partial hyperbolicity
and
topology of 3-manifolds

Jana Rodriguez Hertz

Universidad de la República
Uruguay

celebrating Mike’s work
May 8, 2012
setting

definition

A partially hyperbolic diffeomorphism $f: M \to M$ is conservative (not always, but most of the time) on a closed Riemannian 3-manifold M. Anosov torus conjectures are related to this setting.
setting

- M^3 closed Riemannian 3-manifold
setting

- M^3 closed Riemannian 3-manifold
- $f : M \to M$ partially hyperbolic diffeomorphism
setting

- M^3 closed Riemannian 3-manifold
- $f : M \to M$ partially hyperbolic diffeomorphism
- f conservative (not always, but most of the time)
partial hyperbolicity

\[f : M^3 \to M^3 \text{ is partially hyperbolic} \]
partial hyperbolicity

\[f : M^3 \to M^3 \text{ is partially hyperbolic} \]

\[TM = E^s \oplus E^c \oplus E^u \]

- \(E^s \) \quad contracting
- \(E^c \) \quad intermediate
- \(E^u \) \quad expanding
Partial hyperbolicity

Let $f : M^3 \to M^3$ be a partial hyperbolic diffeomorphism. Then, the tangent bundle TM can be decomposed as

$$TM = E^s \oplus E^c \oplus E^u$$

where E^s, E^c, and E^u are 1-dimensional subbundles, respectively, representing the stable, center, and unstable directions.
example (conservative)

\[f : \mathbb{T}^2 \times \mathbb{T}^1 \rightarrow \mathbb{T}^2 \times \mathbb{T}^1 \]
example (conservative)

\[f : \mathbb{T}^2 \times \mathbb{T}^1 \rightarrow \mathbb{T}^2 \times \mathbb{T}^1 \]

such that

\[f = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \times \text{id} \]
example (conservative)

\[f : \mathbb{T}^2 \times \mathbb{T}^1 \rightarrow \mathbb{T}^2 \times \mathbb{T}^1 \]

such that

\[f = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \times \text{id} \]
example (conservative)

\[f : \mathbb{T}^2 \times \mathbb{T}^1 \rightarrow \mathbb{T}^2 \times \mathbb{T}^1 \]

such that

\[f = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \times R_{\theta} \]
example (non-conservative)

\[f : \mathbb{T}^2 \times \mathbb{T}^1 \to \mathbb{T}^2 \times \mathbb{T}^1 \]

such that

\[f = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \times NPSP \]
open problems

problems

- ergodicity
open problems

problems

- ergodicity
- dynamical coherence
open problems

problems

- ergodicity
- dynamical coherence
- classification
most ph are ergodic

conjecture (pugh-shub)

partially hyperbolic diffeomorphisms

∪

C^1-open and C^r-dense set of ergodic diffeomorphisms
most ph are ergodic

hertz-hertz-ures08

partially hyperbolic diffeomorphisms

∪

C^1-open and C^∞-dense set of ergodic diffeomorphisms
open problem

describe non-ergodic partially hyperbolic diffeomorphisms
open problem

describe non-ergodic partially hyperbolic diffeomorphisms

non-ergodicity
open problem

describe 3-manifolds supporting non-ergodic partially hyperbolic diffeomorphisms
An open problem is to describe 3-manifolds supporting non-ergodic partially hyperbolic diffeomorphisms.
An open problem is to describe 3-manifolds supporting non-ergodic partially hyperbolic diffeomorphisms.
conjecture

subliminal conjecture

most 3-manifolds
Anosov torus conjectures

non-ergodicity conjecture

Subliminal conjecture

Most 3-manifolds do not support non-ergodic partially hyperbolic diffeomorphisms
evidence

\(N\) 3-nilmanifold,
Then either $\mathcal{N} = \mathbb{T}^3$, or $\{\text{partially hyperbolic} \} \subseteq \{\text{ergodic} \}$ nilmanifolds are ergodic.
non-ergodicity

evidence

hertz-hertz-ures08

\[N \text{ 3-nilmanifold, then either} \]

