Imaging with multi-source experiments

Eldad Haber

Outline

The problem
Standard solution techniques
Reformulation and some new insight
Numerical experiments
Extensions to moving sources/receivers

The problem

We consider an inverse problem solved by the optimization of

$$
\begin{array}{cl}
\min _{m} & \frac{1}{2} \sum_{j}\left\|P^{\top} u_{j}-d_{j}\right\|^{2}+R(m) \\
\text { s.t } & A(m) u_{j}=Q_{j} \quad j=1, \ldots, N_{s}
\end{array}
$$

- $A(m)$ - a discretization of a parameter dependent differential operator
- Q_{j} - source

■ P - observation matrix

- u_{j} - field
- d_{j} - data vector
- $R(m)$ - regularization

The problem

$\begin{aligned} \min _{m} & \frac{1}{2} \sum_{j}\left\|P^{\top} u_{j}-d_{j}\right\|^{2}+R(m) \\ \text { s.t } & A(m) u_{j}=Q_{j} \quad j=1, \ldots, N_{s}\end{aligned}$

- The number of sources is $L A R G E$
- The discretized PDE $A(m)$ is large and ill-conditioned
- Special structure - all sources share the same receivers

The problem

Medical examples include

- Electrical Impedance Tomography (EIT)
- Magnetic Induction Tomography (MIT)
- Microwave Imaging
- 3D Ultrasound

Geophysical examples include

- DC resistivity
- Electromagnetics
- Seismic imaging

Electrical Impedance Tomography

Magnetic Induction Tomography

Solution technique

$$
\begin{array}{cl}
\min _{m} & \frac{1}{2} \sum_{j}\left\|P^{\top} u_{j}-d_{j}\right\|^{2}+R(m) \\
\text { s.t } & A(m) u_{j}=Q_{j} \quad j=1, \ldots, N_{s}
\end{array}
$$

Impossible to store all fields, use unconstrained approach [H. Oldenburg, Ascher 2000]

$$
\min _{m} \mathcal{J}(m)=\frac{1}{2} \sum_{j=1}^{N_{s}}\left\|P^{\top} A(m)^{-1} Q_{j}-d_{j}\right\|^{2}+R(m)
$$

Solution technique

$$
\min _{m} \mathcal{J}(m)=\frac{1}{2} \sum_{j=1}^{N_{s}}\left\|P^{\top} A(m)^{-1} Q_{j}-d_{j}\right\|^{2}+R(m)
$$

The gradient

$$
\sum_{j=1}^{N_{s}}-G\left(m, u_{j}\right)^{\top} A(m)^{-\top} P\left(P^{\top} A(m)^{-1} Q_{j}-d_{j}\right)+\nabla R(m)
$$

$$
\text { where } G\left(m, u_{j}\right)=\nabla_{m}\left(A(m) u_{j}\right)
$$

Solution technique

Computing the misfit and gradient

- Set misfit $=0 \quad \nabla$ misfit $=0$
- For $j=1, \ldots, N_{s}$
- Solve $A(m) u_{j}=Q_{j}$
- $r_{j}=P^{\top} u_{j}-d_{j}$
- misfit \leftarrow misfit $+r_{j}^{\top} r_{j}$
- Solve $A^{\top} \lambda=P r_{j}$
- ∇ misfit $\leftarrow \nabla$ misfit $-G^{\top} \lambda$

Computation of misfit and its derivative require $2 N_{s}$ solutions of the forward/adjoint problem.

For large scale problems difficult if not impossible

Solution technique

■ Set misfit $=0 \quad \nabla$ misfit $=0$
■ For $j=1, \ldots, N_{s}$
expensive!

- Solve $\overparen{A(m) u_{j}=Q_{j}}$
- $r_{j}=P^{\top} u_{j}-d_{j}$
- misfit \leftarrow misfit $+r_{j}^{\top} r_{j}$
expensive
- Solve $A^{\top} \lambda=P r_{j}$
- ∇ misfit $\leftarrow \nabla$ misfit $-G^{\top} \lambda$

Solution technique

Current methods to deal with multiple rhs

- Factor the system if possible [Pratt, 2000, H. \& Oldenburg, 2006]
- Almost factor the system (ILU, domain decomposition with large domains) [Ascher \& van den Doel, 2009]
- Recycle right hand sides [Kilmer \& de Sturler 2006]

Issues - complexity, storage

Solution technique

For the computation of a Gauss-Newton step similar calculations are needed.

