An Introduction to Quasi-Symmetric and Noncommutative Symmetric Functions.

Lenny Tevlin
New York University

Affine Schubert Calculus at Fields Institute, July 7-10, 2010
Warning and Outline

This talk has nothing to do with k-Schur functions, affine Grassmanians or any other topic of this school...
1. (Another) Tale of Two Algebras: Motivation

2. Notations, conventions, etc.
Warning and Outline

1. (Another) Tale of Two Algebras: Motivation
2. Notations, conventions, etc.
3. Quasi-Symmetric Functions.
Warning and Outline

1. (Another) Tale of Two Algebras: Motivation
2. Notations, conventions, etc.
3. Quasi-Symmetric Functions.
(Another) Tale of Two Algebras:
Motivation
Notations, conventions, etc.
Quasi-Symmetric Functions.
Noncommutative Symmetric Functions.

Magic Triangle

```
NSym ← − − − − QSym
                      ↑↑↑↑↑↑↑↑↑
                           ←− ←−
                           →→
                           ↑
                           →
                           ↓
 Sym
```

Sym:
\[m^{\lambda}, h^{\lambda}, s^{\lambda}, ... \]

NSym:
\[M^I, L^I, S^I, R^I, ... \]

QSym:
\[M^I, L^I, ... \]
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-Symmetric Functions.

Noncommutative Symmetric Functions.

Magic Triangle

\[\text{NSym} \leftarrow \text{Sym} \rightarrow \text{QSym} \]

Sym:
- \(m_{\lambda} \), \(h_{\lambda} \), \(s_{\lambda} \), ...

NSym:
- \(M^I \), \(L^I \), \(S^I \), \(R^I \), ...

QSym:
- \(M_I \), \(L_I \), ...
A composition is ordered set of integers: $l = (i_1, \ldots, i_n)$. The sum of all parts is denoted by $|l|$, and the number of parts – by $\ell(l)$.

\[
l = (3, 1, 1, 4, 2), \quad |l| = 11, \quad \ell(l) = 5
\]
A composition is ordered set of integers: \(I = (i_1, \ldots, i_n) \). The sum of all parts is denoted by \(|I|\), and the number of parts – by \(\ell(I) \).

\[I = (3, 1, 1, 4, 2), \quad |I| = 11, \quad \ell(I) = 5 \]
A composition is ordered set of integers: $I = (i_1, \ldots, i_n)$. The sum of all parts is denoted by $|I|$, and the number of parts – by $\ell(I)$.

$$I = (3, 1, 1, 4, 2), \quad |I| = 11, \quad \ell(I) = 5$$
Reverse refinement order.

Let \(I = (i_1, \ldots, i_n) \), \(J = (j_1, \ldots, j_k) \), \(|J| = |I|\) then \(I \) is greater in the reverse refinement order (or, simply, finer) than \(J \),

\[I \succ J \]

if every part of \(J \) can be obtained by summing some consecutive parts of \(I \):

\[J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n) \]
Revserse refinement order.

Let $I = (i_1, \ldots, i_n)$, $J = (j_1, \ldots, j_k)$, $|J| = |I|$ then I is greater in the reverse refinement order (or, simply, finer) than J, $I \succ J$ if every part of J can be obtained by summing some consecutive parts of I:

$$J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$$

For instance, $(3, 3, 2) = (3, 1 + 2, 2) \prec (3, 1, 2, 2)$,
Reverse refinement order.

Let $I = (i_1, \ldots, i_n)$, $J = (j_1, \ldots, j_k)$, $|J| = |I|$ then I is greater in the reverse refinement order (or, simply, finer) than J, $I \succ J$ if every part of J can be obtained by summing some consecutive parts of I:

$J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$

For instance, $(3, 3, 2) = (3, 1 + 2, 2) \prec (3, 1, 2, 2)$,
Noncommutative Operations on Compositions

For two compositions $I = (i_1, \ldots, i_{r-1}, i_r)$ and $J = (j_1, j_2, \ldots, j_s)$ one defines two operations

$$ I \triangleright J = (i_1, \ldots, i_{r-1}, i_r + j_1, j_2, \ldots, j_s) $$
For two compositions $I = (i_1, \ldots, i_{r-1}, i_r)$ and $J = (j_1, j_2, \ldots, j_s)$ one defines two operations

$$I \triangleright J = (i_1, \ldots, i_{r-1}, i_r + j_1, j_2, \ldots, j_s)$$
Noncommutative Operations on Compositions

