Novel techniques for multiscale representations ${ }^{1}$

Prashant Athavale ${ }^{2}$

Institute of Pure and Applied Mathematics, Department of Mathematics, University of California, Los Angeles.

Conference on mathematics of medical imaging, Fields Institute June 23, 2010

[^0]
Outline

1 Problems in image processing, a historical tour
$2\left(B V, L^{2}\right)$ decomposition based integro-differential equation (IDE)

3 A few theoretical results about ($B V, L^{2}$)-based IDE

4 Modifications to the $\left(B V, L^{2}\right)$-based IDE

5 IDE based on ($B V, L^{1}$) image decomposition

6 A few theoretical results for $\left(B V, L^{1}\right)$-IDE

7 Modifications to the $\left(B V, L^{1}\right)$-IDE

1. Problems in image processing, a historical tour

What is an image ?

■ Digital images are sampled 2-D analogue signals
■ Black and white images $\equiv f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$
■ $f(x) \equiv$ intensity level at that point, which varies from zero to 255
■ An image can be postulated as an $L^{2}(\Omega)$ object

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

■ Image denoising: f may have some noise η in it.
$\square f=u+\eta$, we need to get back the denoised image u.

Figure: Can we go from a noisy image (a) to a restored image in (b) ?
■ f may be blurry and noisy $f=K u+\eta$
■ Image segmentation \equiv identifying 'components' in $f \equiv$ edge detection

- Image segmentation \equiv identifying 'components' in $f \equiv$ edge detection

Figure: Can we identify components in (a) and get a segmented image as in (b) ?

Multiscale image representation

■ Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.
■ Multiscale representation: Family of images $\{u(t)\}$ for a scaling parameter tForward marching: $u(0)=0, u(t) \rightarrow u$

- Backward marching: $u(0)=f, u(t) \rightarrow u$

Multiscale image representation

■ Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.

- Multiscale representation: Family of images $\{u(t)\}$ for a scaling parameter t
■ Forward marching: $u(0)=0, u(t) \rightarrow u$
- Backward marching: $u(0)=f, u(t) \rightarrow u$

Multiscale image representation

■ Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.

- Multiscale representation: Family of images $\{u(t)\}$ for a scaling parameter t
■ Forward marching: $u(0)=0, u(t) \rightarrow u$
■ Backward marching: $u(0)=f, u(t) \rightarrow u$

There are two main approaches to solve above problems:

■ Variational approaches - Tikhonov regularization, greedy algorithms, wavelets shrinkage etc.

- PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -

Variational methods in image processing: Tikhonov regularization

■ We need to solve the ill posed problem $f=K u$:
Consider interpolation functional

$$
\inf _{u \in X}\left(\|u\|_{X}+\lambda\|f-K u\|_{Y}^{2}\right)
$$

$X \subsetneq Y,\|u\|_{X}$: regularizing term, $\|f-K u\|_{Y}^{2}$: fidelity term

Variational methods in image processing: Tikhonov regularization

■ We need to solve the ill posed problem $f=K u$:
Consider interpolation functional

$$
\inf _{u \in X}\left(\|u\|_{X}+\lambda\|f-K u\|_{Y}^{2}\right)
$$

$X \subsetneq Y,\|u\|_{X}$: regularizing term, $\|f-K u\|_{Y}^{2}$: fidelity term
$\square(X, Y) \equiv\left(B V, L^{2}\right):$ Rudin-Osher-Fatemi (1992), Aubert-Vese (1997).

$$
\inf _{\{f=u+v\}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-K u|^{2}\right)
$$

Variational methods in image processing

■ Rudin-Osher-Fatemi (ROF) decomposition $f=u_{\lambda}+v_{\lambda}$ for scale parameter λ.

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

- The BV seminorm $\int_{\Omega}|\nabla u|$ is a regularizing term
- $\int_{\Omega}|f-u|^{2}$: a fidelity term

■ λ : acts as an inverse scale of the u_{λ} part (smaller λ 三 larger scale)

- $u_{\lambda}:=$ smooth parts and edges in f $v_{\lambda}:=f-u_{\lambda}$ texture, finer details, noise
- Many other variational methods

Variational methods in image processing

- Rudin-Osher-Fatemi (ROF) decomposition $f=u_{\lambda}+v_{\lambda}$ for scale parameter λ.

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

- The BV seminorm $\int_{\Omega}|\nabla u|$ is a regularizing term
- $\int_{\Omega}|f-u|^{2}$: a fidelity term

■ λ : acts as an inverse scale of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

- $u_{\lambda}:=$ smooth parts and edges in f $v_{\lambda}:=f-u_{\lambda}$ texture, finer details, noise
- Many other variational methods .

Variational methods in image processing

- Rudin-Osher-Fatemi (ROF) decomposition $f=u_{\lambda}+v_{\lambda}$ for scale parameter λ.

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

- The BV seminorm $\int_{\Omega}|\nabla u|$ is a regularizing term
- $\int_{\Omega}|f-u|^{2}$: a fidelity term

■ λ : acts as an inverse scale of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

- u_{λ} := smooth parts and edges in f
$v_{\lambda}:=f-u_{\lambda}$ texture, finer details, noise
- Many other variational methods

Variational methods in image processing

- Rudin-Osher-Fatemi (ROF) decomposition $f=u_{\lambda}+v_{\lambda}$ for scale parameter λ.

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

- The BV seminorm $\int_{\Omega}|\nabla u|$ is a regularizing term
- $\int_{\Omega}|f-u|^{2}$: a fidelity term

■ λ : acts as an inverse scale of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

- u_{λ} := smooth parts and edges in f
$v_{\lambda}:=f-u_{\lambda}$ texture, finer details, noise
■ Many other variational methods ...

