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1. Problems in image processing, a historical tour



What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function



Problems in image processing...

Image denoising: f may have some noise η in it.

f = u + η, we need to get back the denoised image u.

(a) (b)

Figure: Can we go from a noisy image (a) to a restored image in (b) ?

f may be blurry and noisy f = Ku + η

Image segmentation ≡ identifying ‘components’ in f ≡ edge detection



Problems in image processing...

Image segmentation ≡ identifying ‘components’ in f ≡ edge detection

(a) (b)

Figure: Can we identify components in (a) and get a segmented image as in (b) ?



Multiscale image representation

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {u(t)} for a scaling
parameter t

Forward marching: u(0) = 0, u(t)→ u

Backward marching: u(0) = f , u(t)→ u
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There are two main approaches to solve above problems:

Variational approaches - Tikhonov regularization, greedy algorithms,
wavelets shrinkage etc.

PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -



Variational methods in image processing: Tikhonov regularization

We need to solve the ill posed problem f = Ku :

Consider interpolation functional

inf
u∈X

(
‖u‖X + λ‖f − Ku‖2

Y

)
X ( Y , ‖u‖X : regularizing term, ‖f − Ku‖2

Y : fidelity term

(X ,Y ) ≡ (BV , L2): Rudin-Osher-Fatemi (1992), Aubert-Vese (1997).

inf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − Ku|2
)
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Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The BV seminorm
∫

Ω
|∇u| is a regularizing term∫

Ω
|f − u|2: a fidelity term

λ : acts as an inverse scale of the uλ part ( smaller λ ≡ larger scale )

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...
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Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...
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PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?
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PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂u
∂t

= div (g(|∇u|)∇u), u(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇u| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇u| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et al. modification3 :

∂u
∂t

= div (g(|∇Gσ ? u|)∇u),

Gσ is Gaussian kernel.

3F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)
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PDE methods in image processing: Alvarez et al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
, u(0) = f

Idea: Diffuse u only in the direction orthogonal to its gradient ∇u.

The term |∇u| div
(
∇u
|∇u|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.
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PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂u
∂t

= f − u + div (g(|∇u|)∇u), u(0) = 0.

This equation has non-trivial steady state.

Forward marching: u(0) = 0 and u(t)→ u.
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PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition (1992)

[uλ, vλ] = arginf
{f =u+v}

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|2
)

The (time dependent) Euler-Lagrange equation:

∂u
∂t

= f − u +
1

2λ
div
(
∇u
|∇u|

)
.

Nordström’s modification of Perona-Malik (1990)

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
2λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !
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2. IDE based on (BV , L2) image decomposition



A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation (IDE).

The scaling function λ(t) : increasing function at our disposal.

This model gives an inverse scale representation.

? We do not need to associate with a variational problem anymore.?

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?
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Idea: Tadmor-Nezzar-Vese scheme with “intensity quanta”

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τuλ0 + vλ0 , [uλ0 , vλ0 ] = arginf
{f =τu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1 ] = arginf
{vλ0

=τu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τu|2
)
.

TNV multiscale decomposition

vλk−1 = τuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τu|2

)
.

With this scheme after N + 1 steps we get:

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= τu0 + τu1 + τu2 + v2

= ...

= τuλ0 + τuλ1 + ...+ τuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τuλk + vλN .
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k=0 τuλk + vλN .
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TNV scheme with τ

k th step in TNV scheme: τuλk + vλk = vλk−1

[uλk , vλk ] = arginf
{vλk−1

=τu+v}

(∫
Ω

|∇u|+ λk

τ

∫
Ω

|vλk−1 − τu|2
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τuλk −
1

2λk
div
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∇uλk

|∇uλk |
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︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
τuλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk τ + vλN = f

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
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Going from TNV to a novel integro-differential equation

New TNV formulation:

N∑
k=0

uλk τ = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

This ‘motivates’ us to write the following model.

The novel integro-differential model

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) > 0 is an increasing scaling function at our disposal.
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How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t := UN−1 + ωN .

Thus, we have the following fixed point iteration.

ωn
i,j =

2λNh2(fi,j − UN−1
i,j ) + cEω

n−1
i+1,j + cWω

n−1
i−1,j + cSω

n−1
i,j+1 + cNω

n−1
i,j−1

2λNh2 + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t
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Proposed model λ(t) = (0.002)2t , on Lenna.

Numerical result for
∫ t

0 u(x , s)ds = f (x) + 1
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) As λ(t)→∞, the images
∫ t

0 u(x , s)ds are shown above for
t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t .



3. A few theoretical results about (BV , L2)-based IDE



What does the scaling function, λ(t), mean ?

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖w‖∗ := sup
ϕ 6=0

|(w , ϕ)L2 |∫
Ω
|∇ϕ|

.

Theorem (I)

For the IDE model ∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let U(·, t) :=
∫ t

0 u(x , s) ds and V (·, t) be the residual,

V (·, t) := f − U(·, t).

