# Numerical Aspects of $\pi$-line reconstruction algorithms in tomography 

Adel Faridani and Ryan Hass

Department of Mathematics
Oregon State University
faridani@math.oregonstate.edu
hassr@math.oregonstate.edu
http://people.oregonstate.edu/ faridana/ June 21, 2011

## Tomography with sources on a curve

Data: Measurements of the divergent beam transform

$$
\begin{aligned}
\mathcal{D} f(\mathbf{y}, \boldsymbol{\theta}) & =\int_{0}^{\infty} f(\mathbf{y}+t \boldsymbol{\theta}) d t . \\
\mathbf{y}(s) & =\text { source curve. }
\end{aligned}
$$

## Example 1: 2D fan-beam tomography


$\mathbf{y}(s)=R(\cos (s), \sin (s))$
Let $S$ denote the interior of the source circle.

## Example 2: 3D Helical Tomography



Source Curve: $\mathbf{y}(s)=\left[R \cos (s), R \sin (s), \frac{P}{2 \pi} s\right]$
Let $S$ denote the interior of the helix cylinder. $\operatorname{supp}(f) \subset S$.

## Example 2: 3D Helical Tomography



Which source positions are needed for reconstruction at a point x ?

## $\pi$-line and $\pi$-interval



A so-called $\pi$-line through x intersects the source curve twice within one turn.

## $\pi$-line and $\pi$-interval



A so-called $\pi$-line through x intersects the source curve twice within one turn.
For the helix there is a unique $\pi$-line through x .

## $\pi$-line and $\pi$-interval



A $\pi$-line through x gives rise to the $\pi$-interval $I_{\pi}(\mathbf{x})=\left[s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right]$.

## $\pi$-line and $\pi$-interval



A $\pi$-line through x gives rise to the $\pi$-interval $I_{\pi}(\mathbf{x})=\left[s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right]$.
Sources $\mathbf{y}(s)$ with $s \in I_{\pi}(\mathbf{x})$ lie on the green arc.

## Non-uniqueness of $\pi$-lines in 2D

For $\mathbf{y}(s)=R(\cos s, \sin s)$, we lack uniqueness of $\pi$-lines. Any line through x may be chosen as the $\pi$-line of x , denoted by $L_{\pi}(\mathbf{x})$.

$I_{\pi}(\mathrm{x})$ may be chosen to correspond to either of the two arcs.

## $\pi$-line reconstruction formulas

Definition $1 A \pi$-line reconstruction formula uses for reconstruction at a point x only data from sources within the $\pi$-interval of x .


## Example: Backprojection-filtration

Define the Hilbert transform of $f$ in direction $\theta \in S^{n-1}$ as

$$
H_{\boldsymbol{\theta}} f(\mathbf{x})=\frac{1}{\pi} \int_{\mathbf{R}} \frac{f(\mathbf{x}-t \boldsymbol{\theta})}{t} d t .
$$

Then
$\left.\frac{-1}{2 \pi} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\beta}(s, \mathbf{x}))\right|_{q=s} d s=H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})$
$\boldsymbol{\beta}(s, \mathbf{x})=$ unit vector pointing from $\mathbf{y}(s)$ to $\mathbf{x}$.
Right-hand side is Hilbert transform along the $\pi$-line of x .
Originally due to Gel'fand and Graev (1991). Basis for backprojection-filtration algorithm (Zou and Pan (2004)).

## Example: Filtered backprojection

$$
\begin{gathered}
f(\mathbf{x})=\left.\frac{-1}{2 \pi^{2}} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \int_{0}^{2 \pi} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\Theta}(s, \mathbf{x}, \gamma))\right|_{q=s} \frac{d \gamma d s}{\sin \gamma} \\
\boldsymbol{\Theta}(s, \mathbf{x}, \gamma)=\cos (\gamma) \boldsymbol{\beta}(s, \mathbf{x})+\sin (\gamma) \boldsymbol{\beta}^{\perp}(s, \mathbf{x}) . \\
\boldsymbol{\beta}(s, \mathbf{x})=\text { unit vector pointing from } \mathbf{y}(s) \text { to } \mathbf{x} .
\end{gathered}
$$

(Katsevich 02, 04, Katsevich \& Kapralov 07)

