Direct Electrical Impedance Tomography for Nonsmooth Conductivities

Jennifer Mueller

Department of Mathematics and School of Biomedical Engineering

Colorado State University

June 20, 2011

Collaborators on this work

Kari Astala
University of Helsinki

Allan Perämäki
Helsinki University of Technology

Lassi Päivärinta
University of Helsinki, Finland

Samuli Siltanen
University of Helsinki, Finland

The EIT Problem

Medical Applications in 2-D:

- Monitoring ventilation and perfusion in ARDS patients
- Detection of pneumothorax
- Diagnosis of pulmonary edema and pulmonary embolus

The 2-D EIT Problem

Given a bounded domain $\Omega \in \mathbb{R}^{2}$, determine the conductivity $\sigma(z)$ where

$$
\begin{aligned}
\nabla \cdot(\sigma(z) \nabla u) & =0 \text { in } \Omega, \\
u & =f \text { on } \partial \Omega
\end{aligned}
$$

from knowledge of the Dirichlet-to-Neumann map

$$
\Lambda_{\sigma} f=\left.\sigma \frac{\partial u}{\partial \nu}\right|_{\partial \Omega}
$$

The approach presented here is based on the constructive proof of Astala and Päivärinta [Ann. of Math. 163 (2006)].

CGO Solutions

The method is based on the existence of exponentially growing solutions to the conductivity and resistivity equations

$$
\begin{aligned}
\nabla \cdot\left(\sigma(z) \nabla u_{1}(z, k)\right) & =0, \quad u_{1} \sim e^{i k z} \text { when }|z| \rightarrow \infty \\
\nabla \cdot\left(\frac{1}{\sigma(z)} \nabla u_{2}(z, k)\right) & =0, \quad u_{2} \sim i e^{i k z} \text { when }|z| \rightarrow \infty
\end{aligned}
$$

The exponential behaviour of the CGO solutions is used for nonlinear Fourier analysis for the inverse problem.
k can be thought of as a frequency-domain variable.

CGO Solutions

Defining

$$
f_{\mu}(z, k)=u_{1}(z, k)+i u_{2}(z, k)
$$

and

$$
\mu(z)=\frac{1-\sigma(z)}{1+\sigma(z)}
$$

one can show $f_{\mu}(z, k)$ satisfies the Beltrami equation

$$
\bar{\partial}_{z} f_{\mu}=\mu \overline{\partial_{z} f_{\mu}}
$$

and the solutions can be written as
$f_{\mu}(z, k)=e^{i k z}(1+\omega(z, k)), \quad$ with $\quad \omega(z, k)=\mathcal{O}\left(\frac{1}{z}\right)$ as $|z| \rightarrow \infty$.

Computing CGO Solutions (FP)

A computation shows that ω satisfies the equation

$$
\begin{equation*}
\bar{\partial}_{z} \omega-\nu \overline{\partial_{z} \omega}-\alpha \bar{\omega}-\alpha=0 . \tag{1}
\end{equation*}
$$

Here $e_{k}(z):=\exp (i(k z+\bar{k} \bar{z}))$ and

$$
\begin{align*}
\nu(z, k) & \equiv e_{-k}(z) \mu(z) \tag{2}\\
\alpha(z, k) & \equiv-i \bar{k} e_{-k}(z) \mu(z) \tag{3}
\end{align*}
$$

We will make a substitution, defining $u \in L^{p}(\Omega)$ such that

$$
\bar{u}=-\bar{\partial}_{z} \omega .
$$

Computing CGO Solutions (FP)

Then $\omega=-P \bar{u}$ and $\partial \omega=-S \bar{u}$, where

$$
\operatorname{Pf}(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(\lambda)}{\lambda-z} d m(\lambda), \quad S g(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{g(\lambda)}{(\lambda-z)^{2}} d m(\lambda)
$$

Then (1) becomes

$$
u+(-\bar{\nu} S-\bar{\alpha} P) \bar{u}=-\bar{\alpha}
$$

or

$$
(I+A \rho) u=-\bar{\alpha}, \text { with } \rho f=\bar{f} \text { and } A=-\bar{\nu} S-\bar{\alpha} P
$$

This is equation is then discretized and solved with GRMES using a preconditioner.

