Conductivity imaging from one interior measurement

Amir Moradifam

(University of Toronto)

Fields Institute, July 24, 2012
A convergent algorithm to solve

\[u = \arg\min \left\{ \int_{\Omega} |J| |\nabla v| : v \in H^1(\Omega), \ v|_{\partial\Omega} = f \right\}. \]

Joint work with A. Nachman and A. Timonov
Let $u_f \in H^1(\Omega)$ with $u_f |_\Omega = f$. Then our weighted minimization problem can be written as

$$(P) \quad \inf_{v \in H^1_0(\Omega)} \int_\Omega |J| |\nabla v + \nabla u_f|.$$

The dual problem is

$$(D) \quad \sup \{ \langle \nabla u_f, b \rangle : b \in (L^2(\Omega))^n, \ |b(x)| \leq |J(x)| \ a.e. \ and \ \nabla \cdot b \equiv 0 \}.$$
Theorem (M, A. Nachman, A. Timonov (2011))

Assume that the data \((|J|, f)\) is admissible. Then

\[
\inf_{v \in H^1_0(\Omega)} \int_{\Omega} |J||\nabla v + \nabla u_f|
\]

\[
= \sup\{<\nabla u_f, b>: b \in (L^2(\Omega))^n, |b(x)| \leq |J(x)| \text{ a.e. and } \nabla \cdot b \equiv 0\}
\]

and the current density \(J\) corresponding to the voltage potential \(f\) on \(\partial \Omega\) is the unique solution of the dual problem.
Let \(E : (L^2(\Omega))^n \to \mathbb{R} \) and \(G : H^1_0(\Omega) \to \mathbb{R} \) be defined by

\[
E(d) = \int_\Omega |J||d + \nabla u_f| \quad \text{and} \quad G(\nu) \equiv 0.
\]

Then the dual problem can be written in the form

\[
(D) \quad \min_{b \in (L^2(\Omega))^n} \{ E^*(b) + G^*(-\nabla \cdot b) \}.
\]

Since \(J \) is the solution of the dual problem

\[
0 \in \partial E^*(J) + \partial [G^* o (-\nabla \cdot)](J).
\]

Let \(A := \partial E^*(J) \) and \(B := \partial [G^* o (-\nabla \cdot)] \). Then above can be written as

\[
0 \in A(J) + B(J),
\]

where \(A \) and \(B \) are maximal monotone set-valued operators.
To solve

\[0 \in A(J) + B(J) \]

we apply a Douglas-Rachford algorithm. This algorithm produces two sequences \(p_k \) and \(x_k \) such that

\[p_k \rightharpoonup J \quad \text{and} \quad x_k \rightharpoonup \nabla u. \]
Theorem (Lions and Mercier (1979), Svaiter (2010))

Let H be a Hilbert space and A, B be maximal monotone operators and assume that a solution of (1) exists. Then, for any initial elements x_0 and p_0 the sequences p_k and x_k generated by the following algorithm

\[
x_{k+1} = R_A(2p_k - x_k) + x_k - p_k
\]
\[
p_{k+1} = R_B(x_{k+1}),
\]

converges weakly to some \hat{x} and \hat{p} respectively. Furthermore, $\hat{p} = R_B(\hat{x})$ and \hat{p} satisfies

\[
0 \in A(\hat{p}) + B(\hat{p}).
\]

(1)

\[
R_A = (Id + A)^{-1}
\]
Let \(u_f \in H^1(\Omega) \) with \(u_f|_{\partial \Omega} = f \), and initialize \(b^0, d^0 \in (L^2(\Omega))^n \). For \(k \geq 1 \):

1. Solve
 \[
 \Delta u^{k+1} = \nabla \cdot (d^k(x) - b^k(x)), \quad u^{k+1}|_{\partial \Omega} = f.
 \]

2. Compute
 \[
 d^{k+1} := \begin{cases}
 \max\{ |\nabla u^{k+1} + b^k| - |J|, 0 \} \frac{\nabla u^{k+1} + b^k}{|\nabla u^{k+1} + b^k|} & \text{if } |\nabla u^{k+1}(x) + b^k(x)| \neq 0, \\
 0 & \text{if } |\nabla u^{k+1}(x) + b^k(x)| = 0.
 \end{cases}
 \]

3. Let
 \[
 b^{k+1}(x) = b^k(x) + \nabla u^{k+1}(x) - d^{k+1}(x).
 \]

This is an alternating split Bregman algorithm of Goldstein and Osher applied to the primal problem (P).
Theorem (M, A. Nachman, A. Timonov (2011))

The sequences b^k, d^k, and u^k produced by the above algorithm converge weakly to J, ∇u, and u, respectively.

So we are simultaneously solving the primal and the dual problem.
Numerical simulations
To simulate the internal data $|J|$ we use a CT (Computed Tomography) image of human abdomen rescaled to a realistic range of tissue conductivities.

![Original image](left) and reconstructed image with 60 iterations (right).

Figure: Original image (left) and reconstructed image with 60 iterations (right).
Figure: Conductivity reconstruction with the boundary condition $f(x, y) = y$ for $N = 1, 5, 10, 30, 50, 100$ iterations.
Figure: Magnitude of the current density $|J|$ for the non two-to-one boundary data $f(x, y) = y + 2\sin(7\pi y)$.
Figure: Conductivities constructed using the alternating split Bregman algorithm with $N = 1, 5, 10, 30, 50, 100$ iterates for the non two-to-one boundary data $f(x, y) = y + 2\sin(7\pi y)$.
Numerical errors for 100 iterations.

<table>
<thead>
<tr>
<th>Low Noise (Level=0.01)</th>
<th>Moderate Noise (Level=0.035)</th>
<th>Higher Noise (Level=0.06)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.026</td>
<td>0.080</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Figure: Low noise (left), moderate noise (middle), and higher noise (right).
Figure: Reconstruction in the presence of the perfectly conducting (right) and insulating (left) inclusions.