## Example: Filtered backprojection

$$
\begin{gathered}
f(\mathbf{x})=\left.\frac{-1}{2 \pi^{2}} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \int_{0}^{2 \pi} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\Theta}(s, \mathbf{x}, \gamma))\right|_{q=s} \frac{d \gamma d s}{\sin \gamma} \\
\boldsymbol{\Theta}(s, \mathbf{x}, \gamma)=\cos (\gamma) \boldsymbol{\beta}(s, \mathbf{x})+\sin (\gamma) \boldsymbol{\beta}^{\perp}(s, \mathbf{x}) . \\
\boldsymbol{\beta}(s, \mathbf{x})=\text { unit vector pointing from } \mathbf{y}(s) \text { to } \mathbf{x} .
\end{gathered}
$$

(Katsevich 02, 04, Katsevich \& Kapralov 07)
Both formulas hold in dimensions 2 and 3 for a large family of source curves.

In dimension 3, $\boldsymbol{\beta}^{\perp}$ has to be carefully chosen (Katsevich 02, 04).

## $\kappa$-Plane and Katsevich's formula

$$
\begin{aligned}
& f(\mathbf{x})=\left.\frac{-1}{2 \pi^{2}} \int_{I_{\pi}(\mathbf{x})} \frac{1}{\mathbf{\Theta}(s, \mathbf{x}, \gamma)=\operatorname{los}(\gamma) \mid} \int_{0}^{2 \pi} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\Theta}(s, \mathbf{x}, \gamma))\right|_{q=s} \frac{d \gamma d s}{\sin \gamma} \\
& \hline \mathbf{x})+\sin (\gamma) \boldsymbol{\beta}^{\perp}(s, \mathbf{x}) .
\end{aligned}
$$

## Characteristics of $\pi$-line formulas

- Flexibility in choosing $\pi$-lines in 2D.


## Example: Orthogonal-long $\pi$-lines

$L_{\pi}(\mathbf{x})$ is orthogonal to $\mathbf{x}$ and $I_{\pi}(\mathbf{x})=\left[s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right]$ corresponds to the longer arc.


Superior performance for $R$ close to 1 !

## Comparison for $\mathbf{R}=\mathbf{1 . 0 1}$



## Characteristics of $\pi$-line formulas

- Flexibility in choosing $\pi$-lines in 2D.


## Characteristics of $\pi$-line formulas

- Flexibility in choosing $\pi$-lines in 2D.
- Region of Backprojection not equal to $S$. $\operatorname{RBP}(s)=$ set of all points where data from source $\mathbf{y}(s)$ is used for reconstruction $=\left\{\mathbf{x}: s \in I_{\pi}(\mathbf{x})\right\}$. RBP(s) depends on the family of $\pi$-lines.


## Characteristics of $\pi$-line formulas

- Flexibility in choosing $\pi$-lines in 2D.
- Region of Backprojection not equal to $S$. $\operatorname{RBP}(s)=$ set of all points where data from source $\mathbf{y}(s)$ is used for reconstruction $=\left\{\mathrm{x}: s \in I_{\pi}(\mathrm{x})\right\}$. RBP(s) depends on the family of $\pi$-lines.
- Comet tail artifacts.


## Comet tail artifacts



Reconstructions from real data. The reconstruction from the $\pi$-line filtered backprojection formula (left) shows a large comet tail artifact that is not present in a standard reconstruction (right).

## Comet tail artifacts



Reconstructions from real data. The reconstruction from the $\pi$-line filtered backprojection formula (left) shows a large comet tail artifact that is not present in a standard reconstruction (right).
In this case most of the artifact is due to a previously undetected data misalignment in the fan angle. The $\pi$-line formula is much more sensitive to such misalignments.

## Finding the correct alignment



The correct alignment (about 0.19 detector widths) corresponds here to a minimum of the total variation $T V(f)=\int|\nabla f(\mathbf{x})| d \mathbf{x}$ ( here of a subregion of the image).

## Reconstruction with corrected alignment



The comet tail artifact is much reduced.

## However ...

... a small comet tail artifact may remain even with well-aligned data.

Exact smooth function

$$
x_{3}=0
$$



Original and 3D reconstruction displayed in plane $x_{3}=0$. Display window is $[-1 . e-4,1 . e-4]$ while the image maximum is 1 .

## A first heuristic principle

## The comet tail artifact is related to the boundary of the region of backprojection.

This motivated further study of RBP(s) ...

We begin with additional examples of families of $\pi$-lines in 2 D.

## Parallel $\pi$-lines



The $\pi$-line of a point x is the vertical line through x .
The $\pi$-interval corresponds to the right arc.
Points to the left of $\mathbf{y}(s)$ are in $R B P(s)$.