An Example for the CGO Solutions

Conductivityo

Conductivity 1%

Potential q_{1} of σ

Potential q of $1 / \sigma$

An example conductivity and corresponding resistivity

Computing CGO Solutions

Imaginary part

Real and imaginary parts of $\omega(z, 1)$

Computing CGO Solutions

Imaginary part

Real and imaginary parts of $\omega(z,-4.9497-4.9497 i)$

Overview of the reconstruction algorithm

The reconstruction procedure consists of these three steps:
(i) Recover traces of CGO solutions at the boundary $\partial \Omega$ from the DN map by solving a boundary integral equation given by Astala and Päivärinta.
(ii) Compute approximate values of CGO solutions inside the unit disc using the low-pass transport matrix.
(iii) Reconstruct the conductivity. The approximate conductivity is computed from the recovered values of the CGO solutions inside Ω using differentiation and simple algebra.

A Boundary Integral Formula for CGO Solutions

Defining

$$
M_{\mu}(z, k)=1+\omega(z, k)
$$

the following boundary integral equation holds:

$$
\begin{equation*}
\left.M_{\mu}(\cdot, k)\right|_{\partial \Omega}+1=\left.\left(\mathcal{P}_{\mu}^{k}+\mathcal{P}_{0}\right) M_{\mu}(\cdot, k)\right|_{\partial \Omega} \tag{4}
\end{equation*}
$$

where \mathcal{P}_{μ}^{k} and \mathcal{P}_{0} are projection operators to be discussed.
Numerical solution of (4) is done by

- writing real and imaginary parts separately
- replacing all the operators by their $(4 N+2) \times(4 N+2)$ matrix approximations
- solving the resulting finite linear system for $|k| \leq R$ where $R>0$ depends on the noise level.

The Hilbert Transform

Define the μ - Hilbert transform $\mathcal{H}_{\mu}: H^{1 / 2}(\partial \Omega) \rightarrow H^{1 / 2}(\partial \Omega)$ by

$$
\mathcal{H}_{\mu}:\left.\left.u_{1}\right|_{\partial \Omega} \longrightarrow u_{2}\right|_{\partial \Omega}
$$

To extend this to complex-valued functions in $H^{1 / 2}(\partial \Omega)$, define

$$
\mathcal{H}_{\mu}(i u)=i \mathcal{H}_{-\mu}(u)
$$

Theorem [AP]: The Dirichlet-to-Neumann map Λ_{σ} uniquely determines $\mathcal{H}_{\mu}, \mathcal{H}_{-\mu}$, and $\Lambda_{\sigma^{-1}}$.

The Hilbert Transform

From the proof, in the weak sense for real-valued $g \in H^{1 / 2}(\partial \Omega)$

$$
\partial_{T} \mathcal{H}_{\mu} g=\Lambda_{\sigma} g
$$

where ∂_{T} is the tangential derivative map along the boundary. It can be approximated in the trig basis by the matrix D_{T} :

$$
D_{T}=\left[\begin{array}{rrrrrrr}
0 & 1 & & & & & \tag{5}\\
-1 & 0 & & & & & \\
& & 0 & 2 & & & \\
& & -2 & 0 & & & \\
& & & & \ddots & & \\
& & & & & 0 & N \\
& & & & & -N & 0
\end{array}\right]
$$

The Projection Maps

Define an averaging operator

$$
\mathcal{L} \phi:=|\partial \Omega|^{-1} \int_{\partial \Omega} \phi d s .
$$

The operator $\mathcal{P}_{\mu}: H^{1 / 2}(\partial \Omega) \rightarrow H^{1 / 2}(\partial \Omega)$ is defined by

$$
\mathcal{P}_{\mu} g=\frac{1}{2}\left(I+i \mathcal{H}_{\mu}\right) g+\frac{1}{2} \mathcal{L} g
$$

where g may be complex-valued. Further, denote

$$
\mathcal{P}_{\mu}^{k} g:=e^{-i k z} \mathcal{P}_{\mu}\left(e^{i k z} g\right)
$$

