Normality of the three-state toric homogeneous Markov chain model

Ruriko Yoshida
Dept. of Statistics University of Kentucky

Joint work with A. Tamekura, D. Haws, and A. Martín del Campo

polytopes.net
Thank you....

Dave Haws and Abraham Martín del Campo found jobs!
Discrete time Markov chain

We consider a discrete time Markov chain X_t, with $t = 1, \ldots, T$ ($T \geq 3$), over a finite space of states $[S] = \{1, \ldots, S\}$.
Toric homogeneous Markov chain

Let $w = (s_1, \ldots, s_T)$ be a path of length T on states $[S]$, which is sometimes written as $\omega = (s_1 \cdots s_T)$ or simply $\omega = s_1 \cdots s_T$. We are interested in Markov bases of toric ideals arising from the following statistical models

$$p(\omega) = c \gamma_{s_1} \beta_{s_1, s_2} \cdots \beta_{s_{T-1}, s_T}. \quad (1)$$

where c is a normalizing constant, γ_{s_i} indicates the probability of the initial state, and β_{s_i, s_j} are the transition probabilities from state s_i to s_j. The model (1) is called a toric homogeneous Markov chain (THMC) model.

Problem We want to understand a Markov basis under THMC model as $T \to \infty$.
Four models

We refer to them as Model (a), Model (b), Model (c), and Model (d), according to the following:

(a) THMC model (1)

(b) THMC model without initial parameters.

(c) THMC model without self-loops: \(\beta_{s_i, s_j} = 0 \) whenever \(s_i = s_j \).

(d) THMC model without initial parameters and without self-loops, i.e., both (b) and (c) are satisfied
Design matrix for Model (a)

Ordering \([S] \cup [S]^2\) and \([S]^T\) lexicographically, the matrix \(A^{(a)}\) is:

<table>
<thead>
<tr>
<th></th>
<th>1111</th>
<th>1112</th>
<th>1121</th>
<th>1122</th>
<th>1211</th>
<th>1212</th>
<th>1221</th>
<th>1222</th>
<th>2111</th>
<th>2112</th>
<th>2121</th>
<th>2122</th>
<th>2211</th>
<th>2212</th>
<th>2221</th>
<th>2222</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Design matrix for Model (b)

Ordering $[S]^2$ and $[S]^T$ lexicographically with $S = 2$ and $T = 4$ the matrix $A^{(b)}$ is:

<table>
<thead>
<tr>
<th></th>
<th>1111</th>
<th>1112</th>
<th>1121</th>
<th>1122</th>
<th>1211</th>
<th>1212</th>
<th>1221</th>
<th>1222</th>
<th>2111</th>
<th>2112</th>
<th>2121</th>
<th>2122</th>
<th>2211</th>
<th>2212</th>
<th>2221</th>
<th>2222</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Example for Model (d)

The state graph $G(W)$ of $W = \{(12132), (12321)\}$. Also the state graph $G(\overline{W})$ where $\overline{W} = \{(13212), (21232)\}$.

Test statistics for both sets of paths is $[2, 1, 2, 1, 0, 2]$.

![Diagram of state graph]
Hara and Takemura (2010) provided a full description of the *Markov bases* for the THMC model (on Model (a) and Model (b)) in two states (i.e. when \(S = 2 \)) that does not depend on \(T \).

Inspired by their work, we study the algebraic and polyhedral properties of the Markov bases of the three-state THMC model for any time \(T > 3 \).

We hoped we could have the same result for the three-state THMC model without initial parameters and without self-loops (however not yet!).
Recall Markov basis

Suppose $P = \{ x \in \mathbb{R}^d | Ax = b, \, x \geq 0 \} \neq \emptyset$ and let M be a finite set such that $M \subset \{ x \in \mathbb{Z}^d | Ax = 0 \}$.

We define the graph G_b such that:

- Nodes of G_b are all the lattice points inside of P.
- We draw an undirected edge between a node u and a node v iff $u - v \in M$.

Definition:

M is called a **Markov basis** if G_b is a connected graph for all b.
Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1: 2×3 tables with 1-marginals.

There are 19 tables with these marginals.
There are 3 elements in a Markov basis modulo signs.
A table with the marginals plus an element of a Markov basis is also a table with the given marginals.
Figure 1: A Markov basis for 2×3 tables. An element of the Markov basis is a undirected edge between integral points in the polytope.
Good news

Theorem: For any $T \geq 4$, a minimum Markov basis for the toric ideal $I_{A^{(d)}}$, where $A^{(d)}$ is the design matrix under Model (d), consists of binomials of degree less than or equal to $d = 6$.