## RBP for parallel $\pi$-lines



## Orthogonal-long $\pi$-lines



No two points have the same $\pi$-interval. The set $R B P(s)$ and its boundary are not immediately obvious.

## Fan-type $\pi$-lines


$s_{t}(\mathbf{x})=2 \pi$ for all $\mathbf{x} \in S$.
$\operatorname{RBP}(0)=\mathrm{S}$, so $\partial \operatorname{RBP}(0) \cap S$ is empty.

## Some theory for $\partial \mathbf{R B P}(\mathbf{s})$

Let $\mathbf{x} \in S$ and let $s_{b}, s_{t}$ be continuous functions of $\mathbf{x}$.

- $\mathbf{x} \in \partial \operatorname{RBP}(s) \Rightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\} \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x})$
- $\mathbf{x} \in \partial \operatorname{RBP}\left(s_{b}(\mathbf{x})\right) \cup \partial \operatorname{RBP}\left(s_{t}(\mathbf{x})\right)$ for all $\mathbf{x} \in S$.


## Some theory for $\partial \mathbf{R B P}(\mathbf{s})$

Let $\mathbf{x} \in S$ and let $s_{b}, s_{t}$ be continuous functions of $\mathbf{x}$.

- $\mathbf{x} \in \partial \operatorname{RBP}(s) \Rightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\} \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x})$
- $\mathbf{x} \in \partial \operatorname{RBP}\left(s_{b}(\mathbf{x})\right) \cup \partial \operatorname{RBP}\left(s_{t}(\mathbf{x})\right)$ for all $\mathbf{x} \in S$.

Property A. For all $s: \mathbf{x} \in \partial \operatorname{RBP}(s) \Leftrightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\}$.

## Some theory for $\partial \mathbf{R B P}(\mathbf{s})$

Let $\mathbf{x} \in S$ and let $s_{b}, s_{t}$ be continuous functions of $\mathbf{x}$.

- $\mathbf{x} \in \partial \operatorname{RBP}(s) \Rightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\} \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x})$
- $\mathbf{x} \in \partial \operatorname{RBP}\left(s_{b}(\mathbf{x})\right) \cup \partial \operatorname{RBP}\left(s_{t}(\mathbf{x})\right)$ for all $\mathbf{x} \in S$.

Property A. For all $s: \mathbf{x} \in \partial \operatorname{RBP}(s) \Leftrightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\}$. Property B. Any two $\pi$-lines either coincide or are disjoint in $S$.

## Some theory for $\partial \mathbf{R B P}(\mathbf{s})$

Let $\mathbf{x} \in S$ and let $s_{b}, s_{t}$ be continuous functions of $\mathbf{x}$.

- $\mathbf{x} \in \partial \operatorname{RBP}(s) \Rightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\} \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x})$
- $\mathbf{x} \in \partial \operatorname{RBP}\left(s_{b}(\mathbf{x})\right) \cup \partial \operatorname{RBP}\left(s_{t}(\mathbf{x})\right)$ for all $\mathbf{x} \in S$.

Property A. For all $s: \mathbf{x} \in \partial \operatorname{RBP}(s) \Leftrightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\}$. Property B. Any two $\pi$-lines either coincide or are disjoint in
$S$.
Property A and B hold for the parallel $\pi$-lines and the helix.
Only Property A holds for orthogonal-long $\pi$-lines.
Only Property B holds for fan-type $\pi$-lines.

## Some theory for $\partial \mathbf{R B P}(\mathbf{s})$

Let $\mathbf{x} \in S$ and let $s_{b}, s_{t}$ be continuous functions of $\mathbf{x}$.

- $\mathbf{x} \in \partial \operatorname{RBP}(s) \Rightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\} \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x})$
- $\mathbf{x} \in \partial \operatorname{RBP}\left(s_{b}(\mathbf{x})\right) \cup \partial \operatorname{RBP}\left(s_{t}(\mathbf{x})\right)$ for all $\mathbf{x} \in S$.

Property A. For all $s: \mathbf{x} \in \partial \operatorname{RBP}(s) \Leftrightarrow s \in\left\{s_{b}(\mathbf{x}), s_{t}(\mathbf{x})\right\}$.
Property $\mathbf{B}$. Any two $\pi$-lines either coincide or are disjoint in
$S$.
Property $A$ and $B$ hold for the parallel $\pi$-lines and the helix.
Only Property A holds for orthogonal-long $\pi$-lines.
Only Property B holds for fan-type $\pi$-lines.
Proposition 1 If both Property A and B hold, then
$\partial R B P(s) \cap S$ equals the intersection of $S$ with the union of all $\pi$-lines that contain $\mathrm{y}(s)$.

