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The problem

We consider an inverse problem solved by the optimization of

min
m

1

2

∑
j

‖P>uj − dj‖2 +R(m)

s.t A(m)uj = Qj j = 1, . . . , Ns

A(m) - a discretization of a parameter dependent
differential operator

Qj - source

P - observation matrix

uj - field

dj - data vector

R(m) - regularization



The problem

min
m

1

2

∑
j

‖P>uj − dj‖2 +R(m)

s.t A(m)uj = Qj j = 1, . . . , Ns

The number of sources is LARGE
The discretized PDE A(m) is large and ill-conditioned

Special structure - all sources share the same receivers



The problem

Medical examples include

Electrical Impedance Tomography (EIT)

Magnetic Induction Tomography (MIT)

Microwave Imaging

3D Ultrasound

Geophysical examples include

DC resistivity

Electromagnetics

Seismic imaging



Electrical Impedance Tomography



Magnetic Induction Tomography



Solution technique

min
m

1

2

∑
j

‖P>uj − dj‖2 +R(m)

s.t A(m)uj = Qj j = 1, . . . , Ns

Impossible to store all fields, use unconstrained approach [H.

Oldenburg, Ascher 2000]

min
m
J (m) =

1

2

Ns∑
j=1

‖P>A(m)−1Qj − dj‖2 +R(m)



Solution technique

min
m
J (m) =

1

2

Ns∑
j=1

‖P>A(m)−1Qj − dj‖2 +R(m)

The gradient

Ns∑
j=1

−G(m,uj)
>A(m)−>P (P>A(m)−1Qj − dj) +∇R(m)

where G(m,uj) = ∇m(A(m)uj)



Solution technique

Computing the misfit and gradient

Set misfit = 0 ∇misfit = 0

For j = 1, . . . , Ns

Solve A(m)uj = Qj

rj = P>uj − dj

misfit← misfit + r>j rj
Solve A>λ = Prj
∇misfit← ∇misfit−G>λ

Computation of misfit and its derivative require 2Ns solutions
of the forward/adjoint problem.

For large scale problems difficult if not impossible



Solution technique

Set misfit = 0 ∇misfit = 0

For j = 1, . . . , Ns

Solve

expensive!︷ ︸︸ ︷
A(m)uj = Qj

rj = P>uj − dj

misfit← misfit + r>j rj

Solve

expensive︷ ︸︸ ︷
A>λ = Prj

∇misfit← ∇misfit−G>λ



Solution technique

Current methods to deal with multiple rhs

Factor the system if possible [Pratt, 2000, H. & Oldenburg,

2006]

Almost factor the system (ILU, domain decomposition
with large domains) [Ascher & van den Doel, 2009]

Recycle right hand sides [Kilmer & de Sturler 2006]

Issues - complexity, storage



Solution technique

For the computation of a Gauss-Newton step similar
calculations are needed.

Typically, avoid Gauss-Newton and use L-BFGS, nonlinear CG
and steepest descent (storage).

Converges can be slow



A different point of view

The difficulty: computing the misfit.
Can we do this cheaper?

Recall that

misfit =
1

2

∑
j

‖P>A(m)−1Qj − dj‖2

=
1

2
‖P>A(m)−1Q−D‖2F =

=
1

2
trace

(
(P>A(m)−1Q−D)>(P>A(m)−1Q−D)

)
=

1

2
Ew‖(P>A(m)−1Q−D)w‖2

where w is a random variable with

E(w) = 0 Cov(w) = I
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A different point of view

The original (deterministic) optimization problem is therefor
equivalent to the (stochastic) optimization problem

m̂ = arg min
m

1

2

Ns∑
j=1

‖P>A(m)−1Qj − dj‖2 +R(m)

= arg min
m

1

2
Ew‖P>A(m)−1Qw −Dw‖2 +R(m)

So What?
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A different point of view

m̂ = arg min
m

1

2
Ew‖P>A(m)−1Qw −Dw‖2 +R(m)

This is a stochastic optimization problem [Shapiro 09] and
has been treated extensively in the literature

We can capitalize on the structure of the problem to
obtain cheap algorithms

Main point - Given a realization wi a Single PDE
solve is required to evaluate misfit(m;wi)