- \[N = \mathbb{T}^3, \]
evidence

hertz-hertz-ures08

N 3-nilmanifold, then either

- $N = \mathbb{T}^3$, or
- \{partially hyperbolic\} \subset \{ergodic\}
evidence

hertz-hertz-ures08

N 3-nilmanifold, then either

- $N = \mathbb{T}^3$, or
- $\{\text{partially hyperbolic} \} \subset \{\text{ergodic} \}$

nilmanifolds
Anosov torus

non-ergodicity

evidence

hertz-hertz-ures08

\(N \) 3-nilmanifold, then either

- \(N = \mathbb{T}^3 \), or
- \{partially hyperbolic\} \(\subset \) \{ergodic\}

nilmanifolds
non-ergodic conjecture

The only 3-manifolds supporting non-ergodic PH diffeomorphisms are:

1. the 3-torus,
2. the mapping torus of $-\text{id} : \mathbb{T}^2 \to \mathbb{T}^2$,
3. the mapping tori of hyperbolic automorphisms of \mathbb{T}^2.
non-ergodic conjecture

The only 3-manifolds supporting non-ergodic PH diffeomorphisms are:

1. the 3-torus,
non-ergodic conjecture (hertz-hertz-ures)

The only 3-manifolds supporting non-ergodic PH diffeomorphisms are:

1. the 3-torus,
2. the mapping torus of $-id : \mathbb{T}^2 \to \mathbb{T}^2$
non-ergodic conjecture

The only 3-manifolds supporting non-ergodic PH diffeomorphisms are:

1. the 3-torus,
2. the mapping torus of $-id : \mathbb{T}^2 \to \mathbb{T}^2$
3. the mapping tori of hyperbolic automorphisms of \mathbb{T}^2
1 the 3-torus
non-ergodic conjecture

2 the mapping torus of $-id$
non-ergodic conjecture

3 the mapping torus of a hyperbolic automorphism
stronger non-ergodic conjecture

\[f : M \to M \text{ non-ergodic partially hyperbolic diffeomorphism}, \text{ then} \]
stronger non-ergodic conjecture

If \(f : M \rightarrow M \) is a non-ergodic partially hyperbolic diffeomorphism, then

\[\exists \text{ torus tangent to } E^s \oplus E^u \]
Integrability

\[f: M^3 \to M^3 \text{ is partially hyperbolic} \]

\[TM = E^s \oplus E^c \oplus E^u \]
integrability

$f : M^3 \to M^3$ is partially hyperbolic

\[TM = E^s \oplus E^c \oplus E^u \]

\[\mathcal{F}^s \]

\[\mathcal{F}^u \]
integrability

\[f : M^3 \to M^3 \text{ is partially hyperbolic} \]

\[
TM = E^s \oplus E^c \oplus E^u
\]

\[\mathcal{F}^s \uparrow \quad \uparrow \quad \mathcal{F}^u \]

\[? \]
∃ invariant \(F \) tangent to \(E_s \oplus E_c \)

\[\exists \text{invariant } F \text{ tangent to } E_c \oplus E_u \]

remark \(\Rightarrow \exists \text{invariant } F \text{ tangent to } E_c \)
∃ invariant \mathcal{F}^{cs} tangent to $E^s \oplus E^c$
∃ invariant \mathcal{F}^{cs} tangent to $E^s \oplus E^c$

∃ invariant \mathcal{F}^{cu} tangent to $E^c \oplus E^u$
1. \(\exists \) invariant \(\mathcal{F}^{cs} \) tangent to \(E^s \oplus E^c \)

2. \(\exists \) invariant \(\mathcal{F}^{cu} \) tangent to \(E^c \oplus E^u \)

remark

\(\Rightarrow \) \(\exists \) invariant \(\mathcal{F}^c \) tangent to \(E^c \)
open question

longstanding open question

\[f : M^3 \to M^3 \text{ partially hyperbolic} \overset{?}{\Rightarrow} f \text{ dynamically coherent} \]
open question

longstanding open question

$f : M^3 \to M^3$ partially hyperbolic ? f dynamically coherent

hertz-hertz-ures10

NO
counterexample

hertz-hertz-ures10

\[\exists f : \mathbb{T}^3 \rightarrow \mathbb{T}^3 \text{ partially hyperbolic} \]
counterexample

\[\exists f : \mathbb{T}^3 \to \mathbb{T}^3 \text{ partially hyperbolic} \]