Typically, avoid Gauss-Newton and use L-BFGS, nonlinear CG and steepest descent (storage).

Converges can be slow

A different point of view

The difficulty: computing the misfit.
Can we do this cheaper?

A different point of view

The difficulty: computing the misfit.
Can we do this cheaper?

Recall that

$$
\begin{aligned}
\text { misfit } & =\frac{1}{2} \sum_{j}\left\|P^{\top} A(m)^{-1} Q_{j}-d_{j}\right\|^{2} \\
& =\frac{1}{2}\left\|P^{\top} A(m)^{-1} Q-D\right\|_{F}^{2}= \\
& =\frac{1}{2} \operatorname{trace}\left(\left(P^{\top} A(m)^{-1} Q-D\right)^{\top}\left(P^{\top} A(m)^{-1} Q-D\right)\right) \\
& =\frac{1}{2} \mathbf{E}_{w}\left\|\left(P^{\top} A(m)^{-1} Q-D\right) w\right\|^{2}
\end{aligned}
$$

where w is a random variable with

$$
\mathbf{E}(w)=0 \quad \operatorname{Cov}(w)=I
$$

A different point of view

The original (deterministic) optimization problem is therefor equivalent to the (stochastic) optimization problem

$$
\begin{aligned}
\widehat{m} & =\arg \min _{m} & & \frac{1}{2} \sum_{j=1}^{N_{s}}\left\|P^{\top} A(m)^{-1} Q_{j}-d_{j}\right\|^{2}+R(m) \\
& =\arg \min _{m} & & \frac{1}{2} \mathbf{E}_{w}\left\|P^{\top} A(m)^{-1} Q w-D w\right\|^{2}+R(m)
\end{aligned}
$$

A different point of view

The original (deterministic) optimization problem is therefor equivalent to the (stochastic) optimization problem

$$
\begin{aligned}
\widehat{m} & =\arg \min _{m} & & \frac{1}{2} \sum_{j=1}^{N_{s}}\left\|P^{\top} A(m)^{-1} Q_{j}-d_{j}\right\|^{2}+R(m) \\
& =\arg \min _{m} & & \frac{1}{2} \mathbf{E}_{w}\left\|P^{\top} A(m)^{-1} Q w-D w\right\|^{2}+R(m)
\end{aligned}
$$

So What?

A different point of view

$$
\widehat{m}=\arg \min _{m} \frac{1}{2} \mathbf{E}_{w}\left\|P^{\top} A(m)^{-1} Q w-D w\right\|^{2}+R(m)
$$

- This is a stochastic optimization problem [Shapiro 09] and has been treated extensively in the literature
- We can capitalize on the structure of the problem to obtain cheap algorithms

Main point - Given a realization w_{i} a Single PDE solve is required to evaluate $\operatorname{misfit}\left(m ; w_{i}\right)$

A different point of view

$$
\widehat{m}=\arg \min _{m} \frac{1}{2} \mathbf{E}_{w}\left\|P^{\top} A(m)^{-1} Q w-D w\right\|^{2}+R(m)
$$

A different point of view

$$
\widehat{m}=\arg \min _{m} \frac{1}{2} \mathbf{E}_{w}\left\|P^{\top} A(m)^{-1} Q w-D w\right\|^{2}+R(m)
$$

Two methods for stochastic optimization [Shapiro 05]
SAA - Sample Average Approximation
Discretize the Expectation THEN optimize
SA - Stochastic Approximation
Optimize AND Discretize

Stochastic Optimization

SAA - Sample Average Approximation
Approximate the expectation using Monte-Carlo

$$
\min _{m} \sum_{j} \frac{1}{2}\left\|P^{\top} A(m)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(m)
$$

Stochastic Optimization

SAA - Sample Average Approximation
Approximate the expectation using Monte-Carlo

$$
\min _{m} \sum_{j} \frac{1}{2}\left\|P^{\top} A(m)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(m)
$$

SA - Stochastic approximation for $j=1, \ldots$

$$
\begin{aligned}
\hat{s}= & \arg (\operatorname{aprox}) \min \frac{1}{2}\left\|P^{\top} A\left(m_{j}+s\right)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(s) \\
& s_{j+1}=\operatorname{average}\left(s_{1: j}, \hat{s}\right)
\end{aligned}
$$

end

SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

$$
\min _{m} \mathcal{J}(m ; w)=\sum_{j} \frac{1}{2}\left\|P^{\top} A(m)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(m)
$$

■ How to pick w ?