We used polyhedral geometry to prove this theorem.
Polyhedral geometry

Here we focus on Model (d) and $S = 3$.

Look closely at $P^{(d)}$, the convex hull generated by the columns of the design matrix for Model (d).

Recall: The convex hull of $\{a_1, \ldots, a_m\} \subset \mathbb{R}^n$ is defined as

$$\text{conv}(a_1, \ldots, a_m) := \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^{m} \lambda_i a_i, \quad \sum_{i=1}^{m} \lambda_i = 1, \quad \lambda_i \geq 0 \right\}.$$
A polytope P is the convex hull of finitely many points.

For $k \in \mathbb{N}$, we define the k-th dilation of P as $kP := \{kx \mid x \in P, \}$. A point $x \in P$ is a vertex if and only if it can not be written as a convex combination of points from $P \setminus \{x\}$.

The cone of $\{a_1, \ldots, a_m\} \subset \mathbb{R}^n$ is defined as

$$\text{cone}(a_1, \ldots, a_m) := \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^{m} \lambda_i a_i, \lambda_i \geq 0 \right\}.$$

Integer lattice $L := \mathbb{Z}A = \{n_1 a_1 + \cdots + n_m a_m \mid n_i \in \mathbb{Z}\}$.

The semigroup $S' := \mathbb{N}A := \{n_1 a_1 + \cdots + n_m a_m \mid n_i \in \mathbb{N}\}$.
Let $P^{(d)}$ be the convex hull generated by the columns of the design matrix for Model (d), let $C^{(d)}$ be the cone generated by the columns of the design matrix for Model (d), let $L^{(d)}$ be the lattice generated by the columns of the design matrix for Model (d), and let $S^{(d)}$ be the semigroup generated by the columns of the design matrix for Model (d).

Prop: $kP^{(d)} = C^{(d)} \cap \{\sum_{i=1}^{n} x_i = k\}$ and $kP^{(d)} \cap \mathbb{Z}^n = C^{(d)} \cap L^{(d)}$.

Note: A semigroup is normal if and only if the semigroup is equal to the intersection between the cone and the lattice.

Theorem: We consider Model (d) and $S = 3$. The semigroup generated by the columns of the design matrix $A^{(d)}$ is normal for $T \geq 5$.

Fields Institute

18
One notices that the set of columns of $A^{(d)}$ is a graded set.

Theorem 13.14 in [Sturmfels 1996] Let $A \subset \mathbb{Z}^d$ be a graded set such that the semigroup generated by the elements in A is normal. Then the toric ideal I_A associate with the set A is generated by homogeneous binomials of degree at most d.

Theorem: For any $T \geq 4$, a minimum Markov basis for the toric ideal $I_{A^{(d)}}$, where $A^{(d)}$ is the design matrix under Model (d), consists of binomials of degree less than or equal to $d = 6$.
Polyhedral geometry

Theorem Let $S = 3$. The number of vertices of $P^{(d)}$ is bounded by some constant C which does not depend on T.

Also we found their hyperplane representations.

Theorem For $T \geq 5$, the number of facets is 24 and we described explicitly the these 24 facet description of $P^{(d)}$ depend on $T \mod 6$.
The number of Hilbert basis elements (normaliz) and f-vectors (Polymake) for Model (d) where $S = 3$. The running time of normaliz was under two seconds for all data sets.

<table>
<thead>
<tr>
<th>T</th>
<th>#HB</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
<td>69</td>
<td>90</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>27</td>
<td>114</td>
<td>167</td>
<td>102</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>24</td>
<td>111</td>
<td>176</td>
<td>111</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>66</td>
<td>41</td>
<td>144</td>
<td>189</td>
<td>108</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>96</td>
<td>42</td>
<td>171</td>
<td>230</td>
<td>123</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>123</td>
<td>45</td>
<td>186</td>
<td>245</td>
<td>126</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>166</td>
<td>56</td>
<td>201</td>
<td>252</td>
<td>129</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>207</td>
<td>63</td>
<td>216</td>
<td>257</td>
<td>126</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>264</td>
<td>54</td>
<td>189</td>
<td>236</td>
<td>123</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>320</td>
<td>77</td>
<td>246</td>
<td>279</td>
<td>132</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>396</td>
<td>54</td>
<td>189</td>
<td>236</td>
<td>123</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>468</td>
<td>63</td>
<td>216</td>
<td>257</td>
<td>126</td>
<td>24</td>
</tr>
</tbody>
</table>
Here we summarize all the inequalities in their original form and in their inhomogeneous form, that is using the equality $n(T - 1) = x_{12} + x_{13} + x_{21} + x_{23} + x_{31} + x_{32}$ where $n \geq 1$. Index are ordered by lexicographically. Permute on $[S]$.