Then size of the residual is dictated by the scaling function λ(t),

‖V (·, t)‖∗ =
1

2λ(t)
.
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Energy decomposition

Theorem (II)

For the IDE model ∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

associated with an L2- image f , and let V (·, t) be the residual,
V (t) = f − U(t). Then the following energy decomposition holds∫ t

s=0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖2
L2 = ‖f‖2

L2 .



L2-convergence of
∫ t

s=0 u(x , s)ds

Theorem (III)

Given an image f ∈ BV, we consider the IDE model∫ t

0
u(x , s) ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

with rapidly increasing scaling function λ(t) so that

λ(t/2)

λ(t)
t→∞−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in
L2- sense)

f (x) =

∫ ∞
s=0

u(x , s) ds,

with energy decomposition

‖f‖2
L2 =

∫ ∞
s=0

1
λ(s)

|u(·, s)|BV ds.

We show that limt→∞‖V (·, t)‖L2 → 0. What happens for f ∈ L2 ?
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4. Modifications to the (BV , L2)-based IDE



Filtered IDE model

Recall heat equation :
∂u
∂t

= ∆u.

Perona Malik model:

∂u
∂t

= div (g(|Gσ ?∇u|)∇u).

Filtered IDE model

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
;

∂u
∂n

∣∣∣∣
∂Ω

= 0,

To compute this IDE we use a fixed point iteration as before with
g(|Gσ ?∇u(x , t)|).
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Numerical results of the filtered IDE model

Numerical results of
∫ t

0 u(x , s)ds = f (x) + g(|Gσ?∇u(x,t)|)
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: (a)–(d) The above images depict
∫ t

0 u(x , s)ds for t = 1, 4, 6, 10. Here,
λ(t) = 0.002× 2t . Here the function g(s) = 1

1+(s/5)2 .



The ORIGINAL IDE model applied to Lenna
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The ORIGINAL IDE model applied to MRI image

Numerical results of
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IDE with tangential smoothing modification

The Heat equation
∂u
∂t

= ∆u.

Note: ∆u = uTT + uNN and uTT := |∇u| div
(
∇u
|∇u|

)
.

Alvarez et al. modification model:

∂u
∂t

= g(|Gσ ?∇u|)|∇u| div
(
∇u
|∇u|

)
,

Filtered IDE with tangential smoothing

∫ t

0
u(x , s) ds = f (x) +

g(|Gσ ?∇u(x , t)|)
2λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.
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,

Filtered IDE with tangential smoothing

∫ t

0
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g(|Gσ ?∇u(x , t)|)
2λ(t)
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(
∇u(x , t)
|∇u(x , t)|

)
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Figure: A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, at t = 1, 4, 7. Here,
the scaling function is λ(t) = 0.002× 2t . Most of the noise is present at scale t = 7.



Numerical results for filtered IDE with tangential smoothing

Numerical results for∫ t

0
u(x , s) ds = f (x) +

1
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|∇u(x , t)| div
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∇u(x , t)
|∇u(x , t)|
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.

Figure: The same noisy image f and the corresponding
∫ t

0 u(·, s) ds, of the IDE with
tangential smoothing at t = 1, 4, 7. The same scaling function as before,
λ(t) = 0.002× 2t . Large portion of the noise is suppressed at t = 7 but there is
normal diffusion of edges.



Numerical results for filtered IDE with tangential smoothing

Numerical results for∫ t

0
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g(|Gσ ?∇u(x , t)|)
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Figure: The same noisy image and the images,
∫ t

0 u(·, s) ds, of IDE with tangential
smoothing and filtering at t = 1, 4, 7. Here, λ(t) = 0.002× 2t and
g(s) = 1/(1 + (s/5)2). Noise is suppressed with minimal normal edge diffusion.



Deblurring with IDE



TNV scheme with “intensity quanta” τ and blurring

Let τ be the small intensity of quanta, with this the ROF decomposition
becomes:

f = τKuλ0 + vλ0 , [uλ0 , vλ0 ] = arginf
{f =τKu+v}

(∫
Ω

|∇u|+ λ0

τ

∫
Ω

|f − τKu|2
)
.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = τKuλ1 + vλ1 , [uλ1 , vλ1 ] = arginf
{vλ0

=τKu+v}

(∫
Ω

|∇u|+ λ1

τ

∫
Ω

|vλ0 − τKu|2
)
.

TNV multiscale decomposition

vλk−1 = τKuλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=τKu+v}

(∫
Ω
|∇u|+

λk

τ

∫
Ω
|vλk−1 − τKu|2

)
.

With this scheme after N + 1 steps we get:

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= τKu0 + τu1 + τKu2 + v2

= ...

= τKuλ0 + τKuλ1 + ...+ τKuλN + vλN .

i.e. a nonlinear multiscale decomposition: f =
∑N

k=0 τKuλk + vλN .
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TNV scheme with τ and deblurring

TNV scheme with deblurring reads:

τ
N∑

k=0

Kuλk = f − vλN .

τ

N∑
k=0

K ∗Kuλk = K ∗f − K ∗vλN . (1)

The Euler-Lagrange for the Nth step:

K ∗vλN−1 = τK ∗KuλN −
1

2λN
div
(
∇uλN

|∇uλN |

)
︸ ︷︷ ︸

K∗vλN

,

N∑
k=0

K ∗Kuλk τ = K ∗f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

∫ t

0
K ∗Ku(x , s) ds = K ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.
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(a) (b)

Figure: Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel
with σ = 1. Image (b) shows the result of the deblurring IDE model, as t →∞.

E. Tadmor, P. Athavale, Multiscale image representation using novel integro-differential
equations, Inverse Problems in Imaging, 3 (2009), 693–710.
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5. IDE based on (BV , L1) image decomposition



(BV ,L1) image decomposition

(BV , L1) model (Alliney, Nikolova, Chan-Esedoḡlu, Allard, Aujol)

f = uλ + vλ, [uλ, vλ] := arginf
f =u+v

(∫
Ω

|∇u|+ λ

∫
Ω

|f − u|
)
.

This decomposition is contrast invariant and

The scale-space generated is geometric in nature. (Chan-Esedoḡlu,
2005)
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(BV ,L1) hierarchical scheme with τ

N th step in (BV , L1) scheme: τuλk + vλk = vλk−1

[uλN , vλN ] = arginf
{vλN−1

=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

sgn (τuλN − vλN−1 ) =
1
λN

div
(
∇uλN

|∇uλN |

)

we have: vλN−1 = f −
N−1∑
k=0

τuλk ⇒ .

sgn

(
N∑

k=0

uλk τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN |

)
.

This motivates the following IDE:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
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Multiscale image representation using (BV ,L1) IDE

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 9, 15.



Scale space generated by (BV ,L1) IDE

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 3, 5, 7.



Compare this with the scale space generated by (BV ,L2) IDE

∫ t

s=0
u(x , s) dx = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L2) IDE for t = 1, 6, 7, 10.

Athavale, Tadmor, Integro-Differential Equations Based on (BV , L1) Image
Decomposition, SIAM J. Imaging Sci. 4, pp. 300-312.



Denoising application for Proton therapy imaging

Proton therapy applications



Denoising using (BV ,L1) IDE

Figure: The above images show the original noisy image∗,
∫ t

0 u(·, s) ds for the
(BV , L1) IDE for t = 7 and the corresponding residual.

∗Noisy image provided by Dr. Reinhard, Loma Linda University.



6. A few theoretical results for (BV , L1)-IDE



Some properties of this IDE

Theorem (I)

For the IDE model

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
,

let V (·, t) be the residual, and U(·, t) :=
∫ t

0 u(x , s) ds

V (·, t) := f − U(·, t).

Then size of the signum of residual is dictated by the scaling function λ(t),

‖sgn (V (·, t))‖∗ =
1
λ(t)

.

Recall, for (BV , L2)-based IDE we had

‖V (·, t)‖∗ =
1

2λ(t)
.
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Theorem (II)

Moreover, we have the following L1-energy decomposition,∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖L1 = ‖f‖L1 .

Recall, for (BV , L2)-based IDE we had the following L2-energy
decomposition: ∫ t

0

1
λ(s)

|u(·, s)|BV ds + ‖V (·, t)‖2
L2 = ‖f‖2

L2 .
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7. Modifications to the (BV , L1)-IDE



The (BV ,L1) IDE with filtered diffusion.

Results for the (BV , L1) IDE with filtered diffusion:

sgn
(∫ t

s=0
u(x , s) dx − f (x)

)
=

g(|Gσ ?∇u(x , t)|)
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 7, 10.



Compare these results for the original (BV , L1) IDE:
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1
λ(t)

div
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Figure: The above image show
∫ t

0 u(·, s) ds for the (BV , L1) IDE for t = 1, 6, 7, 10.



Results for filtered (BV ,L1) IDE with tangential smoothing

Numerical results for

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

g(|Gσ ?∇u(x , t)|)
λ(t)

|∇u(x , t)| div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: The same noisy image f and the corresponding
∫ t

0 u(·, s) ds, of the IDE with
tangential smoothing at t = 1, 4, 18.



Compare these results with the numerical results for

sgn
(∫ t

0
u(x , s) ds − f (x)

)
=

1
λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

Figure: A given noisy image f and the IDE images,
∫ t

0 u(·, s) ds, at t = 1, 4, 18.



Let’s connect the dots!
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Heat equation

⇓
Perona-Malik

⇓
Nordström
⇓

Rudin Osher Fatemi
⇓

Tadmor-Nezzar-Vese
⇓

The novel integro-differential equations
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