■ Mumford-Shah segmentation (1985)

$$
[u, v, \mathcal{C}]=\underset{\{f=u+v, \mathcal{C}\}}{\operatorname{arginf}}\left(\int_{\Omega-\mathcal{C}}|f-u|^{2}+\lambda_{1} \int_{\Omega-\mathcal{C}}|\nabla u|^{2}+\lambda_{2} \oint_{\mathcal{C}} d \sigma\right) .
$$

$u: \Omega \rightarrow \mathbb{R}$: piecewise smooth image
$\mathcal{C} \in \Omega$: the set of jump discontinuities

- Ambrosio and Tortorelli approximation (1992)

■ Kass-Witkin-Terzopoulos model (1988)

$$
\inf _{c \in \mathcal{C}}\left(\int_{a}^{b}\left|c^{\prime}\right|^{2}+\lambda_{1} \int_{a}^{b}\left|c^{\prime \prime}\right|^{2}+\lambda_{2} \int_{a}^{b} g^{2}(|\nabla f(c)|)\right)
$$

\mathcal{C} : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

- Caselles, Kimmel, Sapiro: Geodesic active contours (1997)

■ Osher, Sethian: Level set method (1988)

- Now we look at some PDE methods

■ Mumford-Shah segmentation (1985)

$$
[u, v, \mathcal{C}]=\underset{\{f=u+v, \mathcal{C}\}}{\operatorname{arginf}}\left(\int_{\Omega-\mathcal{C}}|f-u|^{2}+\lambda_{1} \int_{\Omega-\mathcal{C}}|\nabla u|^{2}+\lambda_{2} \oint_{\mathcal{C}} d \sigma\right) .
$$

$u: \Omega \rightarrow \mathbb{R}$: piecewise smooth image
$\mathcal{C} \in \Omega$: the set of jump discontinuities

- Ambrosio and Tortorelli approximation (1992)

■ Kass-Witkin-Terzopoulos model (1988)

$$
\inf _{c \in \mathcal{C}}\left(\int_{a}^{b}\left|c^{\prime}\right|^{2}+\lambda_{1} \int_{a}^{b}\left|c^{\prime \prime}\right|^{2}+\lambda_{2} \int_{a}^{b} g^{2}(|\nabla f(c)|)\right)
$$

\mathcal{C} : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity
■ Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
■ Osher, Sethian: Level set method (1988)

■ Now we look at some PDE methods ...

■ Denoising with heat equation:

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

- Problem 1: cannot distinguish between noise and boundaries of regions
- Problem 2: where to ston ?

■ Denoising with heat equation:

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

■ Problem 1: cannot distinguish between noise and boundaries of regions

- Problem 2: where to stop ?

■ Denoising with heat equation:

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

■ Problem 1: cannot distinguish between noise and boundaries of regions
■ Problem 2: where to stop ?

■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges

- Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

- The idea: preserve the edges
- Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$

■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
■ Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

■ The idea: preserve the edges
Smooth regions $\equiv|\nabla u|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv|\nabla u|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s): e^{-s}, \frac{1}{1+s^{2}}, \frac{1}{\sqrt{1+s}}$

- Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$

■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
■ Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

■ The idea: preserve the edges
Smooth regions $\equiv|\nabla u|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv|\nabla u|$ is large \Rightarrow we need to control the diffusion

- Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$

■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
■ Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

■ The idea: preserve the edges
Smooth regions $\equiv|\nabla u|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv|\nabla u|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s): e^{-s}, \frac{1}{1+s^{2}}, \frac{1}{\sqrt{1+s}}$

- Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$

■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
■ Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

- The idea: preserve the edges

Smooth regions $\equiv|\nabla u|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv|\nabla u|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s): e^{-s}, \frac{1}{1+s^{2}}, \frac{1}{\sqrt{1+s}}$
■ Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\nabla G_{\sigma}+u\right) \nabla u\right),
$$

G_{σ} is Gaussian kernel.

[^1]■ Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
■ Perona-Malik proposed an anisotropic diffusion method

$$
\frac{\partial u}{\partial t}=\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=f
$$

■ The idea: preserve the edges
Smooth regions $\equiv|\nabla u|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv|\nabla u|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s): e^{-s}, \frac{1}{1+s^{2}}, \frac{1}{\sqrt{1+s}}$
■ Perona-Malik is not well posed! Catté et al. modification ${ }^{3}$:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\left|\nabla G_{\sigma} \star u\right|\right) \nabla u\right),
$$

G_{σ} is Gaussian kernel.

[^2]- L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right), \quad u(0)=f
$$

- Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.
- The term $|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ does exactly this.
- g is a diffusion controlling function as before.

(a)

(b)

Figure: Result of anisotropic diffusion: edges are preserved.

- L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right), \quad u(0)=f
$$

■ Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

- g is a diffusion controlling function as before.

(a)

(b)

Figure: Result of anisotropic diffusion: edges are preserved.

- L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right), \quad u(0)=f
$$

■ Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

- The term $|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ does exactly this.
- g is a diffusion controlling function as before.

(a)

(b)

Figure: Result of anisotropic diffusion: edges are preserved.

- Problem: As $t \rightarrow \infty$ the models discussed before diffuse completely. ... so where to stop ?
- Solution: Nordström modified Perona-Malik model.
- This equation has non-trivial steady state.
- Forward marching: $u(0)=0$ and $u(t) \rightarrow u$.

■ Problem: As $t \rightarrow \infty$ the models discussed before diffuse completely. ... so where to stop ?
■ Solution: Nordström modified Perona-Malik model.

$$
\frac{\partial u}{\partial t}=f-u+\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=0
$$

- This equation has non-trivial steady state.
- Forward marching: $u(0)=0$ and $u(t) \rightarrow u$.

■ Problem: As $t \rightarrow \infty$ the models discussed before diffuse completely. ... so where to stop?
■ Solution: Nordström modified Perona-Malik model.

$$
\frac{\partial u}{\partial t}=f-u+\operatorname{div}(g(|\nabla u|) \nabla u), \quad u(0)=0
$$

■ This equation has non-trivial steady state.
■ Forward marching: $u(0)=0$ and $u(t) \rightarrow u$.

Rudin-Osher-Fatemi decomposition (1992)

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

The (time dependent) Euler-Lagrange equation:

$$
\frac{\partial u}{\partial t}=f-u+\frac{1}{2 \lambda} \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

Nordström's modification of Perona-Malik (1990)

$g(s)=\frac{1}{2 \lambda s} \Rightarrow$ steady-state of Nordström \equiv Euler-Lagrange of ROF !

Rudin-Osher-Fatemi decomposition (1992)

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

The (time dependent) Euler-Lagrange equation:

$$
\frac{\partial u}{\partial t}=f-u+\frac{1}{2 \lambda} \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

Nordström's modification of Perona-Malik (1990)

$$
\frac{\partial u}{\partial t}=f-u+\operatorname{div}(g(|\nabla u|) \nabla u) .
$$

$g(s)=\frac{1}{2 \lambda s} \Rightarrow$ steady-state of Nordström \equiv Euler-Lagrange of ROF !