For any $T \geq 5$, a row vector equivalent to

$$\mathbf{c} = [1, 0, 0, 0, 0] \cdot x \geq 0$$

For any $T \geq 5$, a row vector equivalent to

$$\mathbf{c} = [T, T, -(T - 2), 1, -(T - 2), 1] \cdot x \geq 0$$

inhomogeneous

$$\mathbf{c} = [1, 1, -1, 0, -1, 0] \cdot x \geq -n.$$
For any T odd, $T \geq 5$, a row vector equivalent to
\[c = [1, 1, -1, -1, 1, 1] \cdot x \geq 0. \]

For any $T \geq 4$ of the form $T = 3k + 1$, $k \geq 1$, a row vector equivalent to
\[c = [2, -1, -1, -1, 2, 2] \cdot x \geq 0. \]

For any $T \geq 5$ of the form $T = 3k + 2$, $k \geq 1$, a row vector equivalent to
\[c = [2k + 1, -k, -k, -k, 2k + 1, 2k + 1] \cdot x \geq 0 \]

inhomogeneous
\[
(3 - n)(x_{12} + x_{31} + x_{32}) - n(x_{13} + x_{21} + x_{23}) \geq -n.
\]
For any $T \geq 6$, T:even, a row vector equivalent to

$$\left[\frac{3}{2}T - 1, \frac{T}{2}, -\frac{T}{2} + 1, -\frac{T}{2} + 1, -\frac{T}{2} + 1, \frac{T}{2}\right] \cdot x \geq 0$$

inhomogeneous

$$3x_{12} + x_{13} - x_{21} - x_{23} - x_{31} + x_{32} \geq -n.$$

For $T = 6k + 3$, a row vector equivalent to

$$\left[5k + 2, 2k + 1, -4k - 1, -k, -k, 2k + 1\right] \cdot x \geq 0$$

inhomogeneous

$$(6 - n)x_{12} + (3 - n)x_{13} - (3 + n)x_{21} + (3 - n)x_{32} - nx_{23} - nx_{31} \geq -2n.$$
For $T = 6k$, a row vector equivalent to

$$[10k - 1, 4k, -8k + 2, -2k + 1, -2k + 1, 4k] \cdot x \geq 0$$

inhomogeneous

$$(6 - n)x_{12} + (3 - n)x_{13} - (3 + n)x_{21} + (3 - n)x_{32} - nx_{23} - nx_{31} \geq -2n.$$
Bad news

For Model (a),

Theorem The semigroup generated by the columns of the design matrix $A^{(a)}$ is not normal for $S \geq 3$ and $T \geq 4$.

For Model (b),

Theorem The semigroup generated by the columns of the design matrix $A^{(b)}$ is not normal for $S \geq 2$ and $T \geq 3$.

So it is very hard to understand a Markov basis for $T \to \infty$.

For Model (d),

The semigroup generated by the columns of the design matrix $A^{(d)}$ is not normal for $S = 4$ and $T \geq 5$.
Big conjecture

On the experimentations we ran, we found evidence that more should be true.

Conjecture Fix $S \geq 3$; then, for every $T \geq 4$, there is a Markov basis for the toric ideal $I_{A^{(d)}}$ consisting of binomials of degree at most $S - 1$, and there is a Gröbner basis with respect to some term ordering consisting of binomials of degree at most S.

Despite the computational limitations (the number of generators grows exponentially when T grows,) we were able to test this conjecture using the software 4ti2 for $T = 4, 5, 6$ with $S = 3$ and $T = 4, 5$ with $S = 4$.

Problem Provide a full description of the Markov bases for the THMC model (on Model (d)) in three states (i.e. when $S = 3$) that does not depend on T.
Question??

D Haws, A Martn del Campo, A Takemura, RY

Normality of the three-state toric homogeneous Markov chain model

http://arxiv.org/abs/1204.3070

Thank you!