## RBP for parallel $\pi$-lines



## $\partial \mathbf{R B P}(s)$ for orthog.-long $\pi$-lines

One can show that Property A holds. Hence for $\mathrm{x} \in S$,

$$
\begin{aligned}
\mathbf{x} \in \partial \operatorname{RBP}(s) & \Leftrightarrow \mathbf{y}(s) \in L_{\pi}(\mathbf{x}) \\
& \Leftrightarrow \mathbf{x} \perp(\mathbf{x}-\mathbf{y}(s)) \\
& \Leftrightarrow|\mathbf{x}-\mathbf{y}(s) / 2|=|\mathbf{y}(s)| / 2
\end{aligned}
$$

Hence $\operatorname{RBP}(s)$ is the circle with center $\mathbf{y}(s) / 2$ and radius $|\mathbf{y}(s)| / 2$.

## RBP for orth.-long $\pi$-lines

For orthogonal-long $\pi$-lines, $R B P(s)$ contains all points outside the disk $D(s)=\{\mathbf{x}:|\mathbf{x}-\mathbf{y}(s) / 2|<|\mathbf{y}(s) / 2|\}$.


## Location of artifact I



Heuristic principle. A contribution to the artifact will occur at intersections (red) of the boundary of RBP(s) with lines connecting $\mathbf{y}(s)$ and points in the support of the function (blue).

## Location of artifact II

For a point $\mathrm{x}_{0} \in S$ we define the set $\Gamma_{\mathbf{x}_{0}}$ by
$\Gamma_{\mathbf{x}_{0}}=\left\{\mathbf{x} \in S \mid \exists s: \mathbf{x} \in \partial R B P(s)\right.$ and $\mathbf{x}_{0}, \mathbf{x}$, and $\mathbf{y}(s)$ are collinear $\}$
Loosely speaking, $\Gamma_{\mathbf{x}_{0}}$ gives the support of the artifact that would be caused by $f(\mathrm{x})=\delta\left(\mathrm{x}-\mathrm{x}_{0}\right)$.

The location of the full artifact is then given by

$$
\Gamma=\bigcup_{\mathbf{x}_{0} \in \operatorname{Supp}(f)} \Gamma_{\mathbf{x}_{0}} .
$$

## Equivalent characterization

Recall:
$\Gamma_{\mathbf{x}_{0}}=\left\{\mathbf{x} \in S \mid \exists s: \mathbf{x} \in \partial R B P(s)\right.$ and $\mathbf{x}_{0}, \mathbf{x}$, and $\mathbf{y}(s)$ are collinear $\}$.

Proposition 2 Let $s_{b}, s_{t}$ be continuous functions of x . Then

$$
\Gamma_{\mathbf{x}_{0}}=\left\{\mathbf{x} \mid \mathbf{x}_{0} \in L_{\pi}(\mathbf{x})\right\} .
$$

## Equivalent characterization

Recall:
$\Gamma_{\mathbf{x}_{0}}=\left\{\mathbf{x} \in S \mid \exists s: \mathbf{x} \in \partial R B P(s)\right.$ and $\mathbf{x}_{0}, \mathbf{x}$, and $\mathbf{y}(s)$ are collinear $\}$.

Proposition 3 Let $s_{b}, s_{t}$ be continuous functions of x . Then

$$
\Gamma_{\mathbf{x}_{0}}=\left\{\mathbf{x} \mid \mathbf{x}_{0} \in L_{\pi}(\mathbf{x})\right\} .
$$

The artifact occurs at all points X whose $\pi$-lines intersect the support of $f$.

## Artifact for orthog.-long $\pi$-lines

For $\mathbf{x}_{0}, \mathbf{x} \in S$,

$$
\begin{aligned}
\mathrm{x}_{0} \in L_{\pi}(\mathrm{x}) & \Leftrightarrow \mathrm{x} \perp\left(\mathrm{x}-\mathrm{x}_{0}\right) \\
& \Leftrightarrow\left|\mathrm{x}-\mathrm{x}_{0} / 2\right|=\left|\mathrm{x}_{0}\right| / 2
\end{aligned}
$$

Hence $\Gamma_{\mathrm{x}_{0}}$ is the circle with center $\mathrm{x}_{0} / 2$ and radius $\left|\mathrm{x}_{0}\right| / 2$.