For two compositions $I = (i_1, \ldots, i_{r-1}, i_r)$ and $J = (j_1, j_2, \ldots, j_s)$ one defines two operations

$$I \triangleleft J = (i_1, \ldots, i_{r-1}, i_r + j_1, j_2, \ldots, j_s)$$

and

$$I \cdot J = (i_1, \ldots, i_r, j_1, \ldots, j_s)$$
Noncommutative Operations on Compositions

For two compositions $I = (i_1, \ldots, i_{r-1}, i_r)$ and $J = (j_1, j_2, \ldots, j_s)$ one defines two operations

$$I \triangleright J = (i_1, \ldots, i_{r-1}, i_r + j_1, j_2, \ldots, j_s)$$

and

$$I \cdot J = (i_1, \ldots, i_r, j_1, \ldots, j_s)$$
Descent Sets and Compositions.

Another way to encode a composition \(I \) of \(n \) is by a subset \(D \) of \(\{1, 2, \ldots, n - 1\} \). If \(D = \{d_1, d_2, \ldots, d_k\} \), then

\[
I = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)
\]

Example: Let \(n = 6 \) and take a set \(\{2, 3, 5\} \)
Descent Sets and Compositions.

Another way to encode a composition \(l \) of \(n \) is by a subset \(D \) of \(\{1, 2, \ldots, n - 1\} \). If \(D = \{d_1, d_2, \ldots, d_k\} \), then

\[
l = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)
\]

Example: Let \(n = 6 \) and take a set \(\{2, 3, 5\} \)
Descent Sets and Compositions.

Another way to encode a composition \(I \) of \(n \) is by a subset \(D \) of \(\{1, 2, \ldots, n - 1\} \). If \(D = \{d_1, d_2, \ldots, d_k\} \), then

\[
I = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)
\]

Example: Let \(n = 6 \) and take a set \(\{2, 3, 5\} \)
Another way to encode a composition I of n is by a subset D of $\{1, 2, \ldots, n - 1\}$. If $D = \{d_1, d_2, \ldots, d_k\}$, then

$$I = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)$$

Example: Let $n = 6$ and take a set $\{2, 3, 5\}$
Descent Sets and Compositions.

Another way to encode a composition \(I \) of \(n \) is by a subset \(D \) of \(\{1, 2, \ldots, n - 1\} \). If \(D = \{d_1, d_2, \ldots, d_k\} \), then

\[
I = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)
\]

Example: Let \(n = 6 \) and take a set \(\{2, 3, 5\} \)
Another way to encode a composition I of n is by a subset D of $\{1, 2, \ldots, n-1\}$. If $D = \{d_1, d_2, \ldots, d_k\}$, then

$$I = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)$$

Example: Let $n = 6$ and take a set $\{2, 3, 5\}$
Descent Sets and Compositions.

Another way to encode a composition l of n is by a subset D of $\{1, 2, \ldots, n - 1\}$. If $D = \{d_1, d_2, \ldots, d_k\}$, then

$$l = (d_1, d_2 - d_1, d_3 - d_2, \ldots, n - d_k)$$

Example: Let $n = 6$ and take a set $\{2, 3, 5\}$

![Diagram of descent sets and compositions]
Definitions of Quasi-Symmetric Functions.

For every composition $l = (i_1, \ldots, i_k)$, the quasi-symmetric monomial is defined

$$M_l = \sum_{s_1 < \ldots < s_k} x_{s_1}^{i_1} \ldots x_{s_k}^{i_k}$$
Definitions of Quasi-Symmetric Functions.