Rudin-Osher-Fatemi decomposition (1992)

$$
\left[u_{\lambda}, v_{\lambda}\right]=\underset{\{f=u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|^{2}\right)
$$

The (time dependent) Euler-Lagrange equation:

$$
\frac{\partial u}{\partial t}=f-u+\frac{1}{2 \lambda} \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) .
$$

Nordström's modification of Perona-Malik (1990)

$$
\frac{\partial u}{\partial t}=f-u+\operatorname{div}(g(|\nabla u|) \nabla u) .
$$

$$
g(s)=\frac{1}{2 \lambda s} \Rightarrow \text { steady-state of Nordström } \equiv \text { Euler-Lagrange of ROF ! }
$$

2. IDE based on $\left(B V, L^{2}\right)$ image decomposition

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

- An Integro-differential equation (IDE).
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.

■ We do not need to associate with a variational problem anymore.^

$$
\star * * \longdiv { \text { QUESTIONS } }
$$

What is the motivation ?
Where to start ?
Where to stop?
What does the scaling function $\lambda(t)$ mean ?

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.

- This model gives an inverse scale representation.
- We do not need to associate with a variational problem anymore.ぇ

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.

- * We do not need to associate with a variational problem anymore.*

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»
QUESTIONS
What is the motivation ?
Where to start ?
Where to stop ?
What does the scaling function $\lambda(t)$ mean ?

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»

$$
\star \star \star \text { QUESTIONS } \star \star \star
$$

What is the motivation?
Where to start ?
Where to stop ?

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»

$$
\star \star \star \text { QUESTIONS } \star \star \star
$$

What is the motivation ?
Where to start?
Where to stop ?
What does the scaling function $\lambda(t)$ mean ?

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»

$$
\star \star \star \text { QUESTIONS } \star \star \star
$$

What is the motivation ?
Where to start?
Where to stop?
What does the scaling function $\lambda(t)$ mean ?

A novel integro-differential model

■ We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»

$$
\star \star \star \text { QUESTIONS } \star \star \star
$$

What is the motivation ?
Where to start?
Where to stop ?
What does the scaling function $\lambda(t)$ mean?

A novel integro-differential model

- We propose a novel model.

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

■ An Integro-differential equation (IDE).
■ The scaling function $\lambda(t)$: increasing function at our disposal.
■ This model gives an inverse scale representation.
■ \star We do not need to associate with a variational problem anymore.»

$$
\star \star \star \text { QUESTIONS } \star \star \star
$$

What is the motivation ?
Where to start?
Where to stop ?
What does the scaling function $\lambda(t)$ mean ?

Idea: Tadmor-Nezzar-Vese scheme with "intensity quanta"

■ Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau u|^{2}\right) .
$$

- $V_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

■ TNV multiscale decomposition

- With this scheme after $N+1$ steps we get:

Idea: Tadmor-Nezzar-Vese scheme with "intensity quanta"

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v_{\lambda_{0}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau u\right|^{2}\right) .
$$

- TNV multiscale decomposition

Idea: Tadmor-Nezzar-Vese scheme with "intensity quanta"

■ Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v_{\lambda_{0}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau u\right|^{2}\right) .
$$

■ TNV multiscale decomposition

$$
v_{\lambda_{k-1}}=\tau u_{\lambda_{k}}+v_{\lambda_{k}}, \quad\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) .
$$

- With this scheme after $N+1$ steps we get:

Idea: Tadmor-Nezzar-Vese scheme with "intensity quanta"

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v_{\lambda_{0}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau u\right|^{2}\right) .
$$

■ TNV multiscale decomposition

$$
v_{\lambda_{k-1}}=\tau u_{\lambda_{k}}+v_{\lambda_{k}}, \quad\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) .
$$

- With this scheme after $N+1$ steps we get:

$$
\begin{aligned}
f & =\tau u_{\lambda_{0}}+v_{\lambda_{0}} \\
& =\tau u_{\lambda_{0}}+\tau u_{\lambda_{1}}+v_{\lambda_{1}} \\
& =\tau u_{0}+\tau u_{1}+\tau u_{2}+v_{2} \\
& =\cdots \\
& =\tau u_{\lambda_{0}}+\tau u_{\lambda_{1}}+\ldots+\tau u_{\lambda_{N}}+v_{\lambda_{N}} .
\end{aligned}
$$

i.e. a nonlinear multiscale decomposition: $f=\sum_{k=0}^{N} \tau u_{\lambda_{k}}+v_{\lambda_{N}}$.

TNV scheme with τ

- $k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{\nu_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right)
$$

■ TNV iteration:

TNV scheme with τ

$\square k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{aligned}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=} & \underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) \\
& \tau u_{\lambda_{k}} \underbrace{\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla u_{\lambda_{k}}\right|}\right)}=v_{\lambda_{k-1}}
\end{aligned}
$$

- TNV iteration:

TNV scheme with τ

- $k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{gathered}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{\nu_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right)} \\
\tau u_{\lambda_{k}} \underbrace{}_{v_{\lambda_{k}}-\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla \lambda_{\lambda_{k}}\right|}\right)}=v_{\lambda_{k-1}}
\end{gathered}
$$

TNV scheme with τ

■ $k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{aligned}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=} & \underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) \\
& \tau u_{\lambda_{k}} \underbrace{\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla u_{\lambda_{k}}\right|}\right)}_{v_{\lambda_{k}}}=v_{\lambda_{k-1}}
\end{aligned}
$$

■ TNV iteration:

$$
\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}
$$

Telescopic sum of the above gives us:

TNV scheme with τ

$■ k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{aligned}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=} & \underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) \\
& \tau u_{\lambda_{k}} \underbrace{\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla u_{\lambda_{k}}\right|}\right)}_{v_{\lambda_{k}}}=v_{\lambda_{k-1}}
\end{aligned}
$$

- TNV iteration:

$$
\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}
$$

Telescopic sum of the above gives us:

TNV scheme with τ

$■ k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{aligned}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=} & \underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) \\
& \tau u_{\lambda_{k}} \underbrace{\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla u_{\lambda_{k}}\right|}\right)}_{v_{\lambda_{k}}}=v_{\lambda_{k-1}}
\end{aligned}
$$

■ TNV iteration:

$$
\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}
$$

Telescopic sum of the above gives us:

$$
\sum_{k=0}^{N} u_{\lambda_{k}} \tau+v_{\lambda_{N}}=f
$$

TNV scheme with τ

$■ k^{\text {th }}$ step in TNV scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{aligned}
{\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=} & \underset{\left\{v_{\lambda_{k-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau u\right|^{2}\right) \\
& \tau u_{\lambda_{k}} \underbrace{\frac{1}{2 \lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{\left|\nabla u_{\lambda_{k}}\right|}\right)}_{v_{\lambda_{k}}}=v_{\lambda_{k-1}}
\end{aligned}
$$

■ TNV iteration:

$$
\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}
$$

Telescopic sum of the above gives us:

$$
\sum_{k=0}^{N} u_{\lambda_{k}} \tau+v_{\lambda_{N}}=f
$$

$$
\sum_{k=0}^{N} u_{\lambda_{k}} \tau=f+\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
$$

Going from TNV to a novel integro-differential equation

New TNV formulation:

$$
\sum_{k=0}^{N} u_{\lambda_{k}} \tau=f+\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
$$

This 'motivates' us to write the following model.