- How many w's?

Any distribution with $\mathrm{E}(w)=0$ and $\operatorname{Cov}(w)=I$ has

$$
\mathbf{E}\left(w^{\top} H w\right)=\operatorname{trace}(H)
$$

Choose the distribution such that [Hutchinson 93]

$$
\operatorname{Var}\left(w^{\top} H w\right) \rightarrow \min
$$

$$
w=\operatorname{rand}(\pm 1)
$$

SAA - Sample Average Approximation

Approximate the expectation using Monte-Carlo

$$
\min _{m} \mathcal{J}(m ; w)=\sum_{j} \frac{1}{2}\left\|P^{\top} A(m)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(m)
$$

■ How to pick w ?
■ How many w's?

The number of w 's depends on the variability of the unbiased estimator

$$
\mathbf{E}\left(\mathcal{J}(m ; w) \approx \frac{1}{N} \sum_{j=1}^{N} \mathcal{J}\left(m ; w_{j}\right)\right.
$$

and the accuracy we would like to obtain.

SAA - Example

Generate $A(m)$ by discretizing the PDE

$$
\nabla \cdot \exp (m) \nabla u
$$

Assume 1089 sources (right hand sides) and 1089 receivers Look at

$$
f(\alpha)=\frac{1}{2 N} \sum_{j}\left\|P^{\top} A(m+\alpha s)^{-1} Q-D\right\|_{F}^{2}
$$

SAA - Sample Average Approximation

SAA - Sample Average Approximation

Controlling the quality of the approximation can be done by repeating the minimization with different samples

For our problems we have found that a small sample size may be sufficient [Also Golub \& Bai, 99, Golub \& von Matt 98]

Advantage of SAA - separate the stochastic part from the optimization

Disadvantage of SAA - number of realization may be too large

SA - Stochastic Approximation

Stochastic approximation for $j=1, \ldots$

$$
\begin{aligned}
\hat{s}= & \arg (\operatorname{aprox}) \min \frac{1}{2}\left\|P^{\top} A\left(m_{j}+s\right)^{-1} Q w_{j}-D w_{j}\right\|^{2}+R(s) \\
& s_{j+1}=\operatorname{average}\left(s_{1: j}, \hat{s}\right)
\end{aligned}
$$

end
Questions
■ How approximate?

- What methods can be used?

■ Convergence?

SA - Stochastic Approximation

- Proof that it works only on various flavors of steepest descent (recent work [Nemirovski and Shaoiro])
- Observed in practice - works well for L-BFGS and Gauss-Newton [Schraudolph, Yu \& Gunter 10]
- Much interest in machine learning (online algorithms)

An illustrative example

Model problem - Electrical Impedance Tomography

$$
\min _{m}\left\|P^{\top}\left(G^{\top} S(m) G\right)^{-1} Q-D\right\|_{F}^{2}+\frac{\alpha}{2}\|G m\|^{2}
$$

An illustrative example

- Assume 1089 sources and 1089 receivers.
- Mesh $32 \times 32 \times 32$

■ Number of unknowns (fields) 35, 684, 352

- Computation of full forward, roughly, 2 hours

Use standard, SAA and SA to solve the problem.

An illustrative example

Method	\# iterations	\# rhs/iter	Cost (pde solves)
Standard	37	1089	80,293
SSA	45	10	2757
SA	453	1	923

Computational saving of factor 100

$$
\begin{aligned}
\left\|m_{\mathrm{SAA}}-m_{\mathrm{Standard}}\right\|^{2} /\left\|m_{\text {Standard }}\right\|^{2} & =2.1 \times 10^{-2} \\
\left\|m_{\mathrm{SA}}-m_{\mathrm{Standard}}\right\|^{2} /\left\|m_{\text {Standard }}\right\|^{2} & =3.2 \times 10^{-2}
\end{aligned}
$$

Inversion parameters

$\alpha=10^{-4}$
Starting model - $m=10^{-2} \mathrm{~S} / \mathrm{m}$
Converges - solution does not change between iterations

Recovered solution

Sequential SAA

How to choose the size of the random batch?
Use continuation in batch-size
Example - EIT in 2D

Sequential SAA

5 src

3 src

6 src

Conclusions

- Develop a new point of view for multi-source data
- Can solve the problem in a fraction of the cost of the original problem
- Key - stochastic trace estimators and stochastic optimization
- Applications in other parameter estimation problems with many sources