## Orthogonal-long $\pi$-lines



Reconstruction with artifact (left) and predicted support of artifact (right).

## Special cases

Corollary If the family of $\pi$-lines satisfies Property B, then

$$
\Gamma_{\mathbf{x}_{0}}=L_{\pi}\left(\mathbf{x}_{0}\right) \cap S \quad \text { for all } \mathbf{x}_{0} \in S .
$$

## Special cases

Corollary If the family of $\pi$-lines satisfies Property B, then

$$
\Gamma_{\mathbf{x}_{0}}=L_{\pi}\left(\mathbf{x}_{0}\right) \cap S \quad \text { for all } \mathbf{x}_{0} \in S .
$$

In such a case, for example the parallel $\pi$-lines and the helix, the artifact will appear on the union of all $\pi$-lines of points in $S$ that intersect the support of $f$.

## Comet tail artifact for parallel $\pi$-lines



## Comet tail artifact for the helix



The structure of the artifact is not apparent when shown in a plane (left) but is clear when shown on a surface of $\pi$-lines called a chip (right).

## Helical Chips (Izen 07)



$$
C(t)=\left\{\mathbf{x} \in S: I_{\pi}(\mathbf{x})=[t-\alpha, t+\alpha], 0<\alpha<\pi\right\}
$$

## Relationship to Hilbert image

Recall

$$
\left.\frac{-1}{2 \pi} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\beta}(s, \mathbf{x}))\right|_{q=s} d s=H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})
$$

## Relationship to Hilbert image

Recall
$\left.\frac{-1}{2 \pi} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\beta}(s, \mathbf{x}))\right|_{q=s} d s=H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})$
$H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)} f(\mathbf{x}) \text { integrates along the } \pi \text {-line of } \mathbf{x} \text {. Hence }, ~}^{\text {. }}$ $H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})=0$ if $L_{\pi}(\mathbf{x})$ does not intersect $\operatorname{supp}(f)$.

## Relationship to Hilbert image

Recall
$\left.\frac{-1}{2 \pi} \int_{I_{\pi}(\mathbf{x})} \frac{1}{|\mathbf{x}-\mathbf{y}(s)|} \frac{\partial}{\partial q} \mathcal{D} f(\mathbf{y}(q), \boldsymbol{\beta}(s, \mathbf{x}))\right|_{q=s} d s=H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})$
$H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)} f(\mathbf{x}) \text { integrates along the } \pi \text {-line of } \mathbf{x} \text {. Hence }, ~}^{\text {. }}$ $H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathbf{x}\right)}} f(\mathbf{x})=0$ if $L_{\pi}(\mathbf{x})$ does not intersect $\operatorname{supp}(f)$.

The 'Hilbert image' $H_{\boldsymbol{\beta}_{\left(s_{b}(\mathbf{x}), \mathrm{x}\right)}} f(\mathbf{x})$ and the comet tail artifact have the same support.

## Summary

- $\pi$-line formulas hold in 2D and 3D and generate filtered backprojection (FBP) and backprojection-filtration algorithms based on exact inversion formulas.
- In 2D, the $\pi$-line FBP algorithm with orthogonal-long $\pi$-lines outperforms standard FBP when the x-ray source is close to the object.
- High sensitivity to data misalignment causes strong comet tail artifacts. Can be used in some cases to determine the correct alignment.
- Provided some theory for the region of backprojection.
- Determined the support of the comet tail artifact, which equals the support of the Hilbert image.


## Some references

A. Faridani, R. Hass and D.C. Solmon, J. Phys. Conf. Ser., 124 (2008) 012024
http://iopscience.iop.org/1742-6596/124/1/012024
I. Gelfand and M. Graev, Func. Anal. Appl. 25(1991), 1-5
R. Hass, PhD thesis, 2009
http://ir.library.oregonstate.edu/xmlui/handle/1957/13819
S. Izen, Proc. Amer. Math. Soc. 125 (2007), 269-276
A. Katsevich, Adv. Appl. Math. 32(2004), 681-697
A. Katsevich and A. Kapralov, SIAM J. Appl. Math. 68(2007),

334-353
F. Noo et al., Phys. Med. Biol. 47(2002), 2525-2546
Y. Zou and X. Pan, Phys. Med. Biol. 49(2004), 941-959