For every composition $I = (i_1, \ldots, i_k)$, the **quasi-symmetric monomial** is defined

$$M_I = \sum_{s_1 < \ldots < s_k} x_{s_1}^{i_1} \ldots x_{s_k}^{i_k}$$

and **quasi-symmetric fundamental**

$$L_I = \sum_{J \geq I} M_J$$
Examples of Quasi-Symmetric Functions

Monomials:

\[M_{12}(x_1, x_2, x_3) = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 \]

\[M_{21}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 \]
Examples of Quasi-Symmetric Functions

Monomials:

\[M_{12}(x_1, x_2, x_3) = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 \]
\[M_{21}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 \]

So that

\[m_{21} = M_{21} + M_{12} \]
Examples of Quasi-Symmetric Functions

Monomials:

\[M_{12}(x_1, x_2, x_3) = x_1x_2^2 + x_1x_3^2 + x_2x_3^2 \]
\[M_{21}(x_1, x_2, x_3) = x_2^2x_1 + x_2^2x_3 + x_2x_3^2 \]

So that

\[m_{21} = M_{21} + M_{12} \]

In general,

\[m_\lambda = \sum_{I: \mathcal{S}(I)=\lambda} M_I \]
Examples of Quasi-Symmetric Functions

Monomials:

\[M_{12}(x_1, x_2, x_3) = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 \]
\[M_{21}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 \]

So that

\[m_{21} = M_{21} + M_{12} \]

In general,

\[m_\lambda = \sum_{I: G(I) = \lambda} M_I \]

Fundamental:

\[L_{12} = M_{12} + M_{13} \]
Examples of Quasi-Symmetric Functions

Monomials:

\[M_{12}(x_1, x_2, x_3) = x_1x_2^2 + x_1x_3^2 + x_2x_3^2 \]
\[M_{21}(x_1, x_2, x_3) = x_1^2x_2 + x_1^2x_3 + x_2^2x_3 \]

So that

\[m_{21} = M_{21} + M_{12} \]

In general,

\[m_\lambda = \sum_{I: \mathcal{S}(I)=\lambda} M_I \]

Fundamental:

\[L_{12} = M_{12} + M_{1^3} \]
\[L_{13} = M_{13} + M_{1^22} + M_{121} + M_{1^4} \]
Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Consider a standard (skew-)tableau. A **descent** of SYT T is an integer i such that $i+1$ appears in a row of T above i. The descent set of T, $\text{Des}(T)$ – is the set of all descents of T. Example: (descents are marked in bold)

$$
\begin{array}{cccc}
1 & 4 & & \\
2 & 3 & & \\
\end{array} & \begin{array}{cccc}
2 & 4 & & \\
1 & 3 & & \\
\end{array} & \begin{array}{cccc}
2 & 3 & & \\
1 & 4 & & \\
\end{array} & \begin{array}{cccc}
3 & 4 & & \\
1 & 2 & & \\
\end{array} & \begin{array}{cccc}
1 & 3 & & \\
2 & 4 & & \\
\end{array}
$$
Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Consider a standard (skew-)tableau. A descent of SYT T is an integer i such that $i + 1$ appears in a row of T above i. The descent set of T, $\text{Des}(T)$ – is the set of all descents of T.

Example: (descents are marked in bold)

\[
\begin{array}{cccc}
1 & 4 & & \\
2 & 3 & & \\
\end{array} \quad \begin{array}{cccc}
2 & 4 & & \\
1 & 3 & & \\
\end{array} \quad \begin{array}{cccc}
2 & 3 & & \\
1 & 4 & & \\
\end{array} \quad \begin{array}{cccc}
3 & 4 & & \\
1 & 2 & & \\
\end{array} \quad \begin{array}{cccc}
1 & 3 & & \\
2 & 4 & & \\
\end{array}
\]

\[
\sum_{T: \text{SYT of shape } \lambda/\mu} L_{\text{Des}(T)}
\]

L
Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Consider a standard (skew-)tableau. A **descent** of SYT T is an integer i such that $i + 1$ appears in a row of T above i. The descent set of T, $\text{Des}(T)$ – is the set of all descents of T.

Example: (descents are marked in bold)

\[
\begin{align*}
1 & 4 & 2 & 3 \\
2 & 4 & 1 & 3 \\
2 & 3 & 1 & 4 \\
3 & 4 & 1 & 2 \\
1 & 3 & 2 & 4
\end{align*}
\]

\[
s_{\lambda/\mu} = \sum_{T: \text{SYT of shape } \lambda/\mu} L_{\text{Des}(T)}
\]