The novel integro-differential model

where $\lambda(t)>0$ is an increasing scaling function at our disposal.

New TNV formulation:

$$
\sum_{k=0}^{N} u_{\lambda_{k}} \tau=f+\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
$$

This 'motivates' us to write the following model.

The novel integro-differential model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

where $\lambda(t)>0$ is an increasing scaling function at our disposal.

■ Let Δt be the time interval step. Thus, after N steps:

$$
\mathcal{U}(t):=\int_{0}^{t} u(x, s) d s=\sum_{k=0}^{N-1} \int_{k \Delta t}^{(k+1) \Delta t} u(x, s) d s
$$

- $\mathcal{U}^{N}:=\int_{0}^{N \Delta t} u(x, s) d s$ and $u^{k+1}:=u((k+1) \Delta t)$, with this we have
- Thus, we have the following fixed point iteration.

■ This fixed point implementation gives us u^{N} and thus $\mathcal{U}^{N}=\mathcal{U}^{N-1}+u^{N} \Delta t$
$■$ Let Δt be the time interval step. Thus, after N steps:

$$
\mathcal{U}(t):=\int_{0}^{t} u(x, s) d s=\sum_{k=0}^{N-1} \int_{k \Delta t}^{(k+1) \Delta t} u(x, s) d s
$$

$\square \mathcal{U}^{N}:=\int_{0}^{N \Delta t} u(x, s) d s$ and $u^{k+1}:=u((k+1) \Delta t)$, with this we have

$$
\mathcal{U}^{N} \approx \mathcal{U}^{N-1}+u^{N} \Delta t:=\mathcal{U}^{N-1}+\omega^{N}
$$

- Thus, we have the following fixed point iteration.

■ This fixed point implementation gives us u^{N} and thus $\mathcal{U}^{N}=\mathcal{U}^{N-1}+u^{N} \Delta t$
$■$ Let Δt be the time interval step. Thus, after N steps:

$$
\mathcal{U}(t):=\int_{0}^{t} u(x, s) d s=\sum_{k=0}^{N-1} \int_{k \Delta t}^{(k+1) \Delta t} u(x, s) d s
$$

- $\mathcal{U}^{N}:=\int_{0}^{N \Delta t} u(x, s) d s$ and $u^{k+1}:=u((k+1) \Delta t)$, with this we have

$$
\mathcal{U}^{N} \approx \mathcal{U}^{N-1}+u^{N} \Delta t:=\mathcal{U}^{N-1}+\omega^{N} .
$$

- Thus, we have the following fixed point iteration.

$$
\omega_{i, j}^{n}=\frac{2 \lambda^{N} h^{2}\left(f_{i, j}-\mathcal{U}_{i, j}^{N-1}\right)+c_{E} \omega_{i+1, j}^{n-1}+c_{W} \omega_{i-1, j}^{n-1}+c_{S} \omega_{i, j+1}^{n-1}+c_{N} \omega_{i, j-1}^{n-1}}{2 \lambda^{N} h^{2}+c_{E}+c_{W}+c_{S}+c_{N}} .
$$

- This fixed point implementation gives us u^{N} a
$■$ Let Δt be the time interval step. Thus, after N steps:

$$
\mathcal{U}(t):=\int_{0}^{t} u(x, s) d s=\sum_{k=0}^{N-1} \int_{k \Delta t}^{(k+1) \Delta t} u(x, s) d s
$$

- $\mathcal{U}^{N}:=\int_{0}^{N \Delta t} u(x, s) d s$ and $u^{k+1}:=u((k+1) \Delta t)$, with this we have

$$
\mathcal{U}^{N} \approx \mathcal{U}^{N-1}+u^{N} \Delta t:=\mathcal{U}^{N-1}+\omega^{N} .
$$

- Thus, we have the following fixed point iteration.

$$
\omega_{i, j}^{n}=\frac{2 \lambda^{N} h^{2}\left(f_{i, j}-\mathcal{U}_{i, j}^{N-1}\right)+c_{E} \omega_{i+1, j}^{n-1}+c_{W} \omega_{i-1, j}^{n-1}+c_{S} \omega_{i, j+1}^{n-1}+c_{N} \omega_{i, j-1}^{n-1}}{2 \lambda^{N} h^{2}+c_{E}+c_{W}+c_{S}+c_{N}} .
$$

■ This fixed point implementation gives us u^{N} and thus $\mathcal{U}^{N}=\mathcal{U}^{N-1}+u^{N} \Delta t$

Numerical result for $\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)$.

Figure: (a)-(d) As $\lambda(t) \rightarrow \infty$, the images $\int_{0}^{t} u(x, s) d s$ are shown above for $t=1,4,6,10$. Here, $\lambda(t)=0.002 \times 2^{t}$.
3. A few theoretical results about $\left(B V, L^{2}\right)$-based IDE

Star-norm is the dual of the $B V$ norm w.r.t. the L^{2} scalar product

$$
\|w\|_{*}:=\sup _{\varphi \neq 0} \frac{\left|(w, \varphi)_{L^{2}}\right|}{\int_{\Omega}|\nabla \varphi|} .
$$

Thearem (I)

For the IDF model

let $\mathcal{U}(\cdot, t):=\int_{0}^{t} u(x, s) d s$ and $V(\cdot, t)$ be the residual,

$$
\mathrm{V}(., t):-f-\mathcal{U}(, t)
$$

Then size of the residual is dictated by the scaling function $\lambda(t)$,

Star-norm is the dual of the $B V$ norm w.r.t. the L^{2} scalar product

Theorem (I)