- non-dynamically coherent
counterexample

exists f : T^3 → T^3 partially hyperbolic
 - non-dynamically coherent
 - non-conservative
∃ f : $\mathbb{T}^3 \to \mathbb{T}^3$ partially hyperbolic
- non-dynamically coherent
- non-conservative
- “robust”
open problem

describe 3-manifolds supporting non-dynamically coherent examples
open problem

describe 3-manifolds supporting non-dynamically coherent examples

3-manifolds

- **DC**
- **non DC**
open problem

describe 3-manifolds supporting non-dynamically coherent examples
non-dynamically coherent conjecture

<table>
<thead>
<tr>
<th>non-dynamically coherent conjecture (hertz-hertz-ures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f : M^3 \rightarrow M^3$ non-dynamically coherent,</td>
</tr>
</tbody>
</table>
non-dynamically coherent conjecture

non-dynamically coherent conjecture (hertz-hertz-ures)

\(f : M^3 \rightarrow M^3 \) non-dynamically coherent, then \(M \) is either:
non-dynamically coherent conjecture

non-dynamically coherent conjecture (hertz-hertz-ures)

\[f : M^3 \rightarrow M^3 \text{ non-dynamically coherent}, \]

then \(M \) is either:

1. \(T^3 \)

3-manifolds
non-dynamically coherent conjecture

non-dynamically coherent conjecture (hertz-hertz-ures)

\(f : M^3 \rightarrow M^3 \) non-dynamically coherent, then \(M \) is either:

1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id\)

3-manifolds
non-dynamically coherent conjecture

non-dynamically coherent conjecture (hertz-hertz-ures)

\[f : M^3 \to M^3 \text{ non-dynamically coherent,} \]

then \(M \) is either:

1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id\)
3. the mapping torus of a hyperbolic automorphism

3-manifolds
stronger non-dynamically coherent conjecture

\[f : M^3 \rightarrow M^3 \text{ non-dynamically coherent, then either} \]
stronger non-dynamically coherent conjecture

\(f : \mathcal{M}^3 \to \mathcal{M}^3 \) non-dynamically coherent, then either

- \(\exists \) torus tangent to \(E^c \oplus E^u \), or
stronger non-dynamically coherent conjecture

\[f : M^3 \rightarrow M^3 \text{ non-dynamically coherent, then either} \]

- \(\exists \text{ torus tangent to } E^c \oplus E^u \), or
- \(\exists \text{ torus tangent to } E^s \oplus E^c \)
intermediate conjecture

\[f \text{ volume preserving} \Rightarrow f \text{ dynamically coherent} \]
potrie11

\[f : \mathbb{T}^3 \to \mathbb{T}^3 \] non-dynamically coherent, then
Anosov torus

Dynamical coherence

Evidence

potrie11

\[f : \mathbb{T}^3 \rightarrow \mathbb{T}^3 \text{ non-dynamically coherent, then} \]

\[\exists \text{ torus tangent to } E^c \oplus E^u, \text{ or} \]
potrie11

\[f : \mathbb{T}^3 \to \mathbb{T}^3 \text{ non-dynamically coherent, then} \]

- \(\exists \) torus tangent to \(E^c \oplus E^u \), or
- \(\exists \) torus tangent to \(E^s \oplus E^c \)
examples of ph dynamics

known ph dynamics in dimension 3
examples of ph dynamics

known ph dynamics in dimension 3

- perturbations of time-one maps of Anosov flows
examples of ph dynamics

known ph dynamics in dimension 3

- perturbations of time-one maps of Anosov flows
- certain skew-products
examples of ph dynamics

known ph dynamics in dimension 3

- perturbations of time-one maps of Anosov flows
- certain skew-products
- certain DA-maps
examples of ph dynamics

known ph dynamics in dimension 3
- perturbations of time-one maps of Anosov flows
- certain skew-products
- certain DA-maps

new example
- non-dynamically coherent example
question

are there more examples?
classification conjecture (pujals01)

If \(f : M^3 \to M^3 \) is a transitive partially hyperbolic diffeomorphism, then \(f \) is (finitely covered by) either

1. a perturbation of a time-one map of an Anosov flow
2. a skew-product
3. a DA-map
If $f : M^3 \to M^3$ is a transitive partially hyperbolic diffeomorphism, then f is (finitely covered by) either
1. a perturbation of a time-one map of an Anosov flow
If $f : M^3 \rightarrow M^3$ is a transitive partially hyperbolic diffeomorphism, then f is (finitely covered by) either