Example continues:

\[
s_{32/1} = L_{3,1} + L_{1,2,1} + L_{1,3} + 2L_{2,2}
\]
The **backsteps** of a permutation $w = (w_1, w_2, \ldots, w_n) \in S_n$ are $BS(w) = \{i \mid i + 1 \text{ is to the left of } i \text{ in } w\}$. Denote the reading word (left to right, top to bottom) of $T - w(T)$. Then

$$Des(T) = BS(w(T))$$
The **backsteps** of a permutation $w = (w_1, w_2, \ldots, w_n) \in S_n$ are $BS(w) = \{i \mid i + 1 \text{ is to the left of } i \text{ in } w\}$. Denote the reading word (left to right, top to bottom) of $T - w(T)$. Then

$$Des(T) = BS(w(T))$$

So, equivalently, one can look at the reading words of these tableaux: 1423, 2413, 2314, 3412, 1324 and record their backsteps.

$$s_{\lambda/\mu} = \sum_{T: \text{SYT of shape } \lambda/\mu} L_{BS(w(T))}$$
Recall that in Sym there is a number of identities expressing one type of function (elementary, complete, Schur) as a determinant of other (power sums, complete, etc.). For instance,

$$e_n = \frac{1}{n!} \begin{vmatrix} p_1 & 1 & \ldots & 0 & 0 \\ p_2 & p_1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ p_{n-1} & \ldots & \ldots & p_1 & n-1 \\ p_n & \ldots & \ldots & p_2 & p_1 \end{vmatrix}$$
Quasi-Determinants.

Consider an almost-triangular matrix with noncommutative entries a_{ij} and commutative off-diagonal entries b_j. Its quasideterminant (with respect to the bottom left element) is a sum of all weighted paths starting at the bottom row, ending at the first column, taking northward until encountering commutative off-diagonal entry and then turning east.

$$\begin{vmatrix}
a_{11} & b_1 & 0 \\
a_{21} & a_{22} & b_2 \\
a_{31} & a_{32} & a_{33}
\end{vmatrix} = a_{31} - \frac{a_{32}a_{11}}{b_1} - \frac{a_{33}a_{21}}{b_2} + \frac{a_{33}a_{22}a_{11}}{b_1b_2}$$
Define **elementary symmetric** functions Λ_n:

$$\Lambda_n = \frac{(-1)^{n-1}}{n} \begin{vmatrix} \psi_1 & 1 & 0 & \ldots & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{n-1} & \psi_{n-2} & \ldots & \ldots & n - 1 \\ \psi_n & \psi_{n-1} & \ldots & \ldots & \psi_1 \end{vmatrix}$$
Noncommutative Elementary and Homogeneous Symmetric Functions.

Define **elementary symmetric** functions Λ_n:

$$\Lambda_n = \frac{(-1)^{n-1}}{n} \begin{vmatrix} \psi_1 & 1 & 0 & \ldots & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{n-1} & \psi_{n-2} & \ldots & \ldots & n-1 \\ \psi_n & \psi_{n-1} & \ldots & \ldots & \psi_1 \end{vmatrix}$$

and **complete symmetric** functions S_n:

$$S_n = \frac{1}{n} \begin{vmatrix} \psi_1 & -(n-1) & 0 & \ldots & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{n-1} & \psi_{n-2} & \ldots & \ldots & -1 \\ \psi_n & \psi_{n-1} & \ldots & \ldots & \psi_1 \end{vmatrix}$$
Noncommutative Monomials.

Define **noncommutative monomial symmetric function** corresponding to a composition \(l = (i_1, \ldots, i_n) \) as a quasideterminant of an \(n \) by \(n \) matrix:

\[
M^l = \frac{(-1)^{n-1}}{n} \begin{vmatrix}
\psi_{i_n} & 1 & 0 & \ldots & 0 & 0 \\
\psi_{i_{n-1}+i_n} & \psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
& \vdots & \vdots & \ddots & \vdots & \vdots \\
\psi_{i_2+\ldots+i_n} & \ldots & \ldots & \ldots & \psi_{i_2} & n-1 \\
\psi_{i_1+\ldots+i_n} & \ldots & \ldots & \ldots & \psi_{i_1+i_2} & \psi_{i_1}
\end{vmatrix}
\]

where \(n = \ell(l) \).
Define noncommutative monomial symmetric function corresponding to a composition \(I = (i_1, \ldots, i_n) \) as a quasideterminant of an \(n \) by \(n \) matrix:

\[
M' = \frac{(-1)^{n-1}}{n} \begin{vmatrix}
\Psi_{i_n} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_n} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\Psi_{i_2+\ldots+i_n} & \ldots & \ldots & \ldots & \Psi_{i_2} & n - 1 \\
\Psi_{i_1+\ldots+i_n} & \ldots & \ldots & \ldots & \Psi_{i_1+i_2} & \Psi_{i_1}
\end{vmatrix}
\]

where \(n = \ell(I) \). In particular

\[
M^{1^n} = \Lambda_n
\]

where \(\Lambda_n \) is an elementary symmetric function.
Define **noncommutative monomial symmetric function** corresponding to a composition $I = (i_1, \ldots, i_n)$ as a quasideterminant of an n by n matrix:

$$M^I = \frac{(-1)^{n-1}}{n} \left| \begin{array}{cccccc}
\Psi_{i_1} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_n} & \Psi_{i_{n-1}+i_n} & \Psi_{i_{n-1}} & 2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\Psi_{i_2+i_n} & \ldots & \ldots & \ldots & \Psi_{i_2} & n-1 \\
\Psi_{i_1+i_n} & \ldots & \ldots & \ldots & \Psi_{i_1+i_2} & \Psi_{i_1} \\
\end{array} \right|$$

where $n = \ell(I)$. If one were to allow power sums to commute, say $\chi(\Psi_k) = p_k$, $\forall k$, i.e. projecting from NSym to Sym, then

$$m_\lambda = \sum_{I: \mathcal{S}(I) = \lambda} \chi(M^I)$$
Noncommutative Fundamental and Ribbon Schur Functions.

Define **noncommutative fundamental** symmetric functions mimicking the definition in **QSym**

\[L^I = \sum_{J \geq I} M^J \]

and **ribbon Schur functions** by Jacobi-Trudi formula using quasi-determinants:

\[R^I = (-1)^{\ell(I)-1} \]

\[
\begin{array}{cccccc}
S_{i_n} & 1 & 0 & \ldots & \ldots \\
S_{i_n+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
S_{i_n+\ldots+i_2} & S_{i_{n-1}+\ldots+i_2} & \ldots & S_{i_2} & 1 \\
S_{i_n+\ldots+i_1} & S_{i_{n-1}+\ldots+i_1} & \ldots & \ldots & S_{i_1}
\end{array}
\]
Genocchi Backsteps.

The **G-backsteps** of a permutation \(w = (w_1, w_2, \ldots, w_n) \in S_n \) are positions of \(GBS(w) = \{ i \mid i + 1 \text{ is to the left of } i \text{ in } w \} \) minus 1.

Example:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 3 & 4 & 1 \\
1 & 3 & 2 & 4 & 3 & 4 & 1 \\
2 & 1 & 4 & 3 & 2 & 1 & 4 \\
3 & 4 & 1 & 2 & 3 & 1 & 2 \\
\end{array}
\]

GBS(1423) = \{3\}
GBS(2413) = \{2, 3\}
GBS(2314) = \{2\}
GBS(3412) = \{3\}
GBS(1324) = \{2\}
Genocchi Backsteps.

The **G-backsteps** of a permutation \(w = (w_1, w_2, \ldots, w_n) \in S_n \) are **positions** of \(GBS(w) = \{ i \mid i + 1 \text{ is to the left of } i \text{ in } w \} \) minus 1.

Example

\[
\begin{align*}
1 & 4 & 2 & 3 \\
2 & 4 & 1 & 3 \\
2 & 3 & 1 & 4 \\
3 & 4 & 1 & 2 \\
1 & 3 & 2 & 4
\end{align*}
\]

\[
\begin{align*}
GBS(1423) &= \{3\} \\
GBS(2413) &= \{2, 3\} \\
GBS(2314) &= \{2\} \\
GBS(3412) &= \{3\} \\
GBS(1324) &= \{2\}
\end{align*}
\]
Expansion of Ribbon Schur in Noncommutative Fundamental.

\[R^I = \sum_{T: \text{SYT of shape } I} L^{GBS(w((T))} \]
Expansion of Ribbon Schur in Noncommutative Fundamental.

\[R^I = \sum_{T: \text{SYT of shape } I} L_{GBS}(w(T)) \]

Example:

\[R^{2,2} = 2L^{3,1} + L^{2,1,1} + 2L^{2,2} \]