For the IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right),
$$

let $\mathcal{U}(\cdot, t):=\int_{0}^{t} u(x, s) d s$ and $V(\cdot, t)$ be the residual,

$$
V(\cdot, t):=f-\mathcal{U}(\cdot, t) .
$$

Then size of the residual is dictated by the scaling function $\lambda(t)$,

$$
\|V(\cdot, t)\|_{*}=\frac{1}{2 \lambda(t)}
$$

Theorem (II)

For the IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

associated with an L^{2} - image f, and let $V(\cdot, t)$ be the residual, $V(t)=f-\mathcal{U}(t)$. Then the following energy decomposition holds

$$
\int_{s=0}^{t} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s+\|V(\cdot, t)\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2}
$$

L^{2}-convergence of $\int_{s=0}^{t} u(x, s) d s$

Theorem (III)

Given an image $f \in B V$, we consider the IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

with rapidly increasing scaling function $\lambda(t)$ so that

$$
\frac{\lambda(t / 2)}{\lambda(t)} \xrightarrow{t \rightarrow \infty} 0 .
$$

Then, f admits the multiscale representation (where equality is interpreted in L^{2} - sense)

$$
f(x)=\int_{s=0}^{\infty} u(x, s) d s
$$

with energy decomposition

$$
\|f\|_{L^{2}}^{2}=\int_{s=0}^{\infty} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s
$$

L^{2}-convergence of $\int_{s=0}^{t} u(x, s) d s$

Theorem (III)

Given an image $f \in B V$, we consider the IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

with rapidly increasing scaling function $\lambda(t)$ so that

$$
\frac{\lambda(t / 2)}{\lambda(t)} \xrightarrow{t \rightarrow \infty} 0 .
$$

Then, f admits the multiscale representation (where equality is interpreted in L^{2} - sense)

$$
f(x)=\int_{s=0}^{\infty} u(x, s) d s
$$

with energy decomposition

$$
\|f\|_{L^{2}}^{2}=\int_{s=0}^{\infty} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s
$$

We show that $\lim _{t \rightarrow \infty}\|V(\cdot, t)\|_{L^{2}} \rightarrow 0$.

L^{2}-convergence of $\int_{s=0}^{t} u(x, s) d s$

Theorem (III)

Given an image $f \in B V$, we consider the IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

with rapidly increasing scaling function $\lambda(t)$ so that

$$
\frac{\lambda(t / 2)}{\lambda(t)} \xrightarrow{t \rightarrow \infty} 0 .
$$

Then, f admits the multiscale representation (where equality is interpreted in L^{2} - sense)

$$
f(x)=\int_{s=0}^{\infty} u(x, s) d s
$$

with energy decomposition

$$
\|f\|_{L^{2}}^{2}=\int_{s=0}^{\infty} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s
$$

We show that $\lim _{t \rightarrow \infty}\|V(\cdot, t)\|_{L^{2}} \rightarrow 0$. What happens for $f \in L^{2}$?
4. Modifications to the $\left(B V, L^{2}\right)$-based IDE

Filtered IDE model

■ Recall heat equation :

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

- Perona Malik model:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\left|G_{\sigma} * \nabla u\right|\right) \nabla u\right)
$$

- Recall heat equation :

$$
\frac{\partial u}{\partial t}=\Delta u
$$

■ Perona Malik model:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\left|G_{\sigma} \star \nabla u\right|\right) \nabla u\right)
$$

Filtered IDE model

To compute this IDE we use a fixed point iteration as before with $g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)$.

■ Recall heat equation :

$$
\frac{\partial u}{\partial t}=\Delta u
$$

■ Perona Malik model:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\left|G_{\sigma} \star \nabla u\right|\right) \nabla u\right)
$$

Filtered IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) ;\left.\quad \frac{\partial u}{\partial \mathbf{n}}\right|_{\partial \Omega}=0
$$

To compute this IDE we use a fixed point iteration as before with $g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)$.

■ Recall heat equation :

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

■ Perona Malik model:

$$
\frac{\partial u}{\partial t}=\operatorname{div}\left(g\left(\left|G_{\sigma} \star \nabla u\right|\right) \nabla u\right)
$$

Filtered IDE model

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) ;\left.\quad \frac{\partial u}{\partial \mathbf{n}}\right|_{\partial \Omega}=0
$$

To compute this IDE we use a fixed point iteration as before with $g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)$.

Numerical results of $\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)| \mid}\right)$.

Figure: (a)-(d) The above images depict $\int_{0}^{t} u(x, s) d s$ for $t=1,4,6,10$. Here, $\lambda(t)=0.002 \times 2^{t}$. Here the function $g(s)=\frac{1}{1+(s / 5)^{2}}$.

Numerical result for $\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)$.

Figure: (a)-(d) As $\lambda(t) \rightarrow \infty$, the images $\int_{0}^{t} u(x, s) d s$ are shown above for $t=1,4,6,10$. Here, $\lambda(t)=0.002 \times 2^{t}$.

Numerical results of $\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)$.

Figure: (a)-(d) The above images depict $\int_{0}^{t} u(x, s) d s$ for $t=1,4,6,10$ for the ORIGINAL IDE. Here, $\lambda(t)=0.002 \times 2^{t}$.

Numerical results of $\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)$.

Figure: (a)-(d) The above images depict $\int_{0}^{t} u(x, s) d s$ for $t=1,4,6,10$. Here, $\lambda(t)=0.002 \times 2^{t}$. Here the function $g(s)=\frac{1}{1+(s / 5)^{2}}$.

IDE with tangential smoothing modification

- The Heat equation

$$
\frac{\partial u}{\partial t}=\Delta u
$$

- Note: $\Delta u=u_{T T}+u_{N N}$ and $u_{T T}:=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. Alvarez et al. modification model:

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

Filtered IDE with tangential smoothing

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{0} * \nabla u(x, t)\right|\right)}{2 \lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

IDE with tangential smoothing modification

- The Heat equation

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

\square Note: $\Delta u=u_{T T}+u_{N N}$ and $u_{T T}:=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. Alvarez et al. modification model:

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

Filtered IDE with tangential smoothing

IDE with tangential smoothing modification

- The Heat equation

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

\square Note: $\Delta u=u_{T T}+u_{N N}$ and $u_{T T}:=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. Alvarez et al. modification model:

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

Filtered IDE with tangential smoothing

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

IDE with tangential smoothing modification

- The Heat equation

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

\square Note: $\Delta u=u_{T T}+u_{N N}$ and $u_{T T}:=|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. Alvarez et al. modification model:

$$
\frac{\partial u}{\partial t}=g\left(\left|G_{\sigma} \star \nabla u\right|\right)|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

Filtered IDE with tangential smoothing

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

Numerical results for

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: A given noisy image f and the IDE images, $\int_{0}^{t} u(\cdot, s) d s$, at $t=1,4,7$. Here, the scaling function is $\lambda(t)=0.002 \times 2^{t}$. Most of the noise is present at scale $t=7$.