Boundary Data

For $n=1, \ldots, 2 N$, define a set of trigonometric basis functions:

$$
\phi_{n}(\theta)=\left\{\begin{array}{l}
\pi^{-1 / 2} \cos ((n+1) \theta / 2), \quad \text { for odd } n \\
\pi^{-1 / 2} \sin (n \theta / 2), \quad \text { for even } n
\end{array}\right.
$$

Any function $g \in L^{2}(\partial \Omega)$ representing current density on the boundary can then be approximated by

$$
g(\theta) \approx \sum_{n=1}^{2 N}\left\langle g, \phi_{n}\right\rangle \phi_{n}(\theta)
$$

where the inner product is defined for real-valued functions $f, g \in L^{2}(\partial \Omega)$ by

$$
\langle f, g\rangle:=\int_{0}^{2 \pi} f(\theta) g(\theta) d \theta
$$

Boundary Data

Now define the $2 N \times 2 N$ matrix approximation $\left[R_{m n}\right]$ to the ND map by

$$
R_{m n}=\left\langle\left. u_{n}\right|_{\partial \Omega}, \phi_{m}\right\rangle
$$

where $\left.u_{n}\right|_{\partial \Omega}$ is the solution to the Neumann problem with $g=\phi_{n}$. Define

$$
\widetilde{L}_{\sigma}:=\left[R_{m n}\right]^{-1} ;
$$

Now we can approximate \mathcal{H}_{μ} acting on real-valued, zero-mean functions expanded in the trig basis by

$$
\widetilde{H}_{\mu}:=D_{T}^{-1} L_{\sigma} .
$$

Step 2: The Low-Pass Transport Matrix

Useful Facts:

- The function f_{μ} is harmonic outside the unit disc since μ is supported inside Ω.
- We know the trace of f_{μ} on $\partial \Omega$.
- Thus, the Fourier coefficients of f_{μ} can be used to expand f_{μ} as a power series outside Ω.

The transport matrix is the matrix in a 2×2 linear system that connects the CGO solutions inside Ω to their values outside Ω.

Step 2: The Low-Pass Transport Matrix

For any $z_{0} \in \mathbb{R}^{2} \backslash \bar{\Omega}$, set $\nu_{z_{0}}^{(R)}(k)=0$ if $|k| \geq R$, and if $|k|<R$

$$
\nu_{z_{0}}^{(R)}(k):=\frac{-f_{\mu}\left(z_{0}, k\right)+\overline{f_{-\mu}}\left(z_{0}, k\right)}{f_{\mu}\left(z_{0}, k\right)+f_{-\mu}\left(z_{0}, k\right)}
$$

We solve the truncated Beltrami equations

where $\phi(k) \rightarrow 0$ as $k \rightarrow \infty$. We also have the conditions

$$
\alpha^{(P)}\left(z, z_{0}, 0\right)=1 \text { and } \beta^{(P)}\left(z, z_{0}, 0\right)=i
$$

Step 2: The Low-Pass Transport Matrix

For any $z_{0} \in \mathbb{R}^{2} \backslash \bar{\Omega}$, set $\nu_{z_{0}}^{(R)}(k)=0$ if $|k| \geq R$, and if $|k|<R$

$$
\nu_{z_{0}}^{(R)}(k):=\frac{-f_{\mu}\left(z_{0}, k\right)+\overline{f_{-\mu}}\left(z_{0}, k\right)}{f_{\mu}\left(z_{0}, k\right)+f_{-\mu}\left(z_{0}, k\right)}
$$