1. a perturbation of a time-one map of an Anosov flow
2. a skew-product
If $f : M^3 \to M^3$ is a transitive partially hyperbolic diffeomorphism, then f is (finitely covered by) either

1. a perturbation of a time-one map of an Anosov flow
2. a skew-product
3. a DA-map
If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is leafwise conjugate to an Anosov flow leafwise conjugate to a skew-product with linear base leafwise conjugate to an Anosov map in T^3.

classification conjecture (hhu)
classification conjecture (hhu)

If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is

- a perturbation of a time-one map of an Anosov flow,
If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is

1. a perturbation of a time-one map of an Anosov flow,
2. a skew-product, or
If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is

1. a perturbation of a time-one map of an Anosov flow,
2. a skew-product, or
3. a DA-map.
classification conjecture (hhu)

If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is

1. leafwise conjugate to an Anosov flow
2. a skew-product, or
3. a DA-map.
If $f : M^3 \to M^3$ is partially hyperbolic and dynamically coherent, then f is

1. leafwise conjugate to an Anosov flow
2. leafwise conjugate to a skew-product with linear base
3. a DA-map.
classification conjecture (hhu)

If $f : M^3 \rightarrow M^3$ is partially hyperbolic and dynamically coherent, then f is

1. leafwise conjugate to an Anosov flow
2. leafwise conjugate to a skew-product with linear base
3. leafwise conjugate to an Anosov map in \mathbb{T}^3.
Anosov torus

problems

- ergodicity
Anosov torus problems

- ergodicity
- dynamical coherence
problems

- ergodicity
- dynamical coherence
- classification
Anosov torus

problems

- ergodicity
- dynamical coherence
- classification

→

Anosov torus
Anosov torus

Anosov torus T embedded 2-torus
Anosov torus

- T embedded 2-torus
- $\exists f : M \to M$ s.t.
Anosov torus

- T embedded 2-torus
- $\exists f : M \to M$ s.t.
 $$f(T) = T$$
Anosov torus

- T embedded 2-torus
- $\exists f : M \to M$ s.t.
 - $f(T) = T$
 - $f|_T$ isotopic to Anosov
invariant tori in PH dynamics

\[T \text{ invariant torus tangent to} \]
invariant tori in PH dynamics

T invariant torus tangent to

$E^s \oplus E^u$
invariant tori in PH dynamics

\[T \text{ invariant torus tangent to} \]

\[E^s \oplus E^u \]

\[E^c \oplus E^u \]
invariant tori in PH dynamics

T invariant torus tangent to

- $E^s \oplus E^u$
- $E^c \oplus E^u$
- $E^s \oplus E^u$
invariant tori in PH dynamics

T invariant torus tangent to

$E^s \oplus E^u$
$E^c \oplus E^u$ \Rightarrow T Anosov torus

$E^s \oplus E^u$
conjectures

Anosov torus conjectures

Then M is either T^3 - the mapping torus of $-\text{id}: T^2 \to T^2$ or T^3 - the mapping torus of a hyperbolic map of T^2.

Stronger conjecture: \exists Anosov torus tangent to $E_s \oplus E_u$ or $E_c \oplus E_u$.
conjectures

non-ergodic conjecture

\(f : M \rightarrow M \) non-ergodic partially hyperbolic
conjectures

non-ergodic conjecture

\(f : M \to M \) non-ergodic partially hyperbolic

non-dyn. coh. conjecture

\(f : M \to M \) non-dyn. coherent partially hyperbolic

then \(M \) is either

1. the mapping torus of \(-\text{id} : T^2 \to T^2\)

or

3. the mapping torus of a hyperbolic map of \(T^2 \)

stronger conjecture

\(\exists \) Anosov torus tangent to \(E^s \oplus E^u \)

stronger conjecture

\(\exists \) Anosov torus tangent to \(E^c \oplus E^u \) or \(E^s \oplus E^c \)
conjectures

non-ergodic conjecture

\(f : M \to M \) non-ergodic partially hyperbolic

non-dyn. coh. conjecture

\(f : M \to M \) non-dyn. coherent partially hyperbolic

then \(M \) is either

1. \(\mathbb{T}^3 \)
conjectures

non-ergodic conjecture
\[f : M \to M \text{ non-ergodic partially hyperbolic} \]