Numerical results for

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{1}{2 \lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

Figure: The same noisy image f and the corresponding $\int_{0}^{t} u(\cdot, s) d s$, of the IDE with tangential smoothing at $t=1,4,7$. The same scaling function as before, $\lambda(t)=0.002 \times 2^{t}$. Large portion of the noise is suppressed at $t=7$ but there is normal diffusion of edges.

Numerical results for

$$
\int_{0}^{t} u(x, s) d s=f(x)+\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{2 \lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

Figure: The same noisy image and the images, $\int_{0}^{t} u(\cdot, s) d s$, of IDE with tangential smoothing and filtering at $t=1,4,7$. Here, $\lambda(t)=0.002 \times 2^{t}$ and $g(s)=1 /\left(1+(s / 5)^{2}\right)$. Noise is suppressed with minimal normal edge diffusion.

Deblurring with IDE

TNV scheme with "intensity quanta" τ and blurring

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau K u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau K u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau K u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.
- TNV multiscale decomposition
- With this scheme after $N+1$ steps we get:
$=\tau K u_{0}+\tau u_{1}+\tau K u_{2}+v_{2}$

TNV scheme with "intensity quanta" τ and blurring

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau K u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau K u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau K u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau K u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v_{\lambda_{0}}=\tau K u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau K u\right|^{2}\right) .
$$

- TNV multiscale decomposition
- With this scheme after $N+1$ steps we get:

TNV scheme with "intensity quanta" τ and blurring

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau K u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau K u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau K u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau K u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v \lambda_{\lambda_{0}}=\tau K u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau K u\right|^{2}\right) .
$$

■ TNV multiscale decomposition

$$
v_{\lambda_{k-1}}=\tau K u_{\lambda_{k}}+v_{\lambda_{k}}, \quad\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{v_{\lambda_{k-1}}=\tau K u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau K u\right|^{2},\right.
$$

- With this scheme after $N+1$ steps we get:

TNV scheme with "intensity quanta" τ and blurring

- Let τ be the small intensity of quanta, with this the ROF decomposition becomes:

$$
f=\tau K u_{\lambda_{0}}+v_{\lambda_{0}}, \quad\left[u_{\lambda_{0}}, v_{\lambda_{0}}\right]=\underset{\{f=\tau K u+v\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{0}}{\tau} \int_{\Omega}|f-\tau K u|^{2}\right) .
$$

- $v_{\lambda_{0}}$ can be decomposed with a scaling parameter $\lambda_{1}>\lambda_{0}$.

$$
v_{\lambda_{0}}=\tau K u_{\lambda_{1}}+v_{\lambda_{1}}, \quad\left[u_{\lambda_{1}}, v_{\lambda_{1}}\right]=\underset{\left\{v \lambda_{\lambda_{0}}=\tau K u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{1}}{\tau} \int_{\Omega}\left|v_{\lambda_{0}}-\tau K u\right|^{2}\right) .
$$

- TNV multiscale decomposition

$$
v_{\lambda_{k-1}}=\tau K u_{\lambda_{k}}+v_{\lambda_{k}}, \quad\left[u_{\lambda_{k}}, v_{\lambda_{k}}\right]=\underset{\left\{v_{\lambda_{k-1}}=\tau K u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{k}}{\tau} \int_{\Omega}\left|v_{\lambda_{k-1}}-\tau K u\right|^{2},\right.
$$

- With this scheme after $N+1$ steps we get:

$$
\begin{aligned}
f & =\tau K u_{\lambda_{0}}+v_{\lambda_{0}} \\
& =\tau K u_{\lambda_{0}}+\tau K u_{\lambda_{1}}+v_{\lambda_{1}} \\
& =\tau K u_{0}+\tau u_{1}+\tau K u_{2}+v_{2} \\
& =\cdots \\
& =\tau K u_{\lambda_{0}}+\tau K u_{\lambda_{1}}+\ldots+\tau K u_{\lambda_{N}}+v_{\lambda_{N}} .
\end{aligned}
$$

i.e. a nonlinear multiscale decomposition: $f=\sum_{k=0}^{N} \tau K u_{\lambda_{k}}+v_{\lambda_{N}}$.

TNV scheme with τ and deblurring

■ TNV scheme with deblurring reads:

$$
\tau \sum_{k=0}^{N} K u_{\lambda_{k}}=f-v_{\lambda_{N}}
$$

- The Euler-Lagrange for the $N^{\text {th }}$ step:

TNV scheme with τ and deblurring

■ TNV scheme with deblurring reads:

$$
\begin{gather*}
\tau \sum_{k=0}^{N} K u_{\lambda_{k}}=f-v_{\lambda_{N}} . \\
\tau \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}}=K^{*} f-K^{*} v_{\lambda_{N}} . \tag{1}
\end{gather*}
$$

- The Euler-Lagrange for the $N^{\text {th }}$ step:

TNV scheme with τ and deblurring

■ TNV scheme with deblurring reads:

$$
\begin{gather*}
\tau \sum_{k=0}^{N} K u_{\lambda_{k}}=f-v_{\lambda_{N}} \\
\tau \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}}=K^{*} f-K^{*} v_{\lambda_{N}} . \tag{1}
\end{gather*}
$$

- The Euler-Lagrange for the $N^{\text {th }}$ step:

$$
K^{*} v_{\lambda_{N-1}}=\tau K^{*} K u_{\lambda_{N}} \underbrace{\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)}_{K^{*} v_{\lambda_{N}}},
$$

TNV scheme with τ and deblurring

■ TNV scheme with deblurring reads:

$$
\begin{gather*}
\tau \sum_{k=0}^{N} K u_{\lambda_{k}}=f-v_{\lambda_{N}} \\
\tau \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}}=K^{*} f-K^{*} v_{\lambda_{N}} . \tag{1}
\end{gather*}
$$

- The Euler-Lagrange for the $N^{\text {th }}$ step:

$$
\begin{aligned}
& K^{*} v_{\lambda_{N-1}}=\tau K^{*} K u_{\lambda_{N}} \underbrace{}_{K^{*}{v_{\lambda_{N}}}^{-\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)}}, \\
& \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}} \tau=K^{*} f+\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
\end{aligned}
$$

