta_{23}=1.9$, $\delta_{12}=1$,
$\Sigma_i=0.1$, $\rho=\mu=1$

\[M = \frac{M^*}{(V_2^* c_{cmc}^*)} \quad \Sigma_i = \frac{(\sigma_{io}^* - \sigma_{im}^*)}{\sigma_{im}^*} \quad \delta_i = \frac{\sigma_{im}^*}{\sigma_{23m}^*} \]
Results III

Effect of M

$\delta_{23}=1.9$, $\delta_{12}=1$, $\Sigma_i=0.1$

Long time drop shapes, $t=10^5$
Results IV

Adsorption at the contact line

\[M = 8, \delta_{23} = 1.9, \delta_{12} = 1, \Sigma_i = 0.1 \]

\[S_{13} + c_{12}^* \leftrightarrow S_{12} + c_{13}^* \]

\[J_{c13c12} = k_{c13c12} \left[R_{c13c12} c_{13} (1 - c_{12}) - c_{12} (1 - c_{13}) \right]_{x=x_c} \]
Results IV

Adsorption at the contact line

\[M = 8, \delta_{23} = 1.9, \delta_{12} = 1, \Sigma_i = 0.1 \]

\[S_{13} + c_{12}^* \leftrightarrow S_{12} + c_{13}^* \]

\[J_{c_{13}c_{12}} = k_{c_{13}c_{12}} \left[R_{c_{13}c_{12}} c_{13} (1 - c_{12}) - c_{12} (1 - c_{13}) \right]_{x = x_c} \]
Results V

Oil water interface:

Oleic acid + NaOH \rightarrow Na-oleate

Van Nierop et al. PoF 2006
Results VI

Stocker & Bush JFM 2007
Results VI

Stocker & Bush JFM 2007
Results VI

Stocker & Bush JFM 2007

(a) Adsorption

(b) Evaporation
$k_{ev13} = \text{kinetic parameter for evaporation}$
Results VII

Effect of density ratio, ρ

$M=8$, $\delta_{23}=1.9$, $\delta_{12}=1$, $\Sigma=0.1$

$$\rho = \frac{\rho_2^*}{\rho_1^*}$$

Long time drop shapes, $t=10$

$$M = \frac{M^*}{\left(V_2^* c_{cmc}^*\right)} \quad \Sigma_i = \frac{(\sigma_{io}^* - \sigma_{im}^*)}{\sigma_{im}^*} \quad \delta_i = \frac{\sigma_{im}^*}{\sigma_{23m}^*}$$
We have studied the spreading of surfactant-laden drops on thin layers of another liquid. The presence of Marangoni stresses gives rise to very rich dynamics which may include:

- Spreading until the drop reaches equilibrium \((S < 0)\).
- Continuous spreading \((S > 0)\)
- Spreading followed by retraction.
- Self-sustained oscillations.
Thank you for your attention!