non-dyn. coh. conjecture
\[f : M \to M \text{ non-dyn. coherent partially hyperbolic} \]

then \(M \) is either

1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id : \mathbb{T}^2 \to \mathbb{T}^2\)
conjectures

non-ergodic conjecture
\[f : M \to M \text{ non-ergodic partially hyperbolic} \]

non-dyn. coh. conjecture
\[f : M \to M \text{ non-dyn. coherent partially hyperbolic} \]

then \(M \) is either
1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id : \mathbb{T}^2 \to \mathbb{T}^2\)
3. the mapping torus of a hyperbolic map of \(\mathbb{T}^2 \)
conjectures

non-ergodic conjecture

\[f : M \to M \text{ non-ergodic partially hyperbolic} \]

non-dyn. coh. conjecture

\[f : M \to M \text{ non-dyn. coherent partially hyperbolic} \]

then \(M \) is either

1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id : \mathbb{T}^2 \to \mathbb{T}^2\)
3. the mapping torus of a hyperbolic map of \(\mathbb{T}^2 \)

stronger conjecture

\[\exists \text{ Anosov torus tangent to } E^s \oplus E^u \]
conjectures

non-ergodic conjecture
\(f : M \to M \) non-ergodic partially hyperbolic

then \(M \) is either
1. \(\mathbb{T}^3 \)
2. the mapping torus of \(-id : \mathbb{T}^2 \to \mathbb{T}^2\)
3. the mapping torus of a hyperbolic map of \(\mathbb{T}^2 \)

non-dyn. coh. conjecture
\(f : M \to M \) non-dyn. coherent partially hyperbolic

stronger conjecture
\(\exists \) Anosov torus tangent to \(E^s \oplus E^u \)

stronger conjecture
\(\exists \) Anosov torus tangent to \(E^c \oplus E^u \) or \(E^s \oplus E^c \)
why stronger conjectures?

$hertz$-$hertz$-$ures11$

M irreducible contains an Anosov torus,
why stronger conjectures?

hertz-hertz-ures11

\(M \) irreducible contains an Anosov torus, then \(M \) is either
why stronger conjectures?

hertz-hertz-ures11

\(M \) irreducible contains an Anosov torus, then \(M \) is either

1. \(T^3 \)

3-manifolds
why stronger conjectures?

hertz-hertz-ures11

M irreducible contains an Anosov torus, then *M* is either

1. \mathbb{T}^3
2. the mapping torus of $-id : \mathbb{T}^2 \to \mathbb{T}^2$

3-manifolds
why stronger conjectures?

hertz-hertz-ures11

M irreducible contains an Anosov torus, then M is either

1. T^3
2. the mapping torus of $-id: T^2 \to T^2$
3. a mapping torus of a hyperbolic automorphism of T^2

3-manifolds
remark

\[f : M^3 \rightarrow M^3 \text{ partially hyperbolic} \Rightarrow M \text{ irreducible} \]
remark

\[f : M^3 \rightarrow M^3 \text{ partially hyperbolic } \Rightarrow M \text{ irreducible} \]

why
remark

$f : M^3 \to M^3$ partially hyperbolic $\Rightarrow M$ irreducible

why

- Rosenberg68
remark

\[
f : M^3 \to M^3 \text{ partially hyperbolic} \Rightarrow M \text{ irreducible}
\]

why

- Rosenberg68
- Burago-Ivanov08
reduced theorem

- N^3 irreducible manifold with boundary
reduced theorem

- N^3 irreducible manifold with boundary
- ∂N consists of Anosov tori
reduced theorem

- N^3 irreducible manifold with boundary
- ∂N consists of Anosov tori

⇒

$$N = \mathbb{T}^2 \times [0, 1]$$
brief sketch of the proof

JSJ-decomposition
brief sketch of the proof

JSJ-decomposition

- N^3 in our hypotheses
brief sketch of the proof

JSJ-decomposition

- N^3 in our hypotheses
- $\exists T_1, \ldots, T_n$ incompressible tori
brief sketch of the proof

JSJ-decomposition

- N^3 in our hypotheses
- $\exists \ T_1, \ldots, T_n$ incompressible tori
- such that each component of $M \setminus T_1 \cup \cdots \cup T_n$
 - atoroidal, or
brief sketch of the proof