TNV scheme with τ and deblurring

■ TNV scheme with deblurring reads:

$$
\begin{gather*}
\tau \sum_{k=0}^{N} K u_{\lambda_{k}}=f-v_{\lambda_{N}} \\
\tau \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}}=K^{*} f-K^{*} v_{\lambda_{N}} . \tag{1}
\end{gather*}
$$

- The Euler-Lagrange for the $N^{\text {th }}$ step:

$$
\begin{aligned}
& K^{*} v_{\lambda_{N-1}}=\tau K^{*} K u_{\lambda_{N}} \underbrace{\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)}_{K^{*} v_{\lambda_{N}}}, \\
& \sum_{k=0}^{N} K^{*} K u_{\lambda_{k}} \tau=K^{*} f+\frac{1}{2 \lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
\end{aligned}
$$

$$
\int_{0}^{t} K^{*} K u(x, s) d s=K^{*} f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel with $\sigma=1$. Image (b) shows the result of the deblurring IDE model, as $t \rightarrow \infty$.

[^3]

Figure: Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel with $\sigma=1$. Image (b) shows the result of the deblurring IDE model, as $t \rightarrow \infty$.
E. Tadmor, P. Athavale, Multiscale image representation using novel integro-differential equations, Inverse Problems in Imaging, 3 (2009), 693-710.
5. IDE based on ($B V, L^{1}$) image decomposition

■ (BV, L^{1}) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

$$
f=u_{\lambda}+v_{\lambda}, \quad\left[u_{\lambda}, v_{\lambda}\right]:=\underset{f=u+v}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|\right) .
$$

- This decomposition is contrast invariant and
- The scale-space generated is geometric in nature. (Chan-Esedoḡlu, 2005)

■ ($B V, L^{1}$) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

$$
f=u_{\lambda}+v_{\lambda}, \quad\left[u_{\lambda}, v_{\lambda}\right]:=\underset{f=u+v}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|\right) .
$$

- This decomposition is contrast invariant and
- The scale-space generated is geometric in nature. (Chan-Esedoḡlu, 2005)

■ ($B V, L^{1}$) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

$$
f=u_{\lambda}+v_{\lambda}, \quad\left[u_{\lambda}, v_{\lambda}\right]:=\underset{f=u+v}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\lambda \int_{\Omega}|f-u|\right) .
$$

- This decomposition is contrast invariant and
- The scale-space generated is geometric in nature. (Chan-Esedoḡlu, 2005)

(BV, L^{1}) hierarchical scheme with τ

$\square N^{\text {th }}$ step in $\left(B V, L^{1}\right)$ scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\left[u_{\lambda_{N}}, v_{\lambda_{N}}\right]=\underset{\left\{v_{\lambda_{N-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{N}}{\tau} \int_{\Omega}\left|v_{\lambda_{N-1}}-\tau u\right|\right)
$$

$■ N^{\text {th }}$ step in $\left(B V, L^{1}\right)$ scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{gathered}
{\left[u_{\lambda_{N}}, v_{\lambda_{N}}\right]=\underset{\left\{v_{\lambda_{N-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{N}}{\tau} \int_{\Omega}\left|v_{\lambda_{N-1}}-\tau u\right|\right)} \\
\operatorname{sgn}\left(\tau u_{\lambda_{N}}-v_{\lambda_{N-1}}\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
\end{gathered}
$$

$■ N^{\text {th }}$ step in $\left(B V, L^{1}\right)$ scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{gathered}
{\left[u_{\lambda_{N}}, v_{\lambda_{N}}\right]=\underset{\left\{v_{\lambda_{N-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{N}}{\tau} \int_{\Omega}\left|v_{\lambda_{N-1}}-\tau u\right|\right)} \\
\quad \operatorname{sgn}\left(\tau u_{\lambda_{N}}-v_{\lambda_{N-1}}\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right) \\
\quad \text { we have: } v_{\lambda_{N-1}}=f-\sum_{k=0}^{N-1} \tau u_{\lambda_{k}} \Rightarrow
\end{gathered}
$$

- $N^{\text {th }}$ step in $\left(B V, L^{1}\right)$ scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{gathered}
{\left[u_{\lambda_{N}}, v_{\lambda_{N}}\right]=\underset{\left\{v_{\lambda_{N-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{N}}{\tau} \int_{\Omega}\left|v_{\lambda_{N-1}}-\tau u\right|\right)} \\
\operatorname{sgn}\left(\tau u_{\lambda_{N}}-v_{\lambda_{N-1}}\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
\end{gathered}
$$

$$
\operatorname{sgn}\left(\sum_{k=0}^{N} u_{\lambda_{k}} \tau-f\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right) .
$$

- $N^{\text {th }}$ step in $\left(B V, L^{1}\right)$ scheme: $\tau u_{\lambda_{k}}+v_{\lambda_{k}}=v_{\lambda_{k-1}}$

$$
\begin{gathered}
{\left[u_{\lambda_{N}}, v_{\lambda_{N}}\right]=\underset{\left\{v_{\lambda_{N-1}}=\tau u+v\right\}}{\operatorname{arginf}}\left(\int_{\Omega}|\nabla u|+\frac{\lambda_{N}}{\tau} \int_{\Omega}\left|v_{\lambda_{N-1}}-\tau u\right|\right)} \\
\operatorname{sgn}\left(\tau u_{\lambda_{N}}-v_{\lambda_{N-1}}\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right)
\end{gathered}
$$

$$
\text { we have: } v_{\lambda_{N-1}}=f-\sum_{k=0} \tau u_{\lambda_{k}} \Rightarrow
$$

$$
\operatorname{sgn}\left(\sum_{k=0}^{N} u_{\lambda_{k}} \tau-f\right)=\frac{1}{\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{\left|\nabla u_{\lambda_{N}}\right|}\right) .
$$

This motivates the following IDE:

$$
\operatorname{sgn}\left(\int_{s=0}^{t} u(x, s) d x-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

$$
\operatorname{sgn}\left(\int_{s=0}^{t} u(x, s) d x-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: The above image show $\int_{0}^{t} u(\cdot, s) d s$ for the $\left(B V, L^{1}\right)$ IDE for $t=1,6,9,15$.

Scale space generated by (BV, L^{1}) IDE

$$
\operatorname{sgn}\left(\int_{s=0}^{t} u(x, s) d x-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: The above image show $\int_{0}^{t} u(\cdot, s) d s$ for the $\left(B V, L^{1}\right)$ IDE for $t=1,3,5,7$.

$$
\int_{s=0}^{t} u(x, s) d x=f(x)+\frac{1}{2 \lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: The above image show $\int_{0}^{t} u(\cdot, s) d s$ for the $\left(B V, L^{2}\right)$ IDE for $t=1,6,7,10$.

Athavale, Tadmor, Integro-Differential Equations Based on (BV, L^{1}) Image Decomposition, SIAM J. Imaging Sci. 4, pp. 300-312.

Proton therapy applications

Denoising using ($B V, L^{1}$) IDE

Figure: The above images show the original noisy image*, $\int_{0}^{t} u(\cdot, s) d s$ for the ($B V, L^{1}$) IDE for $t=7$ and the corresponding residual.

* Noisy image provided by Dr. Reinhard, Loma Linda University.

6. A few theoretical results for $\left(B V, L^{1}\right)$-IDE

Some properties of this IDE

Theorem (I)

For the IDE model

$$
\operatorname{sgn}\left(\int_{0}^{t} u(x, s) d s-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

let $V(\cdot, t)$ be the residual, and $\mathcal{U}(\cdot, t):=\int_{0}^{t} u(x, s) d s$

$$
V(\cdot, t):=f-\mathcal{U}(\cdot, t)
$$

Then size of the signum of residual is dictated by the scaling function $\lambda(t)$,

$$
\|\operatorname{sgn}(V(\cdot, t))\|_{*}=\frac{1}{\lambda(t)}
$$

Recall, for (BV, L^{2})-based IDE we had

Theorem (I)

For the IDE model

$$
\operatorname{sgn}\left(\int_{0}^{t} u(x, s) d s-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

let $V(\cdot, t)$ be the residual, and $\mathcal{U}(\cdot, t):=\int_{0}^{t} u(x, s) d s$

$$
V(\cdot, t):=f-\mathcal{U}(\cdot, t)
$$

Then size of the signum of residual is dictated by the scaling function $\lambda(t)$,

$$
\|\operatorname{sgn}(V(\cdot, t))\|_{*}=\frac{1}{\lambda(t)}
$$

Recall, for $\left(B V, L^{2}\right)$-based IDE we had

$$
\|V(\cdot, t)\|_{*}=\frac{1}{2 \lambda(t)}
$$

Theorem (II)

Moreover, we have the following L^{1}-energy decomposition,

$$
\int_{0}^{t} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s+\|V(\cdot, t)\|_{L^{1}}=\|f\|_{L^{1}} .
$$

Recall, for $\left(B V, L^{2}\right)$-based IDE we had the following L^{2}-energy

 decomposition:$$
\int_{0}^{t} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s+\|V(\cdot, t)\|_{L^{2}}^{2}=\|f f\|_{L^{2}}^{2} .
$$

Theorem (II)

Moreover, we have the following L^{1}-energy decomposition,

$$
\int_{0}^{t} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s+\|V(\cdot, t)\|_{L^{1}}=\|f\|_{L^{1}} .
$$

Recall, for ($B V, L^{2}$)-based IDE we had the following L^{2}-energy decomposition:

$$
\int_{0}^{t} \frac{1}{\lambda(s)}|u(\cdot, s)|_{B V} d s+\|V(\cdot, t)\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2} .
$$

7. Modifications to the $\left(B V, L^{1}\right)$-IDE

Results for the ($B V, L^{1}$) IDE with filtered diffusion:

$$
\operatorname{sgn}\left(\int_{s=0}^{t} u(x, s) d x-f(x)\right)=\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: The above image show $\int_{0}^{t} u(\cdot, s) d s$ for the $\left(B V, L^{1}\right)$ IDE for $t=1,6,7,10$.

Compare these results for the original ($B V, L^{1}$) IDE:

$$
\operatorname{sgn}\left(\int_{s=0}^{t} u(x, s) d x-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)
$$

Figure: The above image show $\int_{0}^{t} u(\cdot, s) d s$ for the ($B V, L^{1}$) IDE for $t=1,6,7,10$.

Numerical results for

$$
\operatorname{sgn}\left(\int_{0}^{t} u(x, s) d s-f(x)\right)=\frac{g\left(\left|G_{\sigma} \star \nabla u(x, t)\right|\right)}{\lambda(t)}|\nabla u(x, t)| \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

Figure: The same noisy image f and the corresponding $\int_{0}^{t} u(\cdot, s) d s$, of the IDE with tangential smoothing at $t=1,4,18$.

Compare these results with the numerical results for

$$
\operatorname{sgn}\left(\int_{0}^{t} u(x, s) d s-f(x)\right)=\frac{1}{\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right) .
$$

Figure: A given noisy image f and the IDE images, $\int_{0}^{t} u(\cdot, s) d s$, at $t=1,4,18$.

Let's connect the dots!

Connecting the dots ...

Heat equation

Perona-Malik

Nordström

Rudin Osher Fatemi

Tadmor-Nezzar-Vese
The novel integro-differential equations

Heat equation
\Downarrow
Perona-Malik

Nordström

Rudin Osher Fatemi
Tadmor-Nezzar-Vese
The novel integro-differential equations

Heat equation
\Downarrow
Perona-Malik
\Downarrow
Nordström

Rudin Osher Fatemi
Tadmor-Nezzar-Vese

The novel integro-differential equations

Heat equation
\Downarrow
Perona-Malik
\Downarrow
Nordström
\Downarrow
Rudin Osher Fatemi

Tadmor-Nezzar-Vese

The novel integro-differential equations

Heat equation
\Downarrow
Perona-Malik
\Downarrow
Nordström
\Downarrow
Rudin Osher Fatemi
\Downarrow
Tadmor-Nezzar-Vese

The novel integro-differential equations

$\mathcal{T H} A N K ~ Y \mathcal{O U}$

www.math.ucla.edu/~prashant
prashant@math.ucla.edu

[^0]: ${ }^{1}$ Supported by CSCAMM and IPAM.
 ${ }^{2}$ with Eitan Tadmor, CSCAMM, University of Maryland, College Park.

[^1]: ${ }^{3}$ F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

[^2]: ${ }^{3}$ F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

[^3]: E. Tadmor, P. Athavale, Multiscale image representation using novel integro-differential equations, Inverse Problems in Imaging, 3 (2009), 693-710.