A different point of view

m̂ = arg min
m

1

2
Ew‖P>A(m)−1Qw −Dw‖2 +R(m)

Two methods for stochastic optimization [ Shapiro 05]

SAA - Sample Average Approximation
Discretize the Expectation THEN optimize

SA - Stochastic Approximation
Optimize AND Discretize
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Stochastic Optimization

SAA - Sample Average Approximation
Approximate the expectation using Monte-Carlo

min
m

∑
j

1

2
‖P>A(m)−1Qwj −Dwj‖2 +R(m)

SA - Stochastic approximation
for j = 1, . . .

ŝ = arg(aprox)min
1
2
‖P>A(mj + s)−1Qwj −Dwj‖2 +R(s)

sj+1 = average(s1:j , ŝ)

end
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SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

min
m
J (m;w) =

∑
j

1

2
‖P>A(m)−1Qwj −Dwj‖2 +R(m)

How to pick w?
How many w’s?

Any distribution with E(w) = 0 and Cov(w) = I has

E
(
w>Hw

)
= trace(H)

Choose the distribution such that [Hutchinson 93]

Var
(
w>Hw

)
→ min

w = rand(±1)



SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

min
m
J (m;w) =

∑
j

1

2
‖P>A(m)−1Qwj −Dwj‖2 +R(m)

How to pick w?

How many w’s?

The number of w’s depends on the variability of the unbiased
estimator

E(J (m;w) ≈ 1

N

N∑
j=1

J (m;wj)

and the accuracy we would like to obtain.



SAA - Example

Generate A(m) by discretizing the PDE

∇ · exp(m)∇u

Assume 1089 sources (right hand sides) and 1089 receivers
Look at

f(α) =
1

2N

∑
j

‖P>A(m+ αs)−1Q−D‖2F



SAA - Sample Average Approximation

1 vector 10 vectors

25 vectors 50 vectors



SAA - Sample Average Approximation

Controlling the quality of the approximation can be done by
repeating the minimization with different samples

For our problems we have found that a small sample size may
be sufficient [Also Golub & Bai, 99, Golub & von Matt 98]

Advantage of SAA - separate the stochastic part from the
optimization

Disadvantage of SAA - number of realization may be too large



SA - Stochastic Approximation

Stochastic approximation
for j = 1, . . .

ŝ = arg(aprox)min
1
2
‖P>A(mj + s)−1Qwj −Dwj‖2 +R(s)

sj+1 = average(s1:j , ŝ)

end

Questions

How approximate?

What methods can be used?

Convergence?



SA - Stochastic Approximation

Proof that it works only on various flavors of steepest
descent (recent work [Nemirovski and Shaoiro])

Observed in practice - works well for L-BFGS and
Gauss-Newton [Schraudolph, Yu & Gunter 10]

Much interest in machine learning (online algorithms)



An illustrative example

Model problem - Electrical Impedance Tomography

min
m
‖P> (G>S(m)G)−1Q−D‖2F +

α

2
‖Gm‖2



An illustrative example

Assume 1089 sources and 1089 receivers.

Mesh 32× 32× 32

Number of unknowns (fields) 35, 684, 352

Computation of full forward, roughly, 2 hours

Use standard, SAA and SA to solve the problem.



An illustrative example

Method # iterations # rhs/iter Cost (pde solves)
Standard 37 1089 80, 293

SSA 45 10 2757
SA 453 1 923

Computational saving of factor 100

‖mSAA −mStandard‖2/‖mStandard‖2 = 2.1× 10−2

‖mSA −mStandard‖2/‖mStandard‖2 = 3.2× 10−2



Inversion parameters

α = 10−4

Starting model - m = 10−2S/m
Converges - solution does not change between iterations



Recovered solution



Sequential SAA

How to choose the size of the random batch?
Use continuation in batch-size
Example - EIT in 2D



Sequential SAA

1 src 2 src 3 src

4 src 5 src 6 src



Conclusions

Develop a new point of view for multi-source data

Can solve the problem in a fraction of the cost of the
original problem

Key - stochastic trace estimators and stochastic
optimization

Applications in other parameter estimation problems with
many sources