JSJ-decomposition

- N^3 in our hypotheses
- $\exists \, T_1, \ldots, T_n$ incompressible tori
- such that each component of $M \setminus T_1 \cup \cdots \cup T_n$
 1. atoroidal, or
 2. Seifert manifold
brief sketch of the proof

JSJ-decomposition

- N^3 in our hypotheses
- $\exists \ T_1, \ldots, \ T_n$ incompressible tori
- such that each component of $M \setminus T_1 \cup \cdots \cup T_n$
 - atoroidal, or
 - Seifert manifold 🌟
brief sketch of the proof

remark
brief sketch of the proof

remark

- N Seifert manifold
brief sketch of the proof

remark

- N Seifert manifold
- ∂N are Anosov tori
brief sketch of the proof

remark

- N Seifert manifold
- ∂N are Anosov tori
- $\Rightarrow \exists$ 2 Seifert fibrations non-isotopic on ∂N
brief sketch of the proof

classic lemma

- \(\exists \) 2 Seifert fibrations non-isotopic on \(\partial N \)
brief sketch of the proof

classic lemma

- \exists 2 Seifert fibrations non-isotopic on ∂N
- \Rightarrow N is
brief sketch of the proof

classic lemma

- \exists 2 Seifert fibrations non-isotopic on ∂N
- $\Rightarrow N$ is
 - $\mathbb{D}^2 \times S^1$ the solid torus
brief sketch of the proof

classic lemma

- \exists 2 \text{ Seifert fibrations non-isotopic on } \partial N
- \Rightarrow N \text{ is}
 1. \mathbb{D}^2 \times S^1 \text{ the solid torus}
 2. S^1 \times S^1 \times [0, 1] \text{ the twisted } I\text{-bundle over the Klein bundle}
brief sketch of the proof

classic lemma

- 2 Seifert fibrations non-isotopic on ∂N
- $\Rightarrow N$ is
 1. $\mathbb{D}^2 \times S^1$ the solid torus
 2. $S^1 \times S^1 \times [0, 1]$ the twisted I-bundle over the Klein bundle
 3. $T^2 \times [0, 1]$ the torus cross the interval
brief sketch of the proof

1. \(N = \) solid torus
brief sketch of the proof

1. $N = \text{solid torus}$

\[\partial N = T \]
brief sketch of the proof

$$\textcircled{2} N_S = \text{twisted } I\text{-bundle over } K$$
brief sketch of the proof

2 $N_S = \text{twisted } I\text{-bundle over } K$

$\partial N = T$

©Ken Baker
brief sketch of the proof

3 \[N = T \times [0, 1] \]
brief sketch of the proof

3 $N = T \times [0, 1]$

$\partial N = T \sqcup T$
brief sketch of the proof

final lemma

\[\partial N \text{ consist of Anosov tori} \]
brief sketch of the proof

final lemma

- ∂N consist of Anosov tori
- $\implies \partial N \neq T$
brief sketch of the proof

final lemma
- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

why
- $i : H_1(\partial N) \hookrightarrow H_1(N)$
brief sketch of the proof

final lemma
- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

why
- $i : H_1(\partial N) \hookrightarrow H_1(N)$
- $\text{rank}(\ker(i)) = \frac{1}{2} \text{rank}(H_1(\partial N))$
brief sketch of the proof

final lemma
- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

why
- $i : H_1(\partial N) \hookrightarrow H_1(N)$
- $\text{rank}(\ker(i)) = \frac{1}{2} \text{rank}(H_1(\partial N))$

rank
- rank=“dimension"
final lemma

- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$
final lemma

- ∂N consist of Anosov tori

- $\Rightarrow \partial N \neq T$

possibilities

$\partial N = T$
final lemma

- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

possibilities

$\partial N = T$
final lemma

- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

possibilities

- $\partial N = T$
- $\partial N = T$
- $\partial N = T \sqcup T$
final lemma

- ∂N consist of Anosov tori
- $\Rightarrow \partial N \neq T$

possibilities

$$\partial N = T \sqcup T$$
final lemma

- ∂N consist of Anosov tori

- $\Rightarrow \partial N \neq T$

possibilities

$\partial N = T \sqcup T$
thank you

THANK YOU MIKE!