We solve the truncated Beltrami equations

$$
\begin{array}{ll}
\bar{\partial}_{k} \alpha^{(R)}=\nu_{z_{0}}^{(R)}(k) \overline{\partial_{k} \alpha^{(R)}}, & \alpha^{(R)}\left(z, z_{0}, k\right)=e^{i k\left(z-z_{0}\right)+k \phi(k)}, \\
\bar{\partial}_{k} \beta^{(R)}=\nu_{z_{0}}^{(R)}(k) \overline{\partial_{k} \beta^{(R)}}, & \beta^{(R)}\left(z, z_{0}, k\right)=i e^{i k\left(z-z_{0}\right)+k \tilde{\phi}(k)},
\end{array}
$$

where $\phi(k) \rightarrow 0$ as $k \rightarrow \infty$. We also have the conditions

$$
\alpha^{(R)}\left(z, z_{0}, 0\right)=1 \text { and } \beta^{(R)}\left(z, z_{0}, 0\right)=i
$$

Step 2: The Low-Pass Transport Matrix

Fix any nonzero $k_{0} \in \mathbb{C}$ and choose any point z inside the unit disc. We can now use the approximate transport matrix

$$
T^{(R)}=T_{z, z_{0}, k_{0}}^{(R)}:=\left(\begin{array}{cc}
a_{1}^{(R)} & a_{2}^{(R)} \tag{6}\\
b_{1}^{(R)} & b_{2}^{(R)}
\end{array}\right)
$$

to compute

$$
\begin{align*}
& u_{1}^{(R)}\left(z, k_{0}\right)=a_{1}^{(R)} u_{1}\left(z_{0}, k_{0}\right)+a_{2}^{(R)} u_{2}\left(z_{0}, k_{0}\right) \tag{7}\\
& u_{2}^{(R)}\left(z, k_{0}\right)=b_{1}^{(R)} u_{1}\left(z_{0}, k_{0}\right)+b_{2}^{(R)} u_{2}\left(z_{0}, k_{0}\right)
\end{align*}
$$

where $\alpha^{(R)}=a_{1}^{(R)}+i a_{2}^{(R)}$ and $\beta^{(R)}=b_{1}^{(R)}+i b_{2}^{(R)}$.

Step 3: Reconstructing the Conductivity

From [AP] for any fixed $k_{0} \in \mathbb{C}, \mu(z)$ is related to f_{μ} by

$$
\mu(z)=\frac{\bar{\partial} f_{\mu}\left(z, k_{0}\right)}{\overline{\partial f_{\mu}}\left(z, k_{0}\right)} .
$$

Thus, the conductivity $\sigma(z)$ can be recovered by

$$
\sigma(z)=-i \frac{\bar{\partial}(\Im f)}{\bar{\partial}(\Re f)}
$$

This can be computed independently for each z in the ROI.

Example: Heart-and-Lungs Phantom

 Ideal Conductivity From ideal data From 0.01\% noise| Background : 1.0 | ~ 1.2 | ~ 1.2 | |
| :--- | ---: | ---: | ---: |
| Lungs : | 0.7 | 0.637 | 0.637 |
| Heart : | 2.0 | 1.997 | 1.870 |

Relative error:
Dynamic range:

11.6\%

105\%

12.7\%

95\%

Example: Heart-and-Lungs + Spine

Ideal Conductivity From ideal data

Background : 1.0	~ 1.1	
Spine :	0.2	$0.373(\mathrm{~min})$
Lungs :	0.7	~ 0.7
Heart :	2.0	$2.273(\max)$

Relative error:
Dynamic range:

16.3\% 106\%

Example: Heart-and-Lungs + Spine + Tumor

Ideal Conductivity From ideal data

Background : 1.0	~ 1.1	
Spine :	0.2	$0.378(\mathrm{~min})$
Lungs :	0.7	~ 0.7
Heart :	2.0	$2.332(\max)$

Relative error:
Dynamic range:

16.7\% 109\%

Subtract the previous images:

Ideal Difference

Reconstruction

Example 3: Layered Medium

Top Layer: 1.2 Middle Layer: 2.0 Bottom Layer: 0.3

Ideal

Relative error

24.7\%

Dynamic range